A Review of Urban Digital Twins Integration, Challenges, and Future Directions in Smart City Development
Abstract
:1. Introduction
- How can UDTs overcome technical, social, and regulatory barriers to create more sustainable urban environments?
- What role will the emerging field of UDTs, combined with growing technologies such as the IoT, AI, and BD, play in this transformation?
- Can we combine all the extraordinary challenges emerging worldwide and base them on the UDT to create dynamic and responsive urban management systems that support sustainable growth?
Smart City Development
2. Materials and Methods
2.1. Literature Collection
2.2. VOSviewer Analysis
2.3. Qualitative Approach
3. Bibliometric Analysis
3.1. Publications Trend
3.2. Leading Academic Journals in the Field
3.3. Interconnectivity and Emerging Trends in Research
4. Content Analysis
4.1. Intersections and Synergies
4.2. Challenges and Proposed Solutions
4.2.1. Advancing UDTs with Data Collection Technologies
4.2.2. Data Connectivity Challenges in DT-Supported Smart Cities
4.2.3. Overcoming Computing Challenges in DT-Supported Smart Cities
4.2.4. Overcoming Interoperability Challenges in DT-Supported SCs
4.2.5. Enhancing DT-SCs: Public Engagement, Policy, and Governance Challenges
4.3. Future Research Directions
4.3.1. Implementation and Standards
4.3.2. Integrability and Holistic Approaches
4.3.3. Empirical Comparisons
4.3.4. Conceptual Linkages and Priority Matrix
4.3.5. Cost–Benefit and Socio-Technical Analyses
4.3.6. Nanosensors in UDTs
4.4. Case Studies and Practical Implementations
4.4.1. Virtual Singapore
4.4.2. CityZenith’s SmartWorldOS
4.4.3. Helsinki’s 3D+
4.4.4. PlanIT Valley
4.4.5. Dubai’s Digital Twin
4.4.6. NDTp
4.4.7. Neom’s Urban Digital Twin
4.4.8. Riyadh’s Smart City Initiative
5. Discussion
6. Conclusions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Weil, C.; Bibri, S.E.; Longchamp, R.; Golay, F.; Alahi, A. Urban Digital Twin Challenges: A Systematic Review and Perspectives for Sustainable Smart Cities. Sustain. Cities Soc. 2023, 99, 104862. [Google Scholar] [CrossRef]
- Al-Sehrawy, R.; Kumar, B.; Watson, R. A digital twin uses classification system for urban planning & city infrastructure management. J. Inf. Technol. Constr. 2021, 26, 832–862. [Google Scholar] [CrossRef]
- Afzal, M.; Li, R.Y.M.; Shoaib, M.; Ayyub, M.F.; Tagliabue, L.C.; Bilal, M.; Ghafoor, H.; Manta, O. Delving into the Digital Twin Developments and Applications in the Construction Industry: A PRISMA Approach. Sustainability 2023, 15, 16436. [Google Scholar] [CrossRef]
- Bibri, S.E. Data-driven smart sustainable cities of the future: Urban computing and intelligence for strategic, short-term, and joined-up planning. Comput. Urban Sci. 2021, 1, 8. [Google Scholar] [CrossRef]
- Almusaed, A.; Almssad, A.; Almusaed, A.; Almssad, A. Blending Human Ware with Software and Hardware in the Design of Smart Cities. In Sustainable Smart Cities—A Vision for Tomorrow; IntechOpen: London, UK, 2022. [Google Scholar] [CrossRef]
- Ye, X.; Du, J.; Han, Y.; Newman, G.; Retchless, D.; Zou, L.; Ham, Y.; Cai, Z. Developing Human-Centered Urban Digital Twins for Community Infrastructure Resilience: A Research Agenda. J. Plan. Lit. 2023, 38, 187–199. [Google Scholar] [CrossRef]
- Angelidou, M.; Psaltoglou, A.; Komninos, N.; Kakderi, C.; Tsarchopoulos, P.; Panori, A. Enhancing sustainable urban development through smart city applications. J. Sci. Technol. Policy Manag. 2017, 9, 146–169. [Google Scholar] [CrossRef]
- Weil, C.; Birbi, S.; Longchamp, R.; Golay, F.; Alahi, A. Urban Digital Twins: Challenges & Perspectives for Sustainable Smart Cities. Rochester NY 2023, 4429379. [Google Scholar] [CrossRef]
- SSabri, S.; Alexandridis, K.; Koohikamali, M.; Zhang, S.; Ozkaya, H.E. Designing a Spatially-explicit Urban Digital Twin Framework for Smart Water Infrastructure and Flood Management. In Proceedings of the 2023 IEEE 3rd International Conference on Digital Twins and Parallel Intelligence (DTPI), Orlando, FL, USA, 16 October–9 November 2023; pp. 1–9. [Google Scholar] [CrossRef]
- White, G.; Zink, A.; Codecá, L.; Clarke, S. A digital twin smart city for citizen feedback. Cities 2021, 110, 103064. [Google Scholar] [CrossRef]
- Kruhlov, V.; Dvorak, J.; Moroz, V.; Tereshchenko, D. Revitalizing Ukrainian Cities: The Role of Public-Private Partnerships in Smart Urban Development. Central Eur. Public Adm. Rev. 2024, 22, 85–107. [Google Scholar] [CrossRef]
- United Nations Department of Economic and Social Affairs, Population Division. World Population Prospects 2022: Summary of Results. UN DESA/POP/2022/TR/NO.3. 2022. Available online: https://www.un.org/development/desa/pd/sites/www.un.org.development.desa.pd/files/wpp2022_summary_of_results.pdf (accessed on 12 September 2024).
- Kandt, J.; Batty, M. Smart cities, big data and urban policy: Towards urban analytics for the long run. Cities 2021, 109, 102992. [Google Scholar] [CrossRef]
- Lazaroiu, G.C.; Roscia, M. Definition methodology for the smart cities model. Energy 2012, 47, 326–332. [Google Scholar] [CrossRef]
- Ejdys, J.; Gulc, A. Trust in Courier Services and Its Antecedents as a Determinant of Perceived Service Quality and Future Intention to Use Courier Service. Sustainability 2020, 12, 9088. [Google Scholar] [CrossRef]
- Grossi, G.; Pianezzi, D. Smart cities: Utopia or neoliberal ideology? Cities 2017, 69, 79–85. [Google Scholar] [CrossRef]
- VOSviewer—Visualizing Scientific Landscapes. VOSviewer. Available online: https://www.vosviewer.com/ (accessed on 9 April 2024).
- Jeddoub, I.; Nys, G.-A.; Hajji, R.; Billen, R. Digital Twins for cities: Analyzing the gap between concepts and current implementations with a specific focus on data integration. Int. J. Appl. Earth Obs. Geoinf. 2023, 122, 103440. [Google Scholar] [CrossRef]
- Cureton, P.; Hartley, E. City Information Models (CIMs) as precursors for Urban Digital Twins (UDTs): A case study of Lancaster. Front. Built Environ. 2023, 9, 1048510. [Google Scholar] [CrossRef]
- Mahdavinejad, M.S.; Rezvan, M.; Barekatain, M.; Adibi, P.; Barnaghi, P.; Sheth, A.P. Machine learning for internet of things data analysis: A survey. Digit. Commun. Netw. 2018, 4, 161–175. [Google Scholar] [CrossRef]
- Ammar, A.; Nassereddine, H.; AbdulBaky, N.; AbouKansour, A.; Tannoury, J.; Urban, H.; Schranz, C. Digital Twins in the Construction Industry: A Perspective of Practitioners and Building Authority. Front. Built Environ. 2022, 8, 834671. [Google Scholar] [CrossRef]
- Hancke, G.P.; de Carvalho e Silva, B.; Hancke, G.P., Jr. The Role of Advanced Sensing in Smart Cities. Sensors 2013, 13, 393–425. [Google Scholar] [CrossRef]
- Turner, R.; Sun, Q.C. Advancing Flood Resilience: A Responsive Digital Twin Framework for Real-Time City-Scale Flood Modelling and Disaster Event Monitoring. Rochester NY 2023, 4643740. [Google Scholar] [CrossRef]
- Moreno, N.; Toro-Gálvez, L.; Troya-Castilla, J.; Canal-Velasco, J.C. Modeling Urban Digital Twins over the Cloud-to-Thing Continuum. 2023. Available online: https://riuma.uma.es/xmlui/handle/10630/27377 (accessed on 5 April 2024).
- Nauman, A.; Qadri, Y.A.; Amjad, M.; Bin Zikria, Y.; Afzal, M.K.; Kim, S.W. Multimedia Internet of Things: A Comprehensive Survey. IEEE Access 2020, 8, 8202–8250. [Google Scholar] [CrossRef]
- Zhang, M.; Li, X. Drone-Enabled Internet-of-Things Relay for Environmental Monitoring in Remote Areas Without Public Networks. IEEE Internet Things J. 2020, 7, 7648–7662. [Google Scholar] [CrossRef]
- Emimi, M.; Khaleel, M.; Alkrash, A. The Current Opportunities and Challenges in Drone Technology. Int. J. Electr. Eng. Sustain. 2023, 1, 74–89. [Google Scholar]
- Myers, J.; Larios, V.; Missikoff, O. Thriving Smart Cities. In The Digital Twin; Crespi, N., Drobot, A.T., Minerva, R., Eds.; Springer International Publishing: Cham, Switzerland, 2023; pp. 901–969. [Google Scholar] [CrossRef]
- Khan, T.H.; Noh, C.; Han, S. Correspondence measure: A review for the digital twin standardization. Int. J. Adv. Manuf. Technol. 2023, 128, 1907–1927. [Google Scholar] [CrossRef]
- Fuller, A.; Fan, Z.; Day, C.; Barlow, C. Digital Twin: Enabling Technologies, Challenges and Open Research. IEEE Access 2020, 8, 108952–108971. [Google Scholar] [CrossRef]
- Zhang, M.; Tao, F.; Huang, B.; Liu, A.; Wang, L.; Anwer, N.; Nee, A.Y.C. Digital twin data: Methods and key technologies. Digit. Twin 2021, 1, 2. [Google Scholar] [CrossRef]
- Qi, Q.; Tao, F.; Hu, T.; Anwer, N.; Liu, A.; Wei, Y.; Wang, L.; Nee, A. Enabling technologies and tools for digital twin. J. Manuf. Syst. 2019, 58, 3–21. [Google Scholar] [CrossRef]
- Botín-Sanabria, D.M.; Mihaita, A.-S.; Peimbert-García, R.E.; Ramírez-Moreno, M.A.; Ramírez-Mendoza, R.A.; Lozoya-Santos, J.d.J. Digital Twin Technology Challenges and Applications: A Comprehensive Review. Remote. Sens. 2022, 14, 1335. [Google Scholar] [CrossRef]
- Liu, M.; Fang, S.; Dong, H.; Xu, C. Review of digital twin about concepts, technologies, and industrial applications. J. Manuf. Syst. 2020, 58, 346–361. [Google Scholar] [CrossRef]
- Tao, F.; Sui, F.; Liu, A.; Qi, Q.; Zhang, M.; Song, B.; Guo, Z.; Lu, S.C.-Y.; Nee, A.Y.C. Digital twin-driven product design framework. Int. J. Prod. Res. 2019, 57, 3935–3953. [Google Scholar] [CrossRef]
- Dimitrova, E.; Tomov, S. Digital Twins: An Advanced technology for Railways Maintenance Transformation. In Proceedings of the 2021 13th Electrical Engineering Faculty Conference (BulEF), Varna, Bulgaria, 8–11 September 2021; pp. 1–5. [Google Scholar] [CrossRef]
- Hosamo, H.H.; Nielsen, H.K.; Alnmr, A.N.; Svennevig, P.R.; Svidt, K. A review of the Digital Twin technology for fault detection in buildings. Front. Built Environ. 2022, 8, 1013196. [Google Scholar] [CrossRef]
- Hosamo, H.H.; Imran, A.; Cardenas-Cartagena, J.; Svennevig, P.R.; Svidt, K.; Nielsen, H.K. A Review of the Digital Twin Technology in the AEC-FM Industry. Adv. Civ. Eng. 2022, 2022, e2185170. [Google Scholar] [CrossRef]
- Rasheed, A.; San, O.; Kvamsdal, T. Digital Twin: Values, Challenges and Enablers from a Modeling Perspective. IEEE Access 2020, 8, 21980–22012. [Google Scholar] [CrossRef]
- Delgado, J.M.D.; Oyedele, L. Digital Twins for the built environment: Learning from conceptual and process models in manufacturing. Adv. Eng. Inform. 2021, 49, 101332. [Google Scholar] [CrossRef]
- Sun, Z.; Ban, X.J. Vehicle classification using GPS data. Transp. Res. Part C Emerg. Technol. 2013, 37, 102–117. [Google Scholar] [CrossRef]
- Godha, S.; Cannon, M.E. Integration of DGPS with a Low Cost MEMS—Based Inertial Measurement Unit (IMU) for Land Vehicle Navigation Application. In Proceedings of the 18th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS 2005), Long Beach, CA, USA, 13–16 September 2005; pp. 333–345. Available online: http://www.ion.org/publications/abstract.cfm?jp=p&articleID=6224 (accessed on 6 April 2024).
- Waseem, M.; Khan, M.A.; Goudarzi, A.; Fahad, S.; Sajjad, I.A.; Siano, P. Incorporation of Blockchain Technology for Different Smart Grid Applications: Architecture, Prospects, and Challenges. Energies 2023, 16, 820. [Google Scholar] [CrossRef]
- Zheng, Y.L.; Ding, X.R.; Poon, C.C.Y.; Lo, B.P.L.; Zhang, H.; Zhou, X.L.; Yang, G.Z.; Zhao, N.; Zhang, Y.T. Unobtrusive Sensing and Wearable Devices for Health Informatics. IEEE Trans. Biomed. Eng. 2014, 61, 1538–1554. [Google Scholar] [CrossRef]
- Kirby, R.S.; Delmelle, E.; Eberth, J.M. Advances in spatial epidemiology and geographic information systems. Ann. Epidemiol. 2017, 27, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Chen, X.; Jia, F.; Cheng, X. Digital twin-supported smart city: Status, challenges and future research directions. Expert Syst. Appl. 2023, 217, 119531. [Google Scholar] [CrossRef]
- Scianna, A.; Gaglio, G.F.; la Guardia, M. Structure Monitoring with BIM and IoT: The Case Study of a Bridge Beam Model. ISPRS Int. J. Geo-Inf. 2022, 11, 173. [Google Scholar] [CrossRef]
- Zaballos, A.; Briones, A.; Massa, A.; Centelles, P.; Caballero, V. A Smart Campus’ Digital Twin for Sustainable Comfort Monitoring. Sustainability 2020, 12, 9196. [Google Scholar] [CrossRef]
- Ariyachandra, M.R.M.F.; Wedawatta, G. Digital Twin Smart Cities for Disaster Risk Management: A Review of Evolving Concepts. Sustainability 2023, 15, 11910. [Google Scholar] [CrossRef]
- Moura, J.; Hutchison, D. Fog computing systems: State of the art, research issues and future trends, with a focus on resilience. J. Netw. Comput. Appl. 2020, 169, 102784. [Google Scholar] [CrossRef]
- Zhang, J.; Tao, D. Empowering Things with Intelligence: A Survey of the Progress, Challenges, and Opportunities in Artificial Intelligence of Things. IEEE Internet Things J. 2021, 8, 7789–7817. [Google Scholar] [CrossRef]
- Ma, J.; Yang, L.; Wang, D.; Li, Y.; Xie, Z.; Lv, H.; Woo, D. Digitalization in response to carbon neutrality: Mechanisms, effects and prospects. Renew. Sustain. Energy Rev. 2024, 191, 114138. [Google Scholar] [CrossRef]
- Zou, X.; Yan, Y.; Hao, X.; Hu, Y.; Wen, H.; Liu, E.; Zhang, J.; Li, Y.; Li, T.; Zheng, Y.; et al. Deep Learning for Cross-Domain Data Fusion in Urban Computing: Taxonomy, Advances, and Outlook. arXiv 2024, arXiv:2402.19348. [Google Scholar] [CrossRef]
- Cvar, N.; Trilar, J.; Kos, A.; Volk, M.; Stojmenova Duh, E. The Use of IoT Technology in Smart Cities and Smart Villages: Similarities, Differences, and Future Prospects. Sensors 2020, 20, 3897. [Google Scholar] [CrossRef]
- Mazzetto, S. Heritage preservation to enhance tourism offers. In Proceedings of the International Structural Engineering and Construction, Angamaly, India, 1–3 June 2022. [Google Scholar] [CrossRef]
- Moscatelli, M.; Raffa, A. Green infrastructure in arid urban contexts. Transitioning ecologies beyond Green Riyadh. AGATHÓN Int. J. Archit. Art Des. 2023, 13, 75–86. [Google Scholar]
- Ibrahim, M.; Rassõlkin, A.; Vaimann, T.; Kallaste, A. Overview on Digital Twin for Autonomous Electrical Vehicles Propulsion Drive System. Sustainability 2022, 14, 601. [Google Scholar] [CrossRef]
- Varga, P.; Peto, J.; Franko, A.; Balla, D.; Haja, D.; Janky, F.; Soos, G.; Ficzere, D.; Maliosz, M.; Toka, L. 5G support for Industrial IoT Applications— Challenges, Solutions, and Research gaps. Sensors 2020, 20, 828. [Google Scholar] [CrossRef]
- Raeisi-Varzaneh, M.; Dakkak, O.; Habbal, A.; Kim, B.-S. Resource Scheduling in Edge Computing: Architecture, Taxonomy, Open Issues and Future Research Directions. IEEE Access 2023, 11, 25329–25350. [Google Scholar] [CrossRef]
- Asante, M.; Epiphaniou, G.; Maple, C.; Al-Khateeb, H.; Bottarelli, M.; Ghafoor, K.Z. Distributed Ledger Technologies in Supply Chain Security Management: A Comprehensive Survey. IEEE Trans. Eng. Manag. 2023, 70, 713–739. [Google Scholar] [CrossRef]
- Alcaraz, C.; Lopez, J. Digital Twin: A Comprehensive Survey of Security Threats. IEEE Commun. Surv. Tutor. 2022, 24, 1475–1503. [Google Scholar] [CrossRef]
- Cui, L.; Xie, G.; Qu, Y.; Gao, L.; Yang, Y. Security and Privacy in Smart Cities: Challenges and Opportunities. IEEE Access 2018, 6, 46134–46145. [Google Scholar] [CrossRef]
- Bhushan, B.; Khamparia, A.; Sagayam, K.M.; Sharma, S.K.; Ahad, M.A.; Debnath, N.C. Blockchain for smart cities: A review of architectures, integration trends and future research directions. Sustain. Cities Soc. 2020, 61, 102360. [Google Scholar] [CrossRef]
- Kollarova, M.; Granak, T.; Strelcova, S.; Ristvej, J. Conceptual Model of Key Aspects of Security and Privacy Protection in a Smart City in Slovakia. Sustainability 2023, 15, 6926. [Google Scholar] [CrossRef]
- Zhang, K.; Ni, J.; Yang, K.; Liang, X.; Ren, J.; Shen, X.S. Security and Privacy in Smart City Applications: Challenges and Solutions. IEEE Commun. Mag. 2017, 55, 122–129. [Google Scholar] [CrossRef]
- Mollah, M.B.; Zhao, J.; Niyato, D.; Guan, Y.L.; Yuen, C.; Sun, S.; Lam, K.-Y.; Koh, L.H. Blockchain for the Internet of Vehicles Towards Intelligent Transportation Systems: A Survey. IEEE Internet Things J. 2021, 8, 4157–4185. [Google Scholar] [CrossRef]
- Dutta, P.; Choi, T.-M.; Somani, S.; Butala, R. Blockchain technology in supply chain operations: Applications, challenges and research opportunities. Transp. Res. Part E Logist. Transp. Rev. 2020, 142, 102067. [Google Scholar] [CrossRef]
- Liu, K.; Yan, Z.; Liang, X.; Kantola, R.; Hu, C. A survey on blockchain-enabled federated learning and its prospects with digital twin. Digit. Commun. Netw. 2022, 10, 248–264. [Google Scholar] [CrossRef]
- Silva, B.N.; Khan, M.; Han, K. Towards sustainable smart cities: A review of trends, architectures, components, and open challenges in smart cities. Sustain. Cities Soc. 2018, 38, 697–713. [Google Scholar] [CrossRef]
- Yao, F.; Wang, Y. Towards resilient and smart cities: A real-time urban analytical and geo-visual system for social media streaming data. Sustain. Cities Soc. 2020, 63, 102448. [Google Scholar] [CrossRef]
- Gharaibeh, A.; Salahuddin, M.A.; Hussini, S.J.; Khreishah, A.; Khalil, I.; Guizani, M.; Al-Fuqaha, A. Smart Cities: A Survey on Data Management, Security, and Enabling Technologies. IEEE Commun. Surv. Tutorials 2017, 19, 2456–2501. [Google Scholar] [CrossRef]
- Yang, C.; Huang, Q.; Li, Z.; Liu, K.; Hu, F. Big Data and cloud computing: Innovation opportunities and challenges. Int. J. Digit. Earth 2017, 10, 13–53. [Google Scholar] [CrossRef]
- Khan, L.U.; Yaqoob, I.; Tran, N.H.; Kazmi, S.M.A.; Dang, T.N.; Hong, C.S. Edge-Computing-Enabled Smart Cities: A Comprehensive Survey. IEEE Internet Things J. 2020, 7, 10200–10232. [Google Scholar] [CrossRef]
- Qi, Q.; Zhao, D.; Liao, T.W.; Tao, F. Modeling of Cyber-Physical Systems and Digital Twin Based on Edge Computing, Fog Computing and Cloud Computing Towards Smart Manufacturing. In Proceedings of the ASME 2018 13th International Manufacturing Science and Engineering Conference, American Society of Mechanical Engineers Digital Collection, College Station, TX, USA, 18–22 June 2018. [Google Scholar] [CrossRef]
- Alimam, H.; Mazzuto, G.; Tozzi, N.; Ciarapica, F.E.; Bevilacqua, M. The resurrection of digital triplet: A cognitive pillar of human-machine integration at the dawn of industry 5.0. J. King Saud Univ.–Comput. Inf. Sci. 2023, 35, 101846. [Google Scholar] [CrossRef]
- Naha, R.K.; Garg, S.; Georgakopoulos, D.; Jayaraman, P.P.; Gao, L.; Xiang, Y.; Ranjan, R. Fog Computing: Survey of Trends, Architectures, Requirements, and Research Directions. IEEE Access 2024, 6, 47980–48009. [Google Scholar] [CrossRef]
- Ahmed, S.F.; Shuravi, S.; Afrin, S.; Rafa, S.J.; Hoque, M.; Gandomi, A.H. The Power of Internet of Things (IoT): Connecting the Dots with Cloud, Edge, and Fog Computing. arXiv 2023, arXiv:2309.03420. [Google Scholar] [CrossRef]
- Da Silva, T.P.; Batista, T.; Lopes, F.; Neto, A.R.; Delicato, F.C.; Pires, P.F.; da Rocha, A.R. Fog Computing Platforms for Smart City Applications: A Survey. ACM Trans. Internet Technol. 2022, 22, 96:1–96:32. [Google Scholar] [CrossRef]
- Khan, F.H.; Pasha, M.A.; Masud, S. Advancements in Microprocessor Architecture for Ubiquitous AI—An Overview on History, Evolution, and Upcoming Challenges in AI Implementation. Micromachines 2021, 12, 665. [Google Scholar] [CrossRef]
- Lu, Q.; Parlikad, A.K.; Woodall, P.; don Ranasinghe, G.; Xie, X.; Liang, Z.; Konstantinou, E.; Heaton, J.; Schooling, J. Developing a Digital Twin at Building and City Levels: Case Study of West Cambridge Campus. J. Manag. Eng. 2020, 36, 05020004. [Google Scholar] [CrossRef]
- Neirotti, P.; de Marco, A.; Cagliano, A.C.; Mangano, G.; Scorrano, F. Current trends in Smart City initiatives: Some stylised facts. Cities 2014, 38, 25–36. [Google Scholar] [CrossRef]
- Caprari, G.; Castelli, G.; Montuori, M.; Camardelli, M.; Malvezzi, R. Digital Twin for Urban Planning in the Green Deal Era: A State of the Art and Future Perspectives. Sustainability 2022, 14, 6263. [Google Scholar] [CrossRef]
- Lampathaki, F.; Mouzakitis, S.; Gionis, G.; Charalabidis, Y.; Askounis, D. Business to business interoperability: A current review of XML data integration standards. Comput. Stand. Interfaces 2009, 31, 1045–1055. [Google Scholar] [CrossRef]
- Borgogno, O.; Colangelo, G. Data sharing and interoperability: Fostering innovation and competition through APIs. Comput. Law Secur. Rev. 2019, 35, 105314. [Google Scholar] [CrossRef]
- Lee, Y.-C.; Eastman, C.M.; Solihin, W. Rules and validation processes for interoperable BIM data exchange. J. Comput. Des. Eng. 2021, 8, 97–114. [Google Scholar] [CrossRef]
- Albouq, S.S.; Sen, A.A.A.; Almashf, N.; Yamin, M.; Alshanqiti, A.; Bahbouh, N.M. A Survey of Interoperability Challenges and Solutions for Dealing with Them in IoT Environment. IEEE Access 2022, 10, 36416–36428. [Google Scholar] [CrossRef]
- Rhayem, A.; Mhiri, M.B.A.; Gargouri, F. Semantic Web Technologies for the Internet of Things: Systematic Literature Review. Internet Things 2020, 11, 100206. [Google Scholar] [CrossRef]
- Aryal, C.S. Transition of Web Services from Service Oriented Architecture to Microservice Architecture. 2020. Available online: https://lutpub.lut.fi/handle/10024/161781 (accessed on 7 April 2024).
- Chun, S.A.; Cho, J.-S. E-participation and transparent policy decision making. Inf. Polity 2012, 17, 129–145. [Google Scholar] [CrossRef]
- Opoku, D.-G.J.; Perera, S.; Osei-Kyei, R.; Rashidi, M. Digital twin application in the construction industry: A literature review. J. Build. Eng. 2021, 40, 102726. [Google Scholar] [CrossRef]
- Sharma, A.; Kosasih, E.; Zhang, J.; Brintrup, A.; Calinescu, A. Digital Twins: State of the art theory and practice, challenges, and open research questions. J. Ind. Inf. Integr. 2022, 30, 100383. [Google Scholar] [CrossRef]
- Cho, W.; Melisa, W.D. Citizen Coproduction and Social Media Communication: Delivering a Municipal Government’s Urban Services through Digital Participation. Adm. Sci. 2021, 11, 59. [Google Scholar] [CrossRef]
- Verma, A.; Bhattacharya, P.; Madhani, N.; Trivedi, C.; Bhushan, B.; Tanwar, S.; Sharma, G.; Bokoro, P.N.; Sharma, R. Blockchain for Industry 5.0: Vision, Opportunities, Key Enablers, and Future Directions. IEEE Access 2024, 10, 69160–69199. [Google Scholar] [CrossRef]
- Wu, Y.; Zhang, K.; Zhang, Y. Digital Twin Networks: A Survey. IEEE Internet Things J. 2021, 8, 13789–13804. [Google Scholar] [CrossRef]
- Deprêtre, A.; Jacquinod, F.; Mielniczek, A. Exploring digital twin adaptation to the urban environment: Comparison with CIM to avoid silo-based approaches. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2022, 4, 337–344. [Google Scholar] [CrossRef]
- Lv, Z.; Shang, W.-L.; Guizani, M. Impact of Digital Twins and Metaverse on Cities: History, Current Situation, and Application Perspectives. Appl. Sci. 2022, 12, 12820. [Google Scholar] [CrossRef]
- Birkmann, J.; Garschagen, M.; Kraas, F.; Quang, N. Adaptive urban governance: New challenges for the second generation of urban adaptation strategies to climate change. Sustain. Sci. 2010, 5, 185–206. [Google Scholar] [CrossRef]
- Al-Qadami, E.H.H.; Mustaffa, Z.; Al-Atroush, M.E. Evaluation of the Pavement Geothermal Energy Harvesting Technologies towards Sustainability and Renewable Energy. Energies 2022, 15, 1201. [Google Scholar] [CrossRef]
- Liu, C.; Zowghi, D. Citizen involvement in digital transformation: A systematic review and a framework. Online Inf. Rev. 2022, 47, 644–660. [Google Scholar] [CrossRef]
- Sirror, H.; Labib, W.; Abowardah, E.; Metwally, W.; Mitchell, C. Sustainability in the Workplace: Evaluating Indoor Environmental Quality of a Higher Education Building in Riyadh. Buildings 2024, 14, 2115. [Google Scholar] [CrossRef]
- Azzali, S.; Mazzetto, S.; Petruccioli, A. (Eds.) Urban Challenges in the Globalizing Middle-East: Social Value of Public Spaces; The Urban Book Series; Springer International Publishing: Cham, Switzerland, 2021. [Google Scholar] [CrossRef]
- Filippi, L.D.; Mazzetto, S. Comparing AlUla and The Red Sea Saudi Arabia’s Giga Projects on Tourism towards a Sustainable Change in Destination Development. Sustainability 2024, 16, 2117. [Google Scholar] [CrossRef]
- Mendenhall, E.; Tiller, R.; Nyman, E. The ship has reached the shore: The final session of the ‘Biodiversity Beyond National Jurisdiction’ negotiations. Mar. Policy 2023, 155, 105686. [Google Scholar] [CrossRef]
- Martella, C.; Martella, A.; Ramadan, A.I.H.A. Identifying key factors in designing data spaces for Urban Digital Twin Platforms: A data driven approach. In Proceedings of the 2023 IEEE International Conference on Big Data (BigData), Sorrento, Italy, 15–18 December 2023; pp. 3985–3994. [Google Scholar] [CrossRef]
- Zuccaro, G.; Leone, M.; Martucci, C. Future research and innovation priorities in the field of natural hazards, disaster risk reduction, disaster risk management and climate change adaptation: A shared vision from the ESPREssO project. Int. J. Disaster Risk Reduct. 2020, 51, 101783. [Google Scholar] [CrossRef]
- Alam, S. Characterizing the Data Landscape for Digital Twin Integration in Smart Cities. J. Intell. Connect. Emerg. Technol. 2023, 8, 4. [Google Scholar]
- Chen, C.; Han, Y.; Galinski, A.; Calle, C.; Carney, J.; Ye, X.; van Westen, C. Integrating urban digital twins with cloud-based geospatial dashboards for coastal resilience planning: A case study in Florida. arXiv 2024, arXiv:2403.18188. [Google Scholar] [CrossRef]
- Bhatt, G.; Balasubramanian, V.N. Learning Style Subspaces for Controllable Unpaired Domain Translation. In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, Waikoloa, HI, USA, 2–7 January 2023; pp. 4220–4229. Available online: https://openaccess.thecvf.com/content/WACV2023/html/Bhatt_Learning_Style_Subspaces_for_Controllable_Unpaired_Domain_Translation_WACV_2023_paper.html (accessed on 7 April 2024).
- Cong, J.; Liu, B.; Neuendorffer, S.; Noguera, J.; Vissers, K.; Zhang, Z. High-Level Synthesis for FPGAs: From Prototyping to Deployment. IEEE Trans. Comput. Des. Integr. Circuits Syst. 2011, 30, 473–491. [Google Scholar] [CrossRef]
- Omrany, H.; Ghaffarianhoseini, A.; Ghaffarianhoseini, A.; Dhawan, K.; Almhafdy, A.; Oteng, D. The Use of City Information Modelling (CIM) for Realizing Zero Energy Community: A Path Towards Carbon Neutrality. In City Information Modelling; Cheshmehzangi, A., Batty, M., Allam, Z., Jones, D.S., Eds.; Springer Nature: Singapore, 2024; pp. 215–247. [Google Scholar] [CrossRef]
- Herold, M.; Couclelis, H.; Clarke, K.C. The role of spatial metrics in the analysis and modeling of urban land use change. Comput. Environ. Urban. Syst. 2005, 29, 369–399. [Google Scholar] [CrossRef]
- Sampson, R.J. Urban sustainability in an age of enduring inequalities: Advancing theory and ecometrics for the 21st-century city. Proc. Natl. Acad. Sci. USA 2017, 114, 8957–8962. [Google Scholar] [CrossRef]
- Ali, M.M.; Hashim, S.J.; Chaudhary, M.A.; Ferré, G.; Rokhani, F.Z.; Ahmad, Z. A Reviewing Approach to Analyze the Advancements of Error Detection and Correction Codes in Channel Coding with Emphasis on LPWAN and IoT Systems. IEEE Access 2023, 11, 127077–127097. [Google Scholar] [CrossRef]
- Samarakkody, A.; Amaratunga, D.; Haigh, R. Technological Innovations for Enhancing Disaster Resilience in Smart Cities: A Comprehensive Urban Scholar’s Analysis. Sustainability 2023, 15, 12036. [Google Scholar] [CrossRef]
- Hakimi, O.; Liu, H.; Abudayyeh, O.; Houshyar, A.; Almatared, M.; Alhawiti, A. Data Fusion for Smart Civil Infrastructure Management: A Conceptual Digital Twin Framework. Buildings 2023, 13, 2725. [Google Scholar] [CrossRef]
- Nguyen, G.T.; Iftekhar, S.; Ratnasiri, S.; Roiko, A.; Beal, C.D. Supply, demand and the economic effectiveness of urine-diverting technologies and products: A systematic literature review. Water Res. 2024, 255, 121478. [Google Scholar] [CrossRef] [PubMed]
- Martella, A.; Ramadan, A.I.H.A.; Martella, C.; Patano, M.; Longo, A. State of the Art of Urban Digital Twin Platforms. In Extended Reality; de Paolis, L.T., Arpaia, P., Sacco, M., Eds.; Springer Nature: Cham, Switzerland, 2023; pp. 299–317. [Google Scholar] [CrossRef]
- Ulpiani, G. On the linkage between urban heat island and urban pollution island: Three-decade literature review towards a conceptual framework. Sci. Total Environ. 2021, 751, 141727. [Google Scholar] [CrossRef] [PubMed]
- Bibri, S.E.; Krogstie, J. Smart sustainable cities of the future: An extensive interdisciplinary literature review. Sustain. Cities Soc. 2017, 31, 183–212. [Google Scholar] [CrossRef]
- Cárdenas-León, I.; Koeva, M.; Nourian, P.; Davey, C. Urban Digital Twin-Based Solution Using Geospatial Information for Solid Waste Management. Rochester NY 2024, 4766027. [Google Scholar] [CrossRef]
- Meyer, N.; Auriacombe, C. Good Urban Governance and City Resilience: An Afrocentric Approach to Sustainable Development. Sustainability 2019, 11, 5514. [Google Scholar] [CrossRef]
- Da Cruz, N.F.; Rode, P.; McQuarrie, M. New urban governance: A review of current themes and future priorities. J. Urban Aff. 2019, 41, 1–19. [Google Scholar] [CrossRef]
- Sielker, F.; Sichel, A.; Allmendinger, P. Future Cities in the Making: Overcoming Barriers to Information Modelling in Socially Responsible Cities. 2019. Available online: https://www.repository.cam.ac.uk/handle/1810/296273 (accessed on 7 April 2024).
- Merlo, A.; Lavoratti, G. Documenting Urban Morphology: From 2D Representations to Metaverse. Land 2024, 13, 136. [Google Scholar] [CrossRef]
- Macatulad, E.; Biljecki, F. Continuing from the Sendai Framework midterm: Opportunities for urban digital twins in disaster risk management. Int. J. Disaster Risk Reduct. 2024, 102, 104310. [Google Scholar] [CrossRef]
- Jamil, A.; Padubidri, C.; Karatsiolis, S.; Kalita, I.; Guley, A.; Kamilaris, A. GAEA: A Country-Scale Geospatial Environmental Modelling Tool: Towards a Digital Twin for Real Estate. In Advances and New Trends in Environmental Informatics 2023; Wohlgemuth, V., Kranzlmüller, D., Höb, M., Eds.; Springer Nature: Cham, Switzerland, 2024; pp. 177–199. [Google Scholar] [CrossRef]
- Fadhel, M.A.; Duhaim, A.M.; Saihood, A.; Sewify, A.; Al-Hamadani, M.N.; Albahri, A.S.; Alzubaidi, L.; Gupta, A.; Mirjalili, S.; Gu, Y. Comprehensive systematic review of information fusion methods in smart cities and urban environments. Inf. Fusion 2024, 107, 102317. [Google Scholar] [CrossRef]
- Soraggi, D.; Campanini, F. Applying 4.0 Technologies to Public Spaces. Exploring New Functions and Interactions in Savona University Campus. In Innovation in Urban and Regional Planning; Marucci, A., Zullo, F., Fiorini, L., Saganeiti, L., Eds.; Springer Nature: Cham, Switzerland, 2024; pp. 157–168. [Google Scholar] [CrossRef]
- Traoré, M.K. A Conceptual Framework to Analyze Urban Digital Twins Interoperability. Preprints 2024, 2024020023. [Google Scholar] [CrossRef]
- Guerra-Alejos, B.C.; Kurz, M.; Min, J.E.; Dale, L.M.; Piske, M.; Bach, P.; Bruneau, J.; Gustafson, P.; Hu, X.J.; Kampman, K.; et al. Comparative effectiveness of urine drug screening strategies alongside opioid agonist treatment in British Columbia, Canada: A population-based observational study protocol. BMJ Open 2023, 13, e068729. [Google Scholar] [CrossRef] [PubMed]
- Liu, P.; Zhao, T.; Luo, J.; Lei, B.; Frei, M.; Miller, C.; Biljecki, F. Towards Human-centric Digital Twins: Leveraging Computer Vision and Graph Models to Predict Outdoor Comfort. Sustain. Cities Soc. 2023, 93, 104480. [Google Scholar] [CrossRef]
- Bibri, S.E. Data-Driven Smart Eco-Cities of the Future: An Empirically Informed Integrated Model for Strategic Sustainable Urban Development. World Futur. 2023, 79, 703–746. [Google Scholar] [CrossRef]
- Soltanifard, H.; Farhadi, R.; Mansourian, H. City Information Modelling and Sustainable Development: The Role of CIM in Achieving Sustainable Urbanization. In City Information Modelling; Cheshmehzangi, A., Batty, M., Allam, Z., Jones, D.S., Eds.; Springer Nature: Singapore, 2024; pp. 17–32. [Google Scholar] [CrossRef]
- Pansara, R. Unraveling the Complexities of Data Governance with Strategies, Challenges, and Future Directions. Trans. Latest Trends IoT 2023, 6, 46–56. [Google Scholar]
- Lee, J.; Babcock, J.; Pham, T.S.; Bui, T.H.; Kang, M. Smart city as a social transition towards inclusive development through technology: A tale of four smart cities. Int. J. Urban Sci. 2023, 27, 75–100. [Google Scholar] [CrossRef]
- Walker, A.; Singapore’s digital twin—From science fiction to hi-tech reality. Infrastructure Global. Available online: https://infra.global/singapores-digital-twin-from-science-fiction-to-hi-tech-reality/ (accessed on 2 April 2024).
- Ghosh, J.; Banerji, O. Excavating the Role of Digital Twins in Upgrading Cities and Homes Amidst 21st Century: A Techno-Legal Perspective. 2023. Available online: http://ir.nbu.ac.in/handle/123456789/5072 (accessed on 8 April 2024).
- Arowoiya, V.A.; Moehler, R.C.; Fang, Y. Digital twin technology for thermal comfort and energy efficiency in buildings: A state-of-the-art and future directions. Energy Built Environ. 2024, 5, 641–656. [Google Scholar] [CrossRef]
- Abdin, Z. Shaping the stationary energy storage landscape with reversible fuel cells. J. Energy Storage 2024, 86, 111354. [Google Scholar] [CrossRef]
- Cityzenith.Cityzenith’s Smart World ProTM Digital Twin Software Platform Selected for New Capital City in India. Available online: https://www.prnewswire.com/news-releases/cityzeniths-smart-world-pro-digital-twin-software-platform-selected-for-new-capital-city-in-india-300767327.html (accessed on 2 April 2024).
- Calzati, S. No longer hype, not yet mainstream? Recalibrating city digital twins’ expectations and reality: A case study perspective. Front. Big Data 2023, 6, 1236397. [Google Scholar] [CrossRef] [PubMed]
- Kopponen, A.; Hahto, A.; Villman, T.; Kettunen, P.; Mikkonen, T.; Rossi, M. Personalised public services powered by AI: The citizen digital twin approach. In Research Handbook on Public Management and Artificial Intelligence; Edward Elgar Publishing: Cheltenham, UK, 2024; pp. 170–186. Available online: https://www.elgaronline.com/edcollchap/book/9781802207347/book-part-9781802207347-20.xml (accessed on 8 April 2024).
- Zhuang, W.; Chen, C.; Lyu, L. When Foundation Model Meets Federated Learning: Motivations, Challenges, and Future Directions. arXiv 2024, arXiv:2306.15546. [Google Scholar] [CrossRef]
- virtualcitySYSTEMS. virtualcityMAP—3D-Stadtmodelle im Browser. Available online: https://www.virtualcitysystems.de (accessed on 2 April 2024).
- Pikulski, A. Against the Smart City: A Pamphlet by Adam Greenfield, New York: Do Projects, 2013. Krak. Stud. Międzynarodowe 2023, 20, 157–166. [Google Scholar]
- Aliahmad, A.; Kanda, W.; McConville, J. Urine recycling - Diffusion barriers and upscaling potential; case studies from Sweden and Switzerland. J. Clean. Prod. 2023, 414, 137583. [Google Scholar] [CrossRef]
- Kroh, J.; Schultz, C. In favor or against: The influence of skeptical stakeholders in urban innovation projects for green transformation. Int. J. Proj. Manag. 2023, 41, 102515. [Google Scholar] [CrossRef]
- Allen, G. iPhone City: The ‘Smart’ Metropolis of the Future Will Have an App for Everything. Mail Online. Available online: https://www.dailymail.co.uk/sciencetech/article-2045577/Urban-Operating-System-revealed-run-PlanIT-Valley-super-city-Portugal.html (accessed on 2 April 2024).
- Lavigne, H. DUBAI|Digital Twin. ArcGIS StoryMaps. Available online: https://storymaps.arcgis.com/stories/4ae54ecb2d8e4640b491de1fc319cffc (accessed on 2 April 2024).
- Walters, A. National Digital Twin Programme. Available online: https://www.cdbb.cam.ac.uk/what-we-did/national-digital-twin-programme (accessed on 9 April 2024).
- Bell, J. Saudi’s NEOM Will Have a Digital Twin in the ‘Metaverse’: FII,” Al Arabiya English. Available online: https://english.alarabiya.net/News/gulf/2021/10/27/Saudi-s-NEOM-will-have-a-digital-twin-in-the-metaverse-FII (accessed on 15 September 2024).
- Swayne, M. Naver Starts Digital Twin Project for Smart Cities in Saudi Arabia. Digital Twins, News. 9 August 2024. Available online: https://digitaltwininsider.com/2024/08/09/naver-starts-digital-twin-project-for-smart-cities-in-saudi-arabia/ (accessed on 17 September 2024).
- Voas, J.; Mell, P.; Piroumian, V. Considerations for Digital Twin Technology and Emerging Standards; NIST Internal or Interagency Report (NISTIR) 8356 (Draft); National Institute of Standards and Technology: Gaithersburg, MD, USA, 2021. [CrossRef]
- Atkinson, C.; Kuhne, T. Taming the Complexity of Digital Twins. IEEE Softw. 2021, 39, 27–32. [Google Scholar] [CrossRef]
- El-Din, M.N.; Pereira, P.F.; Martins, J.P.; Ramos, N.M.M. Digital Twins for Construction Assets Using BIM Standard Specifications. Buildings 2022, 12, 2155. [Google Scholar] [CrossRef]
- Gehrmann, C.; Gunnarsson, M. A Digital Twin Based Industrial Automation and Control System Security Architecture. IEEE Trans. Ind. Informatics 2019, 16, 669–680. [Google Scholar] [CrossRef]
- “StandICT.eu 2026|StandICT.eu 2026. Available online: https://standict.eu/standicteu-2026 (accessed on 9 April 2024).
- Wang, K.; Wang, Y.; Li, Y.; Fan, X.; Xiao, S.; Hu, L. A review of the technology standards for enabling digital twin. Version 2. Digit. Twin 2022, 2. [Google Scholar] [CrossRef]
Criteria | Inclusion | Rationale for Inclusion |
---|---|---|
Time Frame | January 2005 to March 2024 | Focuses on capturing the evolution of UDTs and related technologies in the last decade, reflecting current trends and advancements. |
Language | English | Facilitates broader accessibility and ensures the review can serve as a global resource. |
Relevance | Studies primarily focus on UDT applications within smart cities, particularly emphasizing environmental sustainability. | Ensures direct relevance to the scope of urban sustainability and smart city development. |
Technological Focus | Studies integrating AI, BIM, and IoT within the framework of UDTs for smart cities. | Targets research that contributes to understanding how specific technologies (AI, BIM, IoT) enhance UDT applications in smart cities. |
Publication Type | Ranked journal articles, book chapters and conference proceedings. | Prioritizes high-quality, scholarly research that undergoes peer review, ensuring credibility and reliability. |
Application Domain | Papers detailing the use of UDTs and DTs in applications such as urban planning, infrastructure management, environmental monitoring, and public services. | Highlights studies demonstrating UDTs’ practical application and impact in urban environments. |
Methodological Rigor | Studies employing robust quantitative, qualitative, or mixed methods research designs and clear methodologies. | Ensures the inclusion of research that provides substantive insights and evidence-based conclusions on UDTs. |
Interdisciplinary Approach | Studies that demonstrate an interdisciplinary approach, combining insights from urban planning, environmental science, computer science, and engineering. | Encourages a comprehensive understanding of UDTs by drawing from diverse fields and perspectives. |
Research Gap | Explanation |
---|---|
Fog Computing | Less discussed within smart city literature, it focuses on efficiency and data processing at the network’s edge. |
Wireless Sensor Networks | Crucial for data collection; potentially under-discussed in their role within smart city data integration and synthesis. |
Environmental Monitoring | May need more focus on how smart cities interact with and impact the natural environment. |
BIM (Building et al.) | Despite its potential to improve building construction and management efficiency, it needs to be explored better in the smart cities’ context. |
Climate Change | The interaction between smart city initiatives and climate change adaptation or mitigation may be a less explored area. |
Urban Digital Twin | While digital twins are a discussed concept, UDTs’ specific applications and implications in smart cities could represent a research gap. |
Standards and Interoperability | Critical implementation of smart city technologies, but potentially less prominently discussed than the technologies themselves. |
Nanosensors in UDTs | As mentioned minimally, nanosensors in UDTs could provide unprecedented monitoring details, but these have yet to be widely discussed. |
Socio-technical Analyses | Identified as a gap, the interaction between society and technology in smart cities requires more in-depth analysis. |
Public Engagement | Limited discussion was found; engagement strategies and the role of the public in shaping smart city initiatives are areas that need more research. |
Policy and Governance | According to the database search, although crucial, policy and governance in the smart cities’ context are less emphasized in the literature. |
Challenges | Proposed Solutions | Key References |
---|---|---|
Data Collection for DTs in Smart Cities and Healthcare:
|
| [30,31] |
Data Connectivity in DT-Supported Smart Cities:
|
| [32,33] |
Computing Challenges in DT-Supported Smart Cities:
|
| [34,35] |
Interoperability Challenges in DT-Supported Smart Cities (SCs):
|
| [36,37,38] |
Aspect | Challenges | Proposed Solutions | Technologies Involved | Impact on Smart Cities (SCs) |
---|---|---|---|---|
Advancing UDT with Data Collection Technologies | Gathering extensive real-world data is challenging due to technological limitations (e.g., GPS’s limitations) and the need for real-time analytics. | We are integrating additional tools like IMUs, employing methodologies for real-time data collection from multi-networked environments. | GPS, IMUs, GIS, BIM, IoT, AI in smart sensors | Enhanced traffic forecasting, health monitoring, disaster prevention, and urban livability. |
Data Connectivity Challenges in DT-Supported SCs | Issues with interoperability due to data distribution across different platforms and the complexity of implementing 5G technology. | Cross-domain data mining, standardized frameworks for data sharing, edge-cloud computing, and blockchain for secure data exchange. | 5G, Blockchain, Edge-Cloud Computing | Improved data sharing efficiency, secure and decentralized data exchange, fostering a learning ecosystem among SCs. |
Overcoming Computing Challenges in DT-Supported SCs | The necessity for real-time data analysis and visualization exceeds traditional computing infrastructure’s capabilities. | Adoption of edge computing, cloud computing, fog computing, and advancements in AI and ML for optimizing data workflows. | Edge Computing, Cloud Computing, Fog Computing, AI, ML | Smarter, more efficient, and responsive urban management through reduced latency and advanced analytics. |
Overcoming Interoperability Challenges in DT-Supported SCs | Disparate data formats, protocols, and standards used across various systems hinder efficient data sharing and utilization. | Development and adoption of universal standards and protocols, APIs, semantic web technologies, and microservices. | COBie, IFC, APIs, Semantic Web Technologies | More integrated, efficient, and responsive urban management systems through enhanced data exchange and system communication. |
Enhancing DT-SCs: Public Engagement, Policy, and Governance | Challenges in developing systems for diverse feedback integration, evolving policy, and governance frameworks to address DT advancements. | Digital platforms for citizen participation, policy development focusing on ethical standards, and adaptive governance structures. | Digital Participation Platforms, Ethical Policy Development | Sustainable urban development that reflects community needs, fostering a democratic and participatory urban future. |
City/Project | Location | Objective | Key Features | Outcomes |
---|---|---|---|---|
Virtual Singapore | Singapore | To create a dynamic 3D city model and collaborative data platform to support urban planning and decision making. | 3D modeling, real-time data integration, analytics for urban planning, and environmental simulation. | Improved urban planning and decision making, enhanced public services, and policy formulation. |
City Zenith’s Smart World OS | Various Locations | To provide a digital twin platform for building, city, and infrastructure projects to optimize performance and reduce carbon emissions. | IoT integration, predictive analytics, and scenario simulation. | Energy savings, operational efficiency, and reduced carbon footprint for multiple projects. |
Helsinki 3D+ | Helsinki, Finland | To support city planning and promote open data usage through a comprehensive 3D model of the city. | Open data platform, 3D visualization, integration with planning tools. | Increased public engagement, improved planning processes, and development of new digital services. |
Plan IT Valley | Paredes, Portugal | To build from scratch a smart city incorporating digital twin technology for sustainability and urban planning. | Urban operating system, real-time data analysis, sustainability models. | (The project was ambitious; specific outcomes depend on current project status and execution.) |
Dubai’s Digital Twin Initiative | Dubai, UAE | To transform Dubai into a smart city by using the technology of digital twin to enhance urban planning and infrastructure. | 3D models, AI, and IoT integration for real-time governance and urban planning. | Enhanced city management, improved infrastructure planning, and better emergency response. |
The National Digital Twin programme | UK | To pioneer a unified approach to digital twinning in the built environment, facilitating data integration and sharing to improve infrastructure management. | Development of UDTs, focus on interoperability and data sharing standards. | Informed, sustainable, and resilient urban development through enhanced decision making and planning. |
Organization | Country/Region | Focus | Description |
---|---|---|---|
Digital Twin Consortium (DTC) [153] | Global | Cross-sector digital twin best practices and standards | Providing technical foundations and standards requirements for the digital twin industry across various sectors. |
International Standards Organization (ISO) [154] | Global | Digital twin use cases, concepts, terminology, manufacturing framework | Developing standards including ISO/IEC AWI 30172 (use cases), ISO/IEC AWI 30173 (concepts and terminology), and ISO/FDIS 23-247 (manufacturing framework). |
British Standards Institute (BSI) [155] | United Kingdom | Digital Twin Standards Roadmap | Commissioned by the Centre for Digital Built Britain to prioritize digital twin standards development in the UK. |
National Digital Twin Programme (NDTP) [150] | United Kingdom | Infrastructure and built environment digital twin integration | Focused on developing standards, processes, and tools to support creating and integrating safe, secure, ethical, and sustainable DTs. |
IPC (Association Connecting Electronics Industries) [156] | USA | Digital twin product, manufacturing, and lifecycle frameworks | Released IPC-2551, the first international standard for DTs, enabling interoperability across digital and physical entities. |
StandICT.eu 2026 [157] | Europe | ICT standardization in digital twin technologies | Funded by the EU, aiming to streamline digital twin standardization efforts by providing a comprehensive landscape of global work in this area. |
Local Digital Twin & Citiverse EDIC [158] | Europe (Estonia, Germany, Slovenia, Czech Republic, Spain) | UDT and virtual worlds | A European Commission initiative to support the deployment of local DTs and develop the Citiverse, emphasizing standardized, interoperable instruments. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mazzetto, S. A Review of Urban Digital Twins Integration, Challenges, and Future Directions in Smart City Development. Sustainability 2024, 16, 8337. https://doi.org/10.3390/su16198337
Mazzetto S. A Review of Urban Digital Twins Integration, Challenges, and Future Directions in Smart City Development. Sustainability. 2024; 16(19):8337. https://doi.org/10.3390/su16198337
Chicago/Turabian StyleMazzetto, Silvia. 2024. "A Review of Urban Digital Twins Integration, Challenges, and Future Directions in Smart City Development" Sustainability 16, no. 19: 8337. https://doi.org/10.3390/su16198337
APA StyleMazzetto, S. (2024). A Review of Urban Digital Twins Integration, Challenges, and Future Directions in Smart City Development. Sustainability, 16(19), 8337. https://doi.org/10.3390/su16198337