Bibliometric Based Analysis of Hydrogels in the Field of Water Treatment
Abstract
:1. Introduction
2. Data Sources and Research Methodology
2.1. Data Sources
2.2. Research Methodology
3. Results and Analysis
3.1. Development History
3.2. Composition of the Research Force
3.2.1. Composition of Issuing Countries
3.2.2. Distribution of Issuing Journals
3.2.3. Author Composition
3.2.4. Analysis of Major Research Institutions
4. Analysis of Research Hotspots and Trends
4.1. Analysis of Research Hotspots
4.1.1. Preparation and Characterization of Hydrogels
4.1.2. The Mode of Action of Hydrogels and the Contaminants Treated
4.1.3. Application of Hydrogels
4.2. Research Trend Analysis
5. Relevant Patent Analysis
5.1. Application Trend Analysis
5.2. Analysis of Institution
5.3. Analysis of Country
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Saha, N.; Rahman, M.S.; Ahmed, M.B.; Zhou, J.L.; Huu Hao, N.; Guo, W. Industrial metal pollution in water and probabilistic assessment of human health risk. J. Environ. Manag. 2017, 185, 70–78. [Google Scholar] [CrossRef] [PubMed]
- Zhou, T.; Wang, M.; Zeng, H.; Min, R.; Wang, J.; Zhang, G. Application of physicochemical techniques to the removal of ammonia nitrogen from water: A systematic review. Environ. Geochem. Health 2024, 46, 344. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Kmiya, Y.; Okuhara, T. Removal of low-concentration ammonia in water by ion-exchange using Na-mordenite. Water Res. 2007, 41, 269–276. [Google Scholar] [CrossRef] [PubMed]
- Demir, A.; Günay, A.; Debik, E. Ammonium removal from aqueous solution by ion-exchange using packed bed natural zeolite. Water SA 2002, 28, 329–335. [Google Scholar] [CrossRef]
- Huo, X.C.; Vanneste, J.; Cath, T.Y.; Strathmann, T.J. A hybrid catalytic hydrogenation/membrane distillation process for nitrogen resource recovery from nitrate-contaminated waste ion exchange brine. Water Res. 2020, 175, 12. [Google Scholar] [CrossRef]
- Tahreen, A.; Jami, M.S.; Ali, F. Role of electrocoagulation in wastewater treatment: A developmental review. J. Water Process. Eng. 2020, 37, 11. [Google Scholar] [CrossRef]
- Shah, A.A.; Walia, S.; Kazemian, H. Advancements in combined electrocoagulation processes for sustainable wastewater treatment: A comprehensive review of mechanisms, performance, and emerging applications. Water Res. 2024, 252, 22. [Google Scholar] [CrossRef]
- Crini, G.; Lichtfouse, E.; Wilson, L.D.; Morin-Crini, N. Conventional and non-conventional adsorbents for wastewater treatment. Environ. Chem. Lett. 2019, 17, 195–213. [Google Scholar] [CrossRef]
- Choi, M.Y.; Theerthagiri, J.; Maia, G. 2D advanced materials and technologies for industrial wastewater treatment. Chemosphere 2021, 284, 131394. [Google Scholar] [CrossRef]
- Wang, Q.; Wang, Y.; Chen, L. A green composite hydrogel based on cellulose and clay as efficient absorbent of colored organic effluent. Carbohydr. Polym. 2019, 210, 314–321. [Google Scholar] [CrossRef]
- Aswathy, S.H.; Narendrakumar, U.; Manjubala, I. Commercial hydrogels for biomedical applications. Heliyon 2020, 6, e03719. [Google Scholar] [CrossRef] [PubMed]
- Thakur, S.; Govender, P.P.; Mamo, M.A.; Tamulevicius, S.; Thakur, V.K. Recent progress in gelatin hydrogel nanocomposites for water purification and beyond. Vacuum 2017, 146, 396–408. [Google Scholar] [CrossRef]
- Zhang, Z.; Fu, H.; Li, Z.; Huang, J.; Xu, Z.; Lai, Y.; Qian, X.; Zhang, S. Hydrogel materials for sustainable water resources harvesting & treatment: Synthesis, mechanism and applications. Chem. Eng. J. 2022, 439, 135756. [Google Scholar]
- Guo, Y.; Bae, J.; Fang, Z.; Li, P.; Zhao, F.; Yu, G. Hydrogels and Hydrogel-Derived Materials for Energy and Water Sustainability. Chem. Rev. 2020, 120, 7642–7707. [Google Scholar] [CrossRef]
- Akhtar, M.F.; Hanif, M.; Ranjha, N.M. Methods of synthesis of hydrogels… A review. Saudi Pharm. J. 2016, 24, 554–559. [Google Scholar] [CrossRef]
- Kupikowska-Stobba, B.; Lewinska, D. Polymer microcapsules and microbeads as cell carriers for in vivo biomedical applications. Biomater. Sci. 2020, 8, 1536–1574. [Google Scholar] [CrossRef] [PubMed]
- Machado, A.H.E.; Lundberg, D.; Ribeiro, A.J.; Veiga, F.J.; Miguel, M.G.; Lindman, B.; Olsson, U. Encapsulation of DNA in Macroscopic and Nanosized Calcium Alginate Gel Particles. Langmuir 2013, 29, 15926–15935. [Google Scholar] [CrossRef] [PubMed]
- Becherán-Marón, L.; Peniche, C.; Argüelles-Monal, W. Study of the interpolyelectrolyte reaction between chitosan and alginate:: Influence of alginate composition and chitosan molecular weight. Int. J. Biol. Macromol. 2004, 34, 127–133. [Google Scholar] [CrossRef]
- Tran, V.V.; Park, D.; Lee, Y.C. Hydrogel applications for adsorption of contaminants in water and wastewater treatment. Environ. Sci. Pollut. Res. 2018, 25, 24569–24599. [Google Scholar] [CrossRef]
- El Sayed, M.M. Production of Polymer Hydrogel Composites and Their Applications. J. Polym. Environ. 2023, 31, 2855–2879. [Google Scholar] [CrossRef]
- Thelwall, M. Bibliometrics to webometrics. J. Inf. Sci. 2008, 34, 605–621. [Google Scholar] [CrossRef]
- Jovanovic, M. A short history of early bibliometrics. Inf.-Wiss. Und Prax. 2012, 63, 71–80. [Google Scholar]
- Ninkov, A.; Frank, J.R.; Maggio, L.A. Bibliometrics: Methods for studying academic publishing. Perspect. Med. Educ. 2022, 11, 173–176. [Google Scholar] [CrossRef]
- Chen, C.; Chen, Y.; Hou, J.; Liang, Y. CiteSpace II: Detecting and Visualizing Emerging Trends and Transient Patterns in Scientific Literature. J. China Soc. Sci. Tech. Inf. 2009, 28, 401–421. [Google Scholar]
- Chang, L.; Watanabe, T.; Xu, H.L.; Han, J.H. Knowledge Mapping on Nepal’s Protected Areas Using CiteSpace and VOSviewer. Land 2022, 11, 1109. [Google Scholar] [CrossRef]
- Lu, H.N.; Li, P.; Yang, J.; Huang, S.F.; Li, D.F. Research progress and trends in biochar-loaded zero-valentiron compositesa bibliometric visualization based on wos. Environ. Eng. 2023, 41, 481–489. [Google Scholar]
- Sun, X.-F.; Liu, B.; Jing, Z.; Wang, H. Preparation and adsorption property of xylan/poly(acrylic acid) magnetic nanocomposite hydrogel adsorbent. Carbohydr. Polym. 2015, 118, 16–23. [Google Scholar] [CrossRef]
- Zhang, Q.; Hu, X.M.; Wu, M.Y.; Wang, M.M.; Zhao, Y.Y.; Li, T.T. Synthesis and performance characterization of poly(vinyl alcohol)-xanthan gum composite hydrogel. React. Funct. Polym. 2019, 136, 34–43. [Google Scholar] [CrossRef]
- Khalil, A.H.P.S.; Saurabh, C.K.; Adnan, A.S.; Fazita, M.R.N.; Syakir, M.I.; Davoudpour, Y.; Rafatullah, M.; Abdullah, C.K.; Haafiz, M.K.M.; Dungani, R. A review on chitosan-cellulose blends and nanocellulose reinforced chitosan biocomposites: Properties and their applications. Carbohydr. Polym. 2016, 150, 216–226. [Google Scholar]
- Akther, N.; Sodiq, A.; Giwa, A.; Daer, S.; Arafat, H.A.; Hasan, S.W. Recent advancements in forward osmosis desalination: A review. Chem. Eng. J. 2015, 281, 502–522. [Google Scholar] [CrossRef]
- Zhang, W.; Cheng, W.; Ziemann, E.; Be’er, A.; Lu, X.; Elimelech, M.; Bernstein, R. Functionalization of ultrafiltration membrane with polyampholyte hydrogel and graphene oxide to achieve dual antifouling and antibacterial properties. J. Membr. Sci. 2018, 565, 293–302. [Google Scholar] [CrossRef]
- Wang, S.; Lu, A.; Zhang, L.N. Recent advances in regenerated cellulose materials. Prog. Polym. Sci. 2016, 53, 169–206. [Google Scholar] [CrossRef]
- Zhao, Y.; Li, X.; Liu, L.; Chen, F. Fluoride removal by Fe(III)-loaded ligand exchange cotton cellulose adsorbent from drinking water. Carbohydr. Polym. 2008, 72, 144–150. [Google Scholar] [CrossRef]
- Guo, Y.H.; Zhou, X.Y.; Zhao, F.; Bae, J.; Rosenberger, B.; Yu, G.H. Synergistic Energy Nanoconfinement and Water Activation in Hydrogels for Efficient Solar Water Desalination. Acs Nano 2019, 13, 7913–7919. [Google Scholar] [CrossRef]
- Cheng, Z.H.; Liao, J.; He, B.Z.; Zhang, F.; Zhang, F.A.; Huang, X.H.; Zhou, L. One-Step Fabrication of Graphene Oxide Enhanced Magnetic Composite Gel for Highly Efficient Dye Adsorption and Catalysis. Acs Sustain. Chem. Eng. 2015, 3, 1677–1685. [Google Scholar] [CrossRef]
- Zhuang, Y.; Liu, Q.; Kong, Y.; Shen, C.; Hao, H.; Dionysiou, D.D.; Shi, B. Enhanced antibiotic removal through a dual-reaction-center Fenton-like process in 3D graphene based hydrogels. Environ. Sci.-Nano 2019, 6, 388–398. [Google Scholar] [CrossRef]
- Zhuang, Y.; Yu, F.; Ma, J.; Chen, J. Enhanced adsorption removal of antibiotics from aqueous solutions by modified alginate/graphene double network porous hydrogel. J. Colloid Interface Sci. 2017, 507, 250–259. [Google Scholar] [CrossRef]
- Kong, Y.; Zhuang, Y.; Shi, B. Tetracycline removal by double-metal-crosslinked alginate/graphene hydrogels through an enhanced Fenton reaction. J. Hazard. Mater. 2020, 382, 121060. [Google Scholar] [CrossRef]
- Thakur, S.; Sharma, B.; Verma, A.; Chaudhary, J.; Tamulevicius, S.; Thakur, V.K. Recent progress in sodium alginate based sustainable hydrogels for environmental applications. J. Clean. Prod. 2018, 198, 143–159. [Google Scholar] [CrossRef]
- Thakur, S.; Verma, A.; Kumar, V.; Yang, X.J.; Krishnamurthy, S.; Coulon, F.; Thakur, V.K. Cellulosic biomass-based sustainable hydrogels for wastewater remediation: Chemistry and prospective. Fuel 2022, 309, 122114. [Google Scholar] [CrossRef]
- Thakur, S.; Govender, P.P.; Mamo, M.A.; Tamulevicius, S.; Mishra, Y.K.; Thakur, V.K. Progress in lignin hydrogels and nanocomposites for water purification: Future perspectives. Vacuum 2017, 146, 342–355. [Google Scholar] [CrossRef]
- Thakur, S.; Pandey, S.; Arotiba, O.A. Development of a sodium alginate-based organic/inorganic superabsorbent composite hydrogel for adsorption of methylene blue. Carbohydr. Polym. 2016, 153, 34–46. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.; Chen, X.; Yuan, B.; Fu, M.-L. A facile foaming-polymerization strategy to prepare 3D MnO2 modified biochar-based porous hydrogels for efficient removal of Cd(II) and Pb(II). Chemosphere 2020, 239, 124745. [Google Scholar] [CrossRef] [PubMed]
- Kong, Y.; Zhuang, Y.; Han, Z.; Yu, J.; Shi, B.; Han, K.; Hao, H. Dye removal by eco-friendly physically cross-linked double network polymer hydrogel beads and their functionalized composites. J. Environ. Sci. 2019, 78, 81–91. [Google Scholar] [CrossRef]
- Li, Y.; Wang, Z.; Wang, X.; Yan, B.; Peng, Y.; Ran, R. Fe3+-citric acid/sodium alginate hydrogel: A photo-responsive platform for rapid water purification. Carbohydr. Polym. 2021, 269, 118269. [Google Scholar] [CrossRef]
- Khaligh, N.G.; Johan, M.R. Recent Advances in Water Treatment Using Graphene-based Materials. Mini-Rev. Org. Chem. 2020, 17, 74–90. [Google Scholar] [CrossRef]
- Zeng, Y.; Hou, S.; Wei, H.; Zhang, W.; Wei, J.; Zhao, S.; Yin, Y. Fabrication of chitosan-based interpenetrating network hydrogel via sequential amino-maleimide click reaction and photopolymerization in water. Polym. Bull. 2022, 80, 10355–10378. [Google Scholar] [CrossRef]
- Kim, Y.; Bang, J.; Kim, J.; Choi, J.-H.; Hwang, S.-W.; Yeo, H.; Choi, I.-G.; Jin, H.-J.; Kwak, H.W. Cationic surface-modified regenerated nanocellulose hydrogel for efficient Cr(VI) remediation. Carbohydr. Polym. 2022, 278, 118930. [Google Scholar] [CrossRef]
- Liu, H.; Pan, B.; Wang, Q.; Niu, Y.; Tai, Y.; Du, X.; Zhang, K. Crucial roles of graphene oxide in preparing alginate/nanofibrillated cellulose double network composites hydrogels. Chemosphere 2021, 263, 128240. [Google Scholar] [CrossRef]
- Kono, H.; Onishi, K.; Nakamura, T. Characterization and bisphenol A adsorption capacity of beta-cyclodextrin-carboxymethylcellulose-based hydrogels. Carbohydr. Polym. 2013, 98, 784–792. [Google Scholar] [CrossRef]
- Li, S.; Gao, D.; Lin, J.; Wen, Z.; Zhang, K.; Xia, Z.; Wang, D. Preparation of double-network hydrogel consisting of chitosan, cellulose and polyacrylamide for enrichment of tetracyclines. Microchem. J. 2022, 182, 107931. [Google Scholar] [CrossRef]
- Wu, Z.Y.; Zhang, P.; Zhang, H.H.; Li, X.T.; He, Y.F.; Qin, P.W.; Yang, C.H. Tough porous nanocomposite hydrogel for water treatment. J. Hazard. Mater. 2022, 421, 9. [Google Scholar] [CrossRef]
- Nasution, H.; Harahap, H.; Dalimunthe, N.F.; Ginting, M.H.S.; Jaafar, M.; Tan, O.O.H.; Aruan, H.K.; Herfananda, A.L. Hydrogel and Effects of Crosslinking Agent on Cellulose-Based Hydrogels: A Review. Gels 2022, 8, 568. [Google Scholar] [CrossRef] [PubMed]
- Rahmani-Sani, A.; Singh, P.; Raizada, P.; Lima, E.C.; Anastopoulos, I.; Giannakoudakis, D.A.; Sivamani, S.; Dontsova, T.A.; Hosseini-Bandegharaei, A. Use of chicken feather and eggshell to synthesize a novel magnetized activated carbon for sorption of heavy metal ions. Bioresour. Technol. 2020, 297, 122452. [Google Scholar] [CrossRef] [PubMed]
- Lv, Q.Y.; Hu, X.S.; Shen, Y.; Sun, G.X. Polymer hydrogel cross-linked by inorganic nanoparticles for removing trace metal ions. J. Appl. Polym. Sci. 2020, 137, 49004. [Google Scholar] [CrossRef]
- Yang, J.; Chen, X.X.; Zhang, J.H.; Wang, Y.X.; Wen, H.L.; Xie, J.H. Role of chitosan-based hydrogels in pollutants adsorption and freshwater harvesting: A critical review. Int. J. Biol. Macromol. 2021, 189, 53–64. [Google Scholar] [CrossRef]
- Yudaev, P.; Semenova, A.; Chistyakov, E. Gel based on modified chitosan for oil spill cleanup. J. Appl. Polym. Sci. 2023, 141, e54838. [Google Scholar] [CrossRef]
- Ismail, H.; Irani, M.; Ahmad, Z. Starch-Based Hydrogels: Present Status and Applications. Int. J. Polym. Mater. Polym. Biomater. 2013, 62, 411–420. [Google Scholar] [CrossRef]
- Hermani, M.; Etemadi, H.; Khezraqa, H. Polycarbonate/polyvinyl alcohol thin film nanocomposite membrane incorporated with silver nanoparticles for water treatment. Braz. J. Chem. Eng. 2023, 40, 863–872. [Google Scholar] [CrossRef]
- Gonzales, R.R.; Li, J.; Zhang, P.F.; Xu, P.; Li, Z.; Hu, M.Y.; Mai, Z.H.; Guan, K.C.; Matsuyama, H. Hydrogel membrane composite reduces fouling and retains ammonium efficiently. Environ. Chem. Lett. 2024, 22, 1615–1621. [Google Scholar] [CrossRef]
- Baysal, A.; Saygin, H.; Ustabasi, G.S. Microplastic Occurrences in Sediments Collected from Marmara Sea-Istanbul, Turkey. Bull. Environ. Contam. Toxicol. 2020, 105, 522–529. [Google Scholar] [CrossRef] [PubMed]
- Xue, T.T.; Liu, H.C.; Acquah, J.; Chen, G.D. Research status on the removal of microplastics in water environment. Ind. Water Treat. 2021, 41, 1–6. [Google Scholar]
- Li, J.L. Study on treatment of dye wastewater by photocatalytic oxidation. Resour. Conserv. Environ. Prot. 2014, 132. [Google Scholar] [CrossRef]
- Pourjavadi, A.; Doulabi, M.; Doroudian, M. Adsorption characteristics of malachite green dye onto novel kappa-carrageenan-g-polyacrylic acid/TiO2-NH2 hydrogel nanocomposite. J. Iran. Chem. Soc. 2014, 11, 1057–1065. [Google Scholar] [CrossRef]
- Ma, H.; Pu, S.; Hou, Y.; Zhu, R.; Zinchenko, A.; Chu, W. A highly efficient magnetic chitosan “fluid” adsorbent with a high capacity and fast adsorption kinetics for dyeing wastewater purification. Chem. Eng. J. 2018, 345, 556–565. [Google Scholar]
- Zhang, L.; Sellaoui, L.; Franco, D.; Dotto, G.L.; Bajahzar, A.; Belmabrouk, H.; Bonilla-Petriciolet, A.; Oliveira, M.L.S.; Li, Z. Adsorption of dyes brilliant blue, sunset yellow and tartrazine from aqueous solution on chitosan: Analytical interpretation via multilayer statistical physics model. Chem. Eng. J. 2020, 382, 122952. [Google Scholar] [CrossRef]
- Laktionov, M.; Nova, L.; Rud, O.V. Water Desalination Using Polyelectrolyte Hydrogel: Gibbs Ensemble Modeling. Gels 2022, 8, 656. [Google Scholar] [CrossRef] [PubMed]
- Nazzari, E.C.; Beluci, N.D.L.; Ghiotto, G.; Natal, J.P.S.; Bergamasco, R.; Gomes, R.G. Hydrogel Applications to Microbiological Water Treatment. Sep. Purif. Rev. 2023, 52, 155–163. [Google Scholar] [CrossRef]
- Fan, X.L.; Liu, H.L.; Gao, Y.T.; Zou, Z.; Craig, V.S.J.; Zhang, G.Z.; Liu, G.M. Forward-Osmosis Desalination with Poly(Ionic Liquid) Hydrogels as Smart Draw Agents. Adv. Mater. 2016, 28, 4156–4161. [Google Scholar] [CrossRef]
- Wang, N.N.; Cui, D.N.; Wu, Z.F. Research hotspots and frontiers of green finance in China based on CiteSpace. Investig. Entrep. 2023, 34, 17–19+62. [Google Scholar]
- Zhang, Y.; Zhang, Y.J.; Zhu, J.; Wu, Y.H. Advances in wetland construction based on bibliometrics. J. Environ. Eng. Technol. 2021, 11, 107–113. [Google Scholar]
- Huang, R.Q. In-depth study and implement the spirit of the Party’s 20 National Congress to solidly promote the control of new pollutants. Environ. Sustain. Dev. 2023, 48, 2–6. [Google Scholar]
- Jiménez, H.D.; Orozco, E.; Hernández, S.L.; Ramírez, A.C.; Velázquez, J.M.; Velazquez, G.; Minjarez, A.D.; Zamudio, A.; Flores, M.M.; Velasco, S.F. Evaluation of Acute Toxicity and Antioxidant Response of Earthworm Exposed to a Lignin-Modified Crosslinked Hydrogel. Toxics 2023, 11, 16. [Google Scholar] [CrossRef]
- Farid-ul-Haq, M.; Hussain, M.A.; Ali, A.; Haseeb, M.T.; Muhammad, G.; Tabassum, T.; Ashraf, M.U.; Tulain, U.R.; Erum, A. A pH-responsive Artemisia vulgaris mucilage-co-acrylic acid hydrogel: Synthesis, characterization, controlled drug release, toxicity studies, and MRI. J. Drug Deliv. Sci. Technol. 2024, 93, 11. [Google Scholar] [CrossRef]
- Wu, G.; Ye, Z. The research on the base material of polyacrylamide/chitosan hydrogel. J. Funct. Mater. 2013, 44, 2949–2953. [Google Scholar]
- Sun, W.; Wu, W.; Dong, X.; Yu, G. Frontier and hot topics in the application of hydrogel in the biomedical field: A bibliometric analysis based on CiteSpace. J. Biol. Eng. 2024, 18, 40. [Google Scholar] [CrossRef]
Country | Number of Publications | Total Citation Frequency | Average Citation Frequency |
---|---|---|---|
China | 456 | 16560 | 36.32 |
India | 123 | 3125 | 25.41 |
USA | 113 | 3902 | 34.53 |
Iran | 79 | 3257 | 41.23 |
Egypt | 62 | 1149 | 18.53 |
South Korea | 42 | 1297 | 30.88 |
Saudi Arabia | 40 | 709 | 17.73 |
Australia | 38 | 2234 | 58.79 |
Canada | 31 | 1887 | 60.87 |
Italy | 31 | 625 | 20.16 |
Journal | Number of Publications | 2024 Impact Factor | JCR Partition |
---|---|---|---|
International Journal of Biological Macromolecules | 43 | 7.7 | Q1 |
Chemical Engineering Journal | 36 | 13.3 | Q1 |
Carbohydrate Polymers | 31 | 10.7 | Q1 |
RSC Advances | 30 | 3.9 | Q2 |
Gels | 25 | 5 | Q1 |
Polymers | 25 | 4.7 | Q1 |
Journal of Applied Polymer Science | 24 | 2.7 | Q2 |
Separation and Purification Technology | 20 | 8.1 | Q1 |
Journal of Membrane science | 19 | 8.4 | Q1 |
Desalination | 18 | 8.3 | Q1 |
Title | First Author | Journal | The Year of Publication | Total Citation Frequency |
---|---|---|---|---|
Recent advances in regenerated cellulose materials. | Wang S | Progress in Polymer Science | 2016 | 747 |
pH-Responsive polymers: synthesis, properties and applications. | Dai S | Soft Matter | 2008 | 547 |
Graphene-based macroscopic assemblies and architectures: an emerging material system. | Cong HP | Chemical Society Reviews | 2014 | 396 |
Synergistic Energy Nanoconfinement and Water Activation in Hydrogels for Efficient Solar Water Desalination. | Guo YH | ACS Nano | 2019 | 357 |
A review on chitosan-cellulose blends and nanocellulose reinforced chitosan biocomposites: Properties and their applications. | Khalil HPSA | Carbohydrate Polymers | 2016 | 353 |
Recent advancements in forward osmosis desalination: A review. | Akther N | Chemical Engineering Journal | 2015 | 349 |
An introduction to zwitterionic polymer behavior and applications in solution and at surfaces. | Blackman LD | Chemical Society Reviews | 2019 | 308 |
Recent progress in sodium alginate based sustainable hydrogels for environmental applications. | Thakur S | Journal of Cleaner Production | 2018 | 299 |
Development of a sodium alginate-based organic/inorganic superabsorbent composite hydrogel for adsorption of methylene blue. | Thakur S | Carbohydrate Polymers | 2016 | 295 |
One-step fabrication of graphene oxide enhanced magnetic composite gel for highly efficient dye adsorption and catalysis. | Cheng ZH | ACS Sustainable Chemistry and Engineering | 2015 | 292 |
Author | Number of Publications | Total Citation Frequency | Average Citation Frequency |
---|---|---|---|
Zhuang Yuan | 10 | 622 | 62.20 |
Jiao Tifeng | 9 | 592 | 65.78 |
Zhang Leixin | 9 | 592 | 65.78 |
Shi Baoyou | 9 | 509 | 56.56 |
Zhou Jingxin | 8 | 589 | 73.63 |
Thakur Vijay Kumar | 7 | 809 | 115.57 |
Thakur Sourbh | 7 | 1025 | 146.43 |
Dai Sheng | 7 | 367 | 52.43 |
Zhao Changsheng | 7 | 367 | 52.43 |
Yang Jing | 7 | 128 | 18.29 |
Research Organization | Number of Publications | Total Citation Frequency | Average Citation Frequency |
---|---|---|---|
Chinese Academy of Sciences | 46 | 2128 | 46.26 |
Sichuan University | 26 | 749 | 28.81 |
University of Chinese Academy of Sciences | 17 | 833 | 49 |
Harbin institute of technology | 17 | 580 | 34.12 |
Zhejiang University | 14 | 1069 | 76.36 |
Tsinghua University | 14 | 831 | 59.36 |
University of Johannesburg | 14 | 816 | 62.77 |
Nanjing Forestry University | 13 | 420 | 32.31 |
Alexandria University | 12 | 296 | 24.67 |
Amirkabir University of Technology | 11 | 891 | 81 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yuan, Y.; Xiao, S.; Yan, B.; Shen, S.; Dou, R.; Xu, X. Bibliometric Based Analysis of Hydrogels in the Field of Water Treatment. Sustainability 2024, 16, 8194. https://doi.org/10.3390/su16188194
Yuan Y, Xiao S, Yan B, Shen S, Dou R, Xu X. Bibliometric Based Analysis of Hydrogels in the Field of Water Treatment. Sustainability. 2024; 16(18):8194. https://doi.org/10.3390/su16188194
Chicago/Turabian StyleYuan, Yakun, Shuhu Xiao, Bingfei Yan, Songtao Shen, Runtao Dou, and Xiaohe Xu. 2024. "Bibliometric Based Analysis of Hydrogels in the Field of Water Treatment" Sustainability 16, no. 18: 8194. https://doi.org/10.3390/su16188194
APA StyleYuan, Y., Xiao, S., Yan, B., Shen, S., Dou, R., & Xu, X. (2024). Bibliometric Based Analysis of Hydrogels in the Field of Water Treatment. Sustainability, 16(18), 8194. https://doi.org/10.3390/su16188194