Trends in the Research and Development of Soil Nitrogen Mineralization in Forests from 2004 to 2024
Abstract
:1. Introduction
2. Methods
2.1. Data Sources
2.2. Data Analysis
3. Results and Discussion
3.1. Overall Status of Nitrogen Mineralization in Forest Soils
3.2. Co-Occurrence Analysis of Journals
3.3. Co-Occurrence Analysis of Authors
3.4. Collaboration Network Analysis of Institutions and Countries
3.5. Research Hotspots
3.6. Emerging Trends
3.7. Future Research Directions and Policy Recommendations
- (1)
- A comprehensive modeling approach to SNM: With the increasing availability of high-resolution data on soil properties, plant diversity, and environmental factors, there is an opportunity to develop more complex models that integrate the various processes and factors affecting SNM in forest ecosystems. These models can assist researchers in gaining a deeper understanding of the intricate interrelationships between the various components of the system, ultimately enabling more precise projections of future developments.
- (2)
- The microbial ecology of SNM: Advances in microbial ecology and sequencing technology have allowed researchers to describe soil microbial communities in unprecedented detail. Future research should focus on identifying the specific microbial groups and functional groups responsible for SNM in different forest types and environments. This information can be utilized to develop targeted management strategies aimed at promoting healthy soil microbial communities and N cycling.
- (3)
- Interactions between SNM and other ecosystem processes: SNM is closely linked to other ecosystem processes, such as carbon cycling, water availability, and plant growth. Future research should explore the interactions between SNM and these other processes to comprehensively understand how they interact and promote overall ecosystem function.
- (4)
- Combining the practice of desertification control and land management: Exploring the optimization of the SNM process through land management measures (such as afforestation, returning farmland to forest, etc.), improving soil fertility and productivity, and promoting the healthy and sustainable development of forest ecosystems are attractive research directions. In general, future research on SNM in forests should give more attention to its relationship with forest productivity, carbon cycling, microbial function, and global change, and actively explore sustainable land management measures to optimize the SNM process and achieve healthy and sustainable development of forest ecosystems.
4. Conclusions
4.1. Limitations
4.2. General Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Arslan, H.; Güleryüz, G.; Kırmızı, S. Nitrogen mineralisation in the soil of indigenous oak and pine plantation forests in a Mediterranean environment. Eur. J. Soil Biol. 2010, 46, 11–17. [Google Scholar] [CrossRef]
- Chen, S.; Jiang, C.; Wang, H.; Bai, Y.; Jiang, C. Trends in Research on Soil Organic Nitrogen over the Past 20 Years. Forests 2023, 14, 1883. [Google Scholar] [CrossRef]
- An, Y.; Gao, Y.; Liu, X.; Tong, S.; Liu, B.; Song, T.; Qi, Q. Soil Organic Carbon and Nitrogen Variations with Vegetation Succession in Passively Restored Freshwater Wetlands. Wetlands 2021, 41, 11. [Google Scholar] [CrossRef]
- Prieto-Fernández, Á.; Carballas, T. Soil organic nitrogen composition in Pinus forest acid soils: Variability and bioavailability. Biol. Fertil. Soils 2000, 32, 177–185. [Google Scholar] [CrossRef]
- Zhang, D.; Cai, X.; Diao, L.; Wang, Y.; Wang, J.; An, S.; Cheng, X.; Yang, W. Changes in soil organic carbon and nitrogen pool sizes, dynamics, and biochemical stability during ∼160 years natural vegetation restoration on the Loess Plateau, China. Catena 2022, 211, 106014. [Google Scholar] [CrossRef]
- Singh, G.; Mishra, D.; Singh, K.; Shukla, S.; Choudhary, G.R. Geographical settings and tree diversity influenced soil carbon storage in different forest types in Rajasthan, India. Catena 2022, 209, 105856. [Google Scholar] [CrossRef]
- Vitousek, P.M.; Howarth, R.W. Nitrogen limitation on land and in the sea: How can it occur? Biogeochemistry 1991, 13, 87–115. [Google Scholar] [CrossRef]
- Mitchell, M.J. Nitrate dynamics of forested watersheds: Spatial and temporal patterns in North America, Europe and Japan. J. For. Res. 2011, 16, 333. [Google Scholar] [CrossRef]
- Keuper, F.; Dorrepaal, E.; van Bodegom, P.M.; van Logtestijn, R.; Venhuizen, G.; van Hal, J.; Aerts, R. Experimentally increased nutrient availability at the permafrost thaw front selectively enhances biomass production of deep-rooting subarctic peatland species. Glob. Change Biol. 2017, 23, 4257–4266. [Google Scholar] [CrossRef]
- Risch, A.C.; Zimmermann, S.; Ochoa-Hueso, R.; Schütz, M.; Frey, B.; Firn, J.L.; Fay, P.A.; Hagedorn, F.; Borer, E.T.; Seabloom, E.W.; et al. Soil net nitrogen mineralisation across global grasslands. Nat. Commun. 2019, 10, 4981. [Google Scholar] [CrossRef]
- Kuypers, M.M.M.; Marchant, H.K.; Kartal, B. The microbial nitrogen-cycling network. Nat. Rev. Microbiol. 2018, 16, 263–276. [Google Scholar] [CrossRef] [PubMed]
- Dai, Z.; Yu, M.; Chen, H.; Zhao, H.; Huang, Y.; Su, W.; Xia, F.; Chang, S.X.; Brookes, P.C.; Dahlgren, R.A.; et al. Elevated temperature shifts soil N cycling from microbial immobilization to enhanced mineralization, nitrification and denitrification across global terrestrial ecosystems. Glob. Change Biol. 2020, 26, 5267–5276. [Google Scholar] [CrossRef] [PubMed]
- Dawes, M.A.; Schleppi, P.; Hattenschwiler, S.; Rixen, C.; Hagedorn, F. Soil warming opens the nitrogen cycle at the alpine treeline. Glob. Change Biol. 2017, 23, 421–434. [Google Scholar] [CrossRef] [PubMed]
- Elrys, A.S.; Ali, A.; Zhang, H.; Cheng, Y.; Zhang, J.; Cai, Z.C.; Müller, C.; Chang, S.X. Patterns and drivers of global gross nitrogen mineralization in soils. Glob. Change Biol. 2021, 27, 5950–5962. [Google Scholar] [CrossRef]
- Li, Z.; Tian, D.; Wang, B.; Wang, J.; Wang, S.; Chen, H.Y.H.; Xu, X.; Wang, C.; He, N.; Niu, S. Microbes drive global soil nitrogen mineralization and availability. Glob. Change Biol. 2019, 25, 1078–1088. [Google Scholar] [CrossRef]
- Zhu, Z.; Du, H.; Gao, K.; Fang, Y.; Wang, K.; Zhu, T.; Zhu, J.; Cheng, Y.; Li, D. Plant species diversity enhances soil gross nitrogen transformations in a subtropical forest, southwest China. J. Appl. Ecol. 2023, 60, 1364–1375. [Google Scholar] [CrossRef]
- Zhang, M.; Liu, S.; Chen, M.; Chen, J.; Cao, X.; Xu, G.; Xing, H.; Li, F.; Shi, Z. The below-ground carbon and nitrogen cycling patterns of different mycorrhizal forests on the eastern Qinghai-Tibetan Plateau. PeerJ 2022, 10, e14028. [Google Scholar] [CrossRef]
- Elrys, A.S.; Chen, Z.; Wang, J.; Uwiragiye, Y.; Helmy, A.M.; Desoky, E.S.M.; Cheng, Y.; Zhang, J.B.; Cai, Z.C.; Müller, C. Global patterns of soil gross immobilization of ammonium and nitrate in terrestrial ecosystems. Glob. Change Biol. 2022, 28, 4472–4488. [Google Scholar] [CrossRef]
- Johnson, D.W.; Turner, J. Nitrogen budgets of forest ecosystems: A review. For. Ecol. Manag. 2014, 318, 370–379. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, C.; He, N.; Wen, X.; Gao, Y.; Li, S.; Niu, S.; Butterbach-Bahl, K.; Luo, Y.; Yu, G. A global synthesis of the rate and temperature sensitivity of soil nitrogen mineralization: Latitudinal patterns and mechanisms. Glob. Change Biol. 2017, 23, 455–464. [Google Scholar] [CrossRef]
- Nederhof, A.J. Bibliometric monitoring of research performance in the Social Sciences and the Humanities: A Review. Scientometrics 2006, 66, 81–100. [Google Scholar] [CrossRef]
- Ekundayo, T.C.; Okoh, A.I. A global bibliometric analysis of Plesiomonas-related research (1990–2017). PLoS ONE 2018, 13, e0207655. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Zhao, Y.; Wang, B. A bibliometric analysis of climate change adaptation based on massive research literature data. J. Clean. Prod. 2018, 199, 1072–1082. [Google Scholar] [CrossRef]
- Liu, W.; Wang, J.; Li, C.; Chen, B.; Sun, Y. Using Bibliometric Analysis to Understand the Recent Progress in Agroecosystem Services Research. Ecol. Econ. 2019, 156, 293–305. [Google Scholar] [CrossRef]
- Liu, X.; Jiang, N.; Jing, G.; Wang, S.; Chen, Z.; Zhang, Y. Amending biochar affected enzyme activities and nitrogen turnover in Phaeozem and Luvisol. Glob. Change Biol. Bioenergy 2023, 15, 954–968. [Google Scholar] [CrossRef]
- Hong, T.; Feng, X.; Tong, W.; Xu, W. Bibliometric analysis of research on the trends in autophagy. PeerJ 2019, 7, e7103. [Google Scholar] [CrossRef]
- Bornmann, L.; Daniel, H.D. What do citation counts measure? A review of studies on citing behavior. J. Doc. 2008, 64, 45–80. [Google Scholar] [CrossRef]
- Ueda, M.U.; Kachina, P.; Marod, D.; Nakashizuka, T.; Kurokawa, H. Soil properties and gross nitrogen dynamics in old growth and secondary forest in four types of tropical forest in Thailand. For. Ecol. Manag. 2017, 398, 130–139. [Google Scholar] [CrossRef]
- Urakawa, R.; Ohte, N.; Shibata, H.; Isobe, K.; Tateno, R.; Oda, T.; Hishi, T.; Fukushima, K.; Inagaki, Y.; Hirai, K.; et al. Factors contributing to soil nitrogen mineralization and nitrification rates of forest soils in the Japanese archipelago. For. Ecol. Manag. 2016, 361, 382–396. [Google Scholar] [CrossRef]
- Wang, Q.; Li, F.; Rong, X.; Fan, Z. Plant-soil properties associated with Nitrogen mineralization: Effect of conversion of natural secondary forests to Larch plantations in a headwater catchment in Northeast China. Forests 2018, 9, 386. [Google Scholar] [CrossRef]
- Chen, M.; Xu, J.; Li, Z.; Li, D.; Wang, Q.; Zhou, Y.; Guo, W.; Ma, D.; Zhang, J.; Zhao, B. Long-term nitrogen fertilization-induced enhancements of acid hydrolyzable nitrogen are mainly regulated by the most vital microbial taxa of keystone species and enzyme activities. Sci. Total Environ. 2023, 874, 162463. [Google Scholar] [CrossRef] [PubMed]
- Van Der Heijden, M.G.A.; Bardgett, R.D.; Van Straalen, N.M. The unseen majority: Soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecol. Lett. 2008, 11, 296–310. [Google Scholar] [CrossRef] [PubMed]
- Schimel, J.P.; Bennett, J. Nitrogen mineralization: Challenges of a changing paradigm. Ecology 2004, 85, 591–602. [Google Scholar] [CrossRef]
- Schimel, J.; Balser, T.C.; Wallenstein, M. Microbial stress-response physiology and its implications for ecosystem function. Ecology 2007, 88, 1386–1394. [Google Scholar] [CrossRef]
- Sinsabaugh, R.L. Phenol oxidase, peroxidase and organic matter dynamics of soil. Soil Biol. Biochem. 2010, 42, 391–404. [Google Scholar] [CrossRef]
- Manzoni, S.; Trofymow, J.A.; Jackson, R.B.; Porporato, A. Stoichiometric controls on carbon, nitrogen, and phosphorus dynamics in decomposing litter. Ecol. Monogr. 2010, 80, 89–106. [Google Scholar] [CrossRef]
- Manzoni, S.; Jackson, R.B.; Trofymow, J.A.; Porporato, A. The Global Stoichiometry of Litter Nitrogen Mineralization. Science 2008, 321, 684–686. [Google Scholar] [CrossRef]
- Groffman, P.M.; Fisk, M.C.; Driscoll, C.T.; Likens, G.E.; Fahey, T.J.; Eagar, C.; Pardo, L.H. Calcium Additions and Microbial Nitrogen Cycle Processes in a Northern Hardwood Forest. Ecosystems 2006, 9, 1289–1305. [Google Scholar] [CrossRef]
- Borken, W.; Matzner, E. Reappraisal of drying and wetting effects on C and N mineralization and fluxes in soils. Glob. Change Biol. 2009, 15, 808–824. [Google Scholar] [CrossRef]
- Booth, M.S.; Stark, J.M.; Rastetter, E. Control of Nitrogen Cycling in Terrestrial Ecosystems: A Synthetic Analysis of Literature Data. Ecol. Monogr. 2005, 75, 139–157. [Google Scholar] [CrossRef]
- Wang, Y.P.; Law, R.M.; Pak, B. A global model of carbon, nitrogen and phosphorus cycles for the terrestrial biosphere. Biogeogeoscience 2010, 7, 2261–2282. [Google Scholar] [CrossRef]
- Vieira, R.A.; McManus, C. Bibliographic mapping of animal genetic resources and climate change in farm animals. Trop. Anim. Health Prod. 2023, 55, 259. [Google Scholar] [CrossRef] [PubMed]
- Moed, H.F. Measuring contextual citation impact of scientific journals. J. Informetr. 2010, 4, 265–277. [Google Scholar] [CrossRef]
- Zhang, F.; Liu, Y.; Zhang, Y. Bibliometric Analysis of Research Trends in Agricultural Soil Organic Carbon Mineralization from 2000 to 2022. Agriculture 2023, 13, 1248. [Google Scholar] [CrossRef]
- Li, J.; Wang, G.; Yan, B.; Liu, G. The responses of soil nitrogen transformation to nitrogen addition are mainly related to the changes in functional gene relative abundance in artificial Pinus tabulaeformis forests. Sci. Total Environ. 2020, 723, 137679. [Google Scholar] [CrossRef]
- Huang, Z.; Wan, X.; He, Z.; Yu, Z.; Wang, M.; Hu, Z.; Yang, Y. Soil microbial biomass, community composition and soil nitrogen cycling in relation to tree species in subtropical China. Soil Biol. Biochem. 2013, 62, 68–75. [Google Scholar] [CrossRef]
- Zhong, Z.; Makeschin, F. Differences of soil microbial biomass and nitrogen transformation under two forest types in central Germany. Plant Soil 2006, 283, 287–297. [Google Scholar] [CrossRef]
- Bai, J.; Xu, X.; Fu, G.; Song, M.; He, Y.; Jiang, j. Effects of temperature and nitrogen input on nitrogen mineralization in alpine soils on the Tibetan Plateau. Agric. Sci. Technol. 2011, 12, 1909–1912. [Google Scholar] [CrossRef]
- Carmosini, N.; Devito, K.J.; Prepas, E.E. Net nitrogen mineralization and nitrification in trembling aspen forest soils on the Boreal Plain. Can. J. For. Res. 2003, 33, 2262–2268. [Google Scholar] [CrossRef]
- Zhang, S.; Chen, D.; Sun, D.; Wang, X.; Smith, J.L.; Du, G. Impacts of altitude and position on the rates of soil nitrogen mineralization and nitrification in alpine meadows on the eastern Qinghai–Tibetan Plateau, China. Biol. Fertil. Soils 2012, 48, 393–400. [Google Scholar] [CrossRef]
- Yan, Y.; Fang, S.; Tian, Y.; Deng, S.; Tang, L.; Dao Ngoc, C. Influence of tree spacing on soil Nitrogen mineralization and availability in Hybrid Poplar plantations. Forests 2015, 6, 636–649. [Google Scholar] [CrossRef]
- Chen, Q.L.; Ding, J.; Li, C.Y.; Yan, Z.Z.; He, J.Z.; Hu, H.W. Microbial functional attributes, rather than taxonomic attributes, drive top soil respiration, nitrification and denitrification processes. Sci. Total Environ. 2020, 734, 139479. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Han, G.; Huang, T.; Feng, Y.; Tian, W.; Wu, X. Mixed Forest of Larix principis-rupprechtii and Betula platyphylla Modulating Soil Fauna Diversity and Improving Faunal Effect on Litter Decomposition. Forests 2022, 13, 703. [Google Scholar] [CrossRef]
- Xue, K.; Yuan, M.M.; Shi, Z.J.; Qin, Y.; Deng, Y.; Cheng, L.; Wu, L.; He, Z.; Van Nostrand, J.D.; Bracho, R.; et al. Tundra soil carbon is vulnerable to rapid microbial decomposition under climate warming. Nat. Clim. Change 2016, 6, 595–600. [Google Scholar] [CrossRef]
- Bracho, R.; Natali, S.; Pegoraro, E.; Crummer, K.G.; Schädel, C.; Celis, G.; Hale, L.; Wu, L.; Yin, H.; Tiedje, J.M.; et al. Temperature sensitivity of organic matter decomposition of permafrost-region soils during laboratory incubations. Soil Biol. Biochem. 2016, 97, 1–14. [Google Scholar] [CrossRef]
- Rousk, K.; Michelsen, A.; Rousk, J. Microbial control of soil organic matter mineralization responses to labile carbon in subarctic climate change treatments. Glob. Change Biol. 2016, 22, 4150–4161. [Google Scholar] [CrossRef]
- Fan, B.; Yin, L.; Dijkstra, F.A.; Lu, J.; Shao, S.; Wang, P.; Wang, Q.; Cheng, W. Potential gross nitrogen mineralization and its linkage with microbial respiration along a forest transect in eastern China. Appl. Soil Ecol. 2022, 171, 104347. [Google Scholar] [CrossRef]
- Hu, Y.; Zhang, Z.; Yang, G.; Ding, C.; Lu, X. Increases in substrate availability and decreases in soil pH drive the positive effects of nitrogen addition on soil net nitrogen mineralization in a temperate meadow steppe. Pedobiologia 2021, 89, 150756. [Google Scholar] [CrossRef]
- Li, Y.; Tremblay, J.; Bainard, L.D.; Cade-Menun, B.; Hamel, C. Long-term effects of nitrogen and phosphorus fertilization on soil microbial community structure and function under continuous wheat production. Environ. Microbiol. 2020, 22, 1066–1088. [Google Scholar] [CrossRef]
- Ushio, M.; Kitayama, K.; Balser, T.C. Tree species-mediated spatial patchiness of the composition of microbial community and physicochemical properties in the topsoils of a tropical montane forest. Soil Biol. Biochem. 2010, 42, 1588–1595. [Google Scholar] [CrossRef]
- Ashraf, M.N.; Hu, C.; Wu, L.; Duan, Y.; Zhang, W.; Aziz, T.; Cai, A.; Abrar, M.M.; Xu, M. Soil and microbial biomass stoichiometry regulate soil organic carbon and nitrogen mineralization in rice-wheat rotation subjected to long-term fertilization. J. Soils Sediments 2020, 20, 3103–3113. [Google Scholar] [CrossRef]
- Sponseller, R.A.; Gundale, M.J.; Futter, M.; Ring, E.; Nordin, A.; Näsholm, T.; Laudon, H. Nitrogen dynamics in managed boreal forests: Recent advances and future research directions. Ambio 2016, 45, 175–187. [Google Scholar] [CrossRef]
- Ste-Marie, C.; Paré, D. Soil, pH and N availability effects on net nitrification in the forest floors of a range of boreal forest stands. Soil Biol. Biochem. 1999, 31, 1579–1589. [Google Scholar] [CrossRef]
- Xiao, R.; Man, X.; Duan, B.; Cai, T.; Ge, Z.; Li, X.; Vesala, T. Changes in soil bacterial communities and nitrogen mineralization with understory vegetation in boreal larch forests. Soil Biol. Biochem. 2022, 166, 108572. [Google Scholar] [CrossRef]
- Gao, L.; Smith, A.R.; Jones, D.L.; Guo, Y.; Liu, B.; Guo, Z.; Fan, C.; Zheng, J.; Cui, X.; Hill, P.W. How do tree species with different successional stages affect soil organic nitrogen transformations? Geoderma 2023, 430, 116319. [Google Scholar] [CrossRef]
- Ilampooranan, I.; Van Meter, K.J.; Basu, N.B. Intensive agriculture, nitrogen legacies, and water quality: Intersections and implications. Environ. Res. Lett. 2022, 17, 035006. [Google Scholar] [CrossRef]
- Gundersen, P.; Sevel, L.; Christiansen, J.R.; Vesterdal, L.; Hansen, K.; Bastrup-Birk, A. Do indicators of nitrogen retention and leaching differ between coniferous and broadleaved forests in Denmark? For. Ecol. Manag. 2009, 258, 1137–1146. [Google Scholar] [CrossRef]
- Fierer, N.; Leff, J.W.; Adams, B.J.; Nielsen, U.N.; Bates, S.T.; Lauber, C.L.; Owens, S.; Gilbert, J.A.; Wall, D.H.; Caporaso, J.G. Cross-biome metagenomic analyses of soil microbial communities and their functional attributes. Proc. Natl. Acad. Sci. USA 2012, 109, 21390–21395. [Google Scholar] [CrossRef]
- Petersen, D.G.; Blazewicz, S.J.; Firestone, M.; Herman, D.J.; Turetsky, M.; Waldrop, M. Abundance of microbial genes associated with nitrogen cycling as indices of biogeochemical process rates across a vegetation gradient in Alaska. Environ. Microbiol. 2012, 14, 993–1008. [Google Scholar] [CrossRef]
- Levy-Booth, D.J.; Prescott, C.E.; Grayston, S.J. Microbial functional genes involved in nitrogen fixation, nitrification and denitrification in forest ecosystems. Soil Biol. Biochem. 2014, 75, 11–25. [Google Scholar] [CrossRef]
- Nelson, M.B.; Martiny, A.C.; Martiny, J.B.H. Global biogeography of microbial nitrogen-cycling traits in soil. Proc. Natl. Acad. Sci. USA 2016, 113, 8033–8040. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.; Li, X.; Cheng, X.; Zhang, Z.; Zhang, Q. Changes in soil properties rather than functional gene abundance control carbon and nitrogen mineralization rates during long-term natural revegetation. Plant Soil 2019, 443, 293–306. [Google Scholar] [CrossRef]
- Zhang, X.M.; Zhang, H.Y. Modelling Microbial Nitrification and Exploring Nonlinear Mechanism by Dynamical Complexity. Chiang Mai J. Sci. 2024, 51, e2024001. [Google Scholar] [CrossRef]
- Wang, J.; He, L.; Xu, X.; Ren, C.; Wang, J.; Guo, Y.; Zhao, F. Linkage between microbial functional genes and net N mineralisation in forest soils along an elevational gradient. Eur. J. Soil Sci. 2022, 73, e13276. [Google Scholar] [CrossRef]
Journals | Publications | TCs/TPs | JCR | IF |
---|---|---|---|---|
Soil Biology and Biochemistry | 398 | 65.60 | Q1 | 9.8 |
Forest Ecology and Management | 194 | 33.72 | Q2 | 3.7 |
Plant and Soil | 194 | 34.50 | Q1 | 3.9 |
Biogeochemistry | 138 | 54.41 | Q2 | 4.0 |
Geoderma | 120 | 32.18 | Q1 | 6.1 |
Applied Soil Ecology | 117 | 35.17 | Q1 | 4.8 |
Science of the Total Environment | 115 | 22.46 | Q1 | 9.8 |
Global Change Biology | 104 | 95.32 | Q1 | 11.6 |
Biology and Fertility of Soils | 88 | 39.17 | Q1 | 6.5 |
Ecosystems | 86 | 62.15 | Q1 | 3.7 |
Forests | 84 | 7.65 | Q1 | 2.9 |
Soil Science Society of America Journal | 69 | 45.08 | Q2 | 2.9 |
Journal of Soils and Sediments | 61 | 19.80 | Q1 | 3.6 |
Biogeosciences | 51 | 70.60 | Q1 | 4.9 |
European Journal of Soil Biology | 48 | 25.89 | Q2 | 4.2 |
Oecologia | 46 | 102.67 | Q1 | 2.7 |
Canadian Journal of Forest Research | 42 | 29.43 | Q2 | 2.2 |
Ecology | 41 | 161.76 | Q1 | 4.8 |
Eurasian Soil Science | 40 | 6.08 | Q2 | 1.4 |
PLOS ONE | 39 | 24.79 | Q1 | 3.7 |
Journal of Geophysical Research: Biogeosciences | 36 | 28.22 | Q1 | 3.7 |
Scientific Reports | 34 | 32.65 | Q1 | 4.6 |
European Journal of Soil Science | 30 | 30.30 | Q1 | 4.2 |
Title | Authors | Journal | Year | Citations | |
---|---|---|---|---|---|
1 | The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems | Van Der Heijden, M.G.A.; Bardgett, R.D.; Van Straalen, N.M. [32] | Ecology Letters | 2008 | 3045 |
2 | Nitrogen mineralization: Challenges of a changing paradigm | Schimel, J.P.; Bennett, J. [33] | Ecology | 2004 | 1725 |
3 | Microbial stress-response physiology and its implications for ecosystem function | Schimel, J.; Balser, T.C.; Wallenstein, M. [34] | Ecology | 2007 | 1580 |
4 | Phenol oxidase, peroxidase and organic matter dynamics of soil | Sinsabaugh, R.L. [35] | Soil Biology and Biochemistry | 2010 | 911 |
5 | Reappraisal of drying and wetting effects on C and N mineralization and fluxes in soils | Borken, W.; Matzner, E. [39] | Global Change Biology | 2009 | 856 |
6 | Controls on nitrogen cycling in terrestrial ecosystems: A synthetic analysis of literature data | Booth, M.S.; Stark, J.M.; Rastetter, E. [40] | Ecological Monographs | 2005 | 809 |
7 | Calcium additions and microbial nitrogen cycle processes in a northern hardwood forest | Groffman, P.M.; Fisk, M.C.; Driscoll, C.T.; Likens, G.E.; Fahey, T.J.; Eagar, C.; Pardo, L.H. [38] | Ecosystems | 2006 | 604 |
8 | Stoichiometric controls on carbon, nitrogen, and phosphorus dynamics in decomposing litter | Manzoni, S.; Trofymow, J.A.; Jackson, R.B.; Porporato, A. [36] | Ecological Monographs | 2010 | 555 |
9 | The global stoichiometry of litter nitrogen mineralization | Manzoni, S.; Jackson, R.B.; Trofymow, J.A.; Porporato, A. [37] | Science | 2008 | 493 |
10 | A global model of carbon, nitrogen and phosphorus cycles for the terrestrial biosphere | Wang, Y.P.; Law, R.M.; Pak, B. [41] | Biogeosciences | 2010 | 469 |
Institution | Publications | Centrality | First Published Year | TCs/TPs |
---|---|---|---|---|
Chinese Acad Sci | 403 | 0.54 | 2005 | 36.94 |
Cornell Univ | 59 | 0.23 | 2004 | 68.09 |
Univ Alberta | 72 | 0.18 | 2004 | 32.56 |
Swedish Univ Agr Sci | 76 | 0.13 | 2004 | 60.60 |
Boston Univ | 31 | 0.12 | 2006 | 74.95 |
US Forest Serv | 78 | 0.11 | 2004 | 40.59 |
Univ Chinese Acad Sci | 139 | 0.08 | 2013 | 34.98 |
Kyoto Univ | 52 | 0.08 | 2004 | 25.32 |
INRA | 35 | 0.08 | 2006 | 55.09 |
Univ Göttingen | 33 | 0.08 | 2007 | 57.88 |
Country | Publications | Centrality | First Published Year | TCs/TPs |
---|---|---|---|---|
United States of America | 1072 | 0.31 | 2004 | 60.06 |
China | 987 | 0.1 | 2004 | 28.95 |
Germany | 356 | 0.22 | 2004 | 49.69 |
Canada | 280 | 0.07 | 2004 | 38.04 |
Australia | 191 | 0.18 | 2004 | 46.97 |
Sweden | 175 | 0.08 | 2004 | 60.97 |
Spain | 142 | 0.07 | 2004 | 39.88 |
Japan | 129 | 0.14 | 2004 | 22.55 |
France | 120 | 0.26 | 2004 | 50.00 |
Brazil | 114 | 0.01 | 2004 | 31.26 |
Web of Science Categories | Record Count | % of 3576 |
---|---|---|
Soil science | 1492 | 41.72 |
Environmental sciences | 853 | 23.85 |
Ecology | 787 | 22.01 |
Forestry | 587 | 16.42 |
Plant sciences | 427 | 11.94 |
Agronomy | 310 | 8.67 |
Multidisciplinary geosciences | 266 | 7.44 |
Biodiversity conservation | 157 | 4.39 |
Multidisciplinary sciences | 112 | 3.13 |
Microbiology | 61 | 1.71 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, X.; Zhang, H.; Wang, Z.; Tian, Y.; Liu, Z. Trends in the Research and Development of Soil Nitrogen Mineralization in Forests from 2004 to 2024. Sustainability 2024, 16, 7882. https://doi.org/10.3390/su16187882
Zhang X, Zhang H, Wang Z, Tian Y, Liu Z. Trends in the Research and Development of Soil Nitrogen Mineralization in Forests from 2004 to 2024. Sustainability. 2024; 16(18):7882. https://doi.org/10.3390/su16187882
Chicago/Turabian StyleZhang, Xiumin, Huayong Zhang, Zhongyu Wang, Yonglan Tian, and Zhao Liu. 2024. "Trends in the Research and Development of Soil Nitrogen Mineralization in Forests from 2004 to 2024" Sustainability 16, no. 18: 7882. https://doi.org/10.3390/su16187882
APA StyleZhang, X., Zhang, H., Wang, Z., Tian, Y., & Liu, Z. (2024). Trends in the Research and Development of Soil Nitrogen Mineralization in Forests from 2004 to 2024. Sustainability, 16(18), 7882. https://doi.org/10.3390/su16187882