Neural Network for Sky Darkness Level Prediction in Rural Areas
Abstract
1. Introduction
Conceptual Framework
2. Data Collection
2.1. Location
2.2. Equipment
3. Multilayer Perceptron Development
4. Results and Discussion
5. Conclusions
5.1. Limitations/Future Lines of Research
5.2. Contribution to the Academic and Local Community
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gosnell, H.; Abrams, J. Amenity Migration: Diverse Conceptualizations of Drivers, Socioeconomic Dimensions, and Emerging Challenges. GeoJournal 2011, 76, 303–322. [Google Scholar] [CrossRef]
- Demográfico, R. Ministerio Para La Transición Ecológica y El Reto Demográfico. Available online: https://www.miteco.gob.es/es/reto-demografico/temas/que-es.html (accessed on 21 May 2024).
- Mihalic, T. Sustainable-Responsible Tourism Discourse–Towards ‘Responsustable’ Tourism. J. Clean. Prod. 2016, 111, 461–470. [Google Scholar] [CrossRef]
- Abdollahzadeh, G.; Sharifzadeh, A. Rural Residents’ Perceptions Toward Tourism Development: A Study from Iran. Int. J. Tour. Res. 2014, 16, 126–136. [Google Scholar] [CrossRef]
- Butler, R.W. Sustainable Tourism: A State-of-the-art Review. Tour. Geogr. 1999, 1, 7–25. [Google Scholar] [CrossRef]
- Jacobs, L.; Du Preez, E.A.; Fairer-Wessels, F. To Wish upon a Star: Exploring Astro Tourism as Vehicle for Sustainable Rural Development. Dev. South Afr. 2020, 37, 87–104. [Google Scholar] [CrossRef]
- Varela Perez, A.M. The Increasing Effects of Light Pollution on Professional and Amateur Astronomy. Science 2023, 380, 1136–1140. [Google Scholar] [CrossRef]
- Vargas-Sánchez, A.; Fotiadis, A.; Manuel Alcaraz, J.; Castellanos-Verdugo, M.; Manuel Hernández-Mogollón, J.; Pierre Levy-Mangin, J.; Manuel Berbel-Pineda, J.; José Martínez-López, F.; Riquel-Ligero, F.; Miguel Rodríguez-Antón, J.; et al. Astrotourism: A Literature Review and Framework for Future Research. Enlight. Tour. Pathmak. J. 2021, 11, 291–331. [Google Scholar] [CrossRef]
- Rodrigues, Á.; Loureiro, S.M.C.; Lins de Moraes, M.; Pereira, R.G. Memorable Tourism Experience in the Context of Astrotourism. Anatolia 2023, 34, 235–247. [Google Scholar] [CrossRef]
- Dalgleish, H.; Mengistie, G.; Backes, M.; Cotter, G.; Kasai, E. How Can Astrotourism Serve the Sustainable Development Goals? The Namibian Example. arXiv 2021, arXiv:2109.04790. [Google Scholar]
- Kanianska, R.; Škvareninová, J.; Kaniansky, S. Landscape Potential and Light Pollution as Key Factors for Astrotourism Development: A Case Study of a Slovak Upland Region. Land 2020, 9, 374. [Google Scholar] [CrossRef]
- SAWADA Koki, Y.T.O.M. Astrotourism and Sustainable Development: A Case Study of Y Oron Island, Kagoshima Prefecture, Japan. Wakayama Tour. Rev. 2023, 4, 21–24. [Google Scholar] [CrossRef]
- Govender, K. Astronomy for African Development. Proc. Int. Astron. Union 2009, 5, 577–586. [Google Scholar] [CrossRef]
- Davies, A. COVID-19 and ICT-Supported Remote Working: Opportunities for Rural Economies. World 2021, 2, 139–152. [Google Scholar] [CrossRef]
- Torabi, Z.A.; Pourtaheri, M.; Hall, C.M.; Sharifi, A.; Javidi, F. Smart Tourism Technologies, Revisit Intention, and Word-of-Mouth in Emerging and Smart Rural Destinations. Sustainability 2023, 15, 10911. [Google Scholar] [CrossRef]
- Green, R.F.; Luginbuhl, C.B.; Wainscoat, R.J.; Duriscoe, D. The Growing Threat of Light Pollution to Ground-Based Observatories. Astron. Astrophys. Rev. 2022, 30, 1. [Google Scholar] [CrossRef]
- Garstang, R.H. Model for Artificial Night-Sky Illumination. Publ. Astron. Soc. Pac. 1986, 98, 364. [Google Scholar] [CrossRef]
- Garstang, R.H. Predictions of Seasonal Variations in Night Sky Brightness. Observatory 1988, 108, 159–161. [Google Scholar]
- Solano Lamphar, H.A. The Emission Function of Ground-Based Light Sources: State of the Art and Research Challenges. J. Quant. Spectrosc. Radiat. Transf. 2018, 211, 35–43. [Google Scholar] [CrossRef]
- Garstang, R.H. Dust and Light Pollution. Publ. Astron. Soc. Pac. 1991, 103, 1109. [Google Scholar] [CrossRef]
- Garstang, R.H.; Wilson, M.; Palomar, M.; Peak, K.; Peak, S.; Kea, M.; Pedro Mártir, S.; Hopkins, M.; Lemmon, M. Night Sky Brightness at Observatories and Sites. Publ. Astron. Soc. Pac. 1989, 101, 306. [Google Scholar] [CrossRef]
- Garstang, R.H.; Garstang, H.R. Further Light Pollution Calculations. AAS 1992, 180, 9. [Google Scholar]
- Garstang, R.H.; Millis, R.L.; Franz, O.G.; Ables, H.D.; Dahn, C.C. Identification, Optimization and Protection of Optical Observatory Sites; Lowell Observatory: Flagstaff, AZ, USA, 1987; pp. 199–202. [Google Scholar]
- Cinzano, P.; Elvidge, C.D. Night Sky Brightness at Sites from DMSP-OLS Satellite Measurements. Mon. Not. R. Astron. Soc. 2004, 353, 1107–1116. [Google Scholar] [CrossRef]
- Cinzano, P. Measuring and Modelling Light Pollution. Soc. Astron. Ital. 2000, 71, 1–2000. [Google Scholar]
- Kyba, C.C.M.; Tong, K.P.; Bennie, J.; Birriel, I.; Birriel, J.J.; Cool, A.; Danielsen, A.; Davies, T.W.; Den Outer, P.N.; Edwards, W.; et al. Worldwide Variations in Artificial Skyglow. Sci. Rep. 2015, 5, 8409. [Google Scholar] [CrossRef]
- Aubé, M.; Kocifaj, M.; Zamorano, J.; Solano Lamphar, H.A.; Sanchez de Miguel, A. The Spectral Amplification Effect of Clouds to the Night Sky Radiance in Madrid. J. Quant. Spectrosc. Radiat. Transf. 2016, 181, 11–23. [Google Scholar] [CrossRef]
- Kómar, L.; Nečas, A. Effect of Cloud Micro-Physics on Zenith Brightness in Urban Environment. J. Quant. Spectrosc. Radiat. Transf. 2023, 302, 108563. [Google Scholar] [CrossRef]
- Puschnig, J.; Schwope, A.; Posch, T.; Schwarz, R. The Night Sky Brightness at Potsdam-Babelsberg Including Overcast and Moonlit Conditions. J. Quant. Spectrosc. Radiat. Transf. 2014, 139, 76–81. [Google Scholar] [CrossRef]
- Puschnig, J.; Wallner, S.; Posch, T. Circalunar Variations of the Night Sky Brightness–an FFT Perspective on the Impact of Light Pollution. Mon. Not. R. Astron. Soc. 2020, 492, 2622–2637. [Google Scholar] [CrossRef]
- Pun, C.S.J.; So, C.W.; Leung, W.Y.; Wong, C.F. Contributions of Artificial Lighting Sources on Light Pollution in Hong Kong Measured through a Night Sky Brightness Monitoring Network. J. Quant. Spectrosc. Radiat. Transf. 2014, 139, 90–108. [Google Scholar] [CrossRef]
- Kocifaj, M.; Kómar, L.; Lamphar, H.; Barentine, J.; Wallner, A.S. A Systematic Light Pollution Modelling Bias in Present Night Sky Brightness Predictions. Nat. Astron. 2023, 7, 269–279. [Google Scholar] [CrossRef]
- Slingo, J.; Palmer, T. Uncertainty in Weather and Climate Prediction. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2011, 369, 4751–4767. [Google Scholar] [CrossRef]
- C-Sánchez, E.; Sánchez-Medina, A.J.; Alonso-Hernández, J.B.; Voltes-Dorta, A. Astrotourism and Night Sky Brightness Forecast: First Probabilistic Model Approach. Sensors 2019, 19, 2840. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Martín, A.; Bocho-Roas, A.; Carmona-Fernández, D.; Calderón-Godoy, M.; Jaramillo-Morán, M.Á.; González, J.F. Influence of Illumination Parameters on Night Sky Observation in Rural Areas. Sustainability 2023, 15, 9359. [Google Scholar] [CrossRef]
- Jaramillo-Morán, M.A.; García-García, A. Applying Artificial Neural Networks to Forecast European Union Allowance Prices: The Effect of Information from Pollutant-Related Sectors. Energies 2019, 12, 4439. [Google Scholar] [CrossRef]
- García, A.; Jaramillo-Morán, M.A. Short-Term European Union Allowance Price Forecasting with Artificial Neural Networks. Entrep. Sustain. Issues 2020, 8, 261–275. [Google Scholar] [CrossRef]
- Lazcano, A.; Jaramillo-Morán, M.A.; Sandubete, J.E. Back to Basics: The Power of the Multilayer Perceptron in Financial Time Series Forecasting. Mathematics 2024, 12, 1920. [Google Scholar] [CrossRef]
- Lago, J.; De Ridder, F.; De Schutter, B. Forecasting Spot Electricity Prices: Deep Learning Approaches and Empirical Comparison of Traditional Algorithms. Appl. Energy 2018, 221, 386–405. [Google Scholar] [CrossRef]
- Interreg Globaltur Euroace. Available online: https://globaltur.eu/ (accessed on 16 December 2022).
- Riza, L.S.; Izzuddin, A.; Utama, J.A.; Samah, K.A.F.A.; Herdiwijaya, D.; Hidayat, T.; Anugraha, R.; Mumpuni, E.S. Data Analysis Techniques in Light Pollution: A Survey and Taxonomy. New Astron. Rev. 2022, 95, 101663. [Google Scholar] [CrossRef]
- Changruenngam, T.; Deetha, D.; Sukkai, C.; Youyuenyong, P.; Sarotsakulchai, N.; Surina, F. The First Dark Sky Map of Chiang Rai: Three Decades of Change Affecting Astro-Tourism. J. Phys. Conf. Ser. 2023, 2653, 012027. [Google Scholar] [CrossRef]
- Martínez-Martín, A.; Bocho-Roas, A.; Carmona-Fernández, D.; Calderón-Godoy, M.; Jaramillo-Morán, M.Á.; González, J.F. Interference of Meteorological Variables on Night Sky Observation in Rural and Urban Zones of South-Western Spain. Sustainability 2023, 15, 10887. [Google Scholar] [CrossRef]
- Measuring Darkness in Remote Places. EELabs. Available online: https://www.eelabs.eu/en/measuring-darkness-in-remote-places/ (accessed on 23 May 2024).
- Alarcon, M.R.; Puig-Subirà, M.; Serra-Ricart, M.; Lemes-Perera, S.; Mallorquín, M.; López, C. SG-WAS: A New Wireless Autonomous Night Sky Brightness Sensor. Sensors 2021, 21, 5590. [Google Scholar] [CrossRef]
- Set Files Associated with the Article ‘Neural Network for Night Sky Darkness Level Prediction in Rural Areas’. Available online: http://hdl.handle.net/10662/21494 (accessed on 11 June 2024).
- MATLAB-Language of Technical Calculus. Available online: https://es.mathworks.com/products/matlab.html (accessed on 30 May 2024).
- Song, H.; Li, G. Tourism Demand Modelling and Forecasting—A Review of Recent Research. Tour. Manag. 2008, 29, 203–220. [Google Scholar] [CrossRef]
- Hornik, K.; Stinchcombe, M.; White, H. Multilayer Feedforward Networks Are Universal Approximators. Neural Netw. 1989, 2, 359–366. [Google Scholar] [CrossRef]
- Cybenko, G. Approximation by Superpositions of a Sigmoidal Function. Math. Control. Signals Syst. 1989, 2, 303–314. [Google Scholar] [CrossRef]
- Weaver, D. Celestial Ecotourism: New Horizons in Nature-Based Tourism. J. Ecotourism 2011, 10, 38–45. [Google Scholar] [CrossRef]
Statistic | Value (mag/arcsec2) |
---|---|
Minimum | 9.5 |
Maximum | 22.91 |
Mean | 17.93 |
Standard deviation | 3.99 |
wj,1 | wj,2 | bj |
---|---|---|
2.36 | −0.21 | −2.86 |
4.03 | 1.30 | −3.18 |
−3.54 | 3.84 | 0.11 |
3.05 | −3.13 | 0.01 |
4.53 | 4.77 | 0.40 |
−3.94 | −3.93 | −0.22 |
−6.91 | −1.32 | −2.38 |
0.25 | 2.86 | 0.80 |
2.73 | 3.03 | 4.09 |
3.67 | 2.65 | 4.49 |
wOutput,j |
---|
1.32 |
−0.32 |
4.02 |
4.93 |
1.90 |
2.37 |
0.39 |
0.52 |
1.50 |
−1.43 |
Model | Sd | R2 | MAE | RMSE |
---|---|---|---|---|
Martínez-Martín et al. (this study) | 1.54 | 0.85 | 1.21 | 1.51 |
C-Sánchez et al. [34] | 4.77 | 0.87 | 1.57 | 2.09 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martínez-Martín, A.; Jaramillo-Morán, M.Á.; Carmona-Fernández, D.; Calderón-Godoy, M.; González, J.F.G. Neural Network for Sky Darkness Level Prediction in Rural Areas. Sustainability 2024, 16, 7795. https://doi.org/10.3390/su16177795
Martínez-Martín A, Jaramillo-Morán MÁ, Carmona-Fernández D, Calderón-Godoy M, González JFG. Neural Network for Sky Darkness Level Prediction in Rural Areas. Sustainability. 2024; 16(17):7795. https://doi.org/10.3390/su16177795
Chicago/Turabian StyleMartínez-Martín, Alejandro, Miguel Ángel Jaramillo-Morán, Diego Carmona-Fernández, Manuel Calderón-Godoy, and Juan Félix González González. 2024. "Neural Network for Sky Darkness Level Prediction in Rural Areas" Sustainability 16, no. 17: 7795. https://doi.org/10.3390/su16177795
APA StyleMartínez-Martín, A., Jaramillo-Morán, M. Á., Carmona-Fernández, D., Calderón-Godoy, M., & González, J. F. G. (2024). Neural Network for Sky Darkness Level Prediction in Rural Areas. Sustainability, 16(17), 7795. https://doi.org/10.3390/su16177795