A Neural Network Approach to Physical Information Embedding for Optimal Power Flow
Abstract
:1. Introduction
- (1)
- An end-to-end learning-based model, PICNN, is proposed, which accurately predicts AC-OPF solutions under different network structures without repeated modelling;
- (2)
- PICNN introduces physical a priori knowledge of optimal power flow, which makes it easier to tune the parameters and reduces the dependence on the size and quality of the training dataset;
- (3)
- The model achieves higher accuracy and lower constraint violations compared to traditional data-driven approaches, improving model reliability.
2. Formulation of the Optimal Power Flow Analysis Problem
2.1. Description of the AC-OPF Problem
- a.
- Power balance bus constraints
- b.
- Generation of bus constraints
- c.
- Load bus constraints
- d.
- Busbar voltage constraints
- e.
- Branch flow constraints
2.2. Physical Information Architecture
3. Formulation of the Optimal Power Flow Analysis Problem
3.1. Data Preprocessing
3.2. Network Architecture Design
3.3. Loss Function
3.4. Worst-Case Guarantees
- (1)
- Worst-case guarantee of constraint violation
- (2)
- Worst-Case Guarantees of Sub-Optimality
- (3)
- Worst-case guarantee of maximum distance between optimal generation and PICNN prediction
4. Results
- Average absolute error percentage;
- Average generation active power constraint violation percentage;
- Average distance from forecast to optimal generation power percentage;
- Average sub-optimality percentage.
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Raissi, M.; Perdikaris, P.; Karniadakis, G.E. Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. J. Comput. Phys. 2019, 378, 686–707. [Google Scholar] [CrossRef]
- Willard, J.; Jia, X.; Xu, S.; Steinbach, M.; Kumar, V. Integrating scientific knowledge with machine learning for engineering and environmental systems. ACM Comput. Surv. 2022, 55, 1–37. [Google Scholar] [CrossRef]
- Cai, S.; Mao, Z.; Wang, Z.; Yin, M.; Karniadakis, G.E. Physics-informed neural networks for fluid mechanics: A review. Acta Mech. Sin. 2021, 37, 1727–1738. [Google Scholar] [CrossRef]
- Zhang, E.; Dao, M.; Karniadakis, G.E.; Suresh, S. Analyses of internal structures and defects in materials using physics-informed neural networks. Sci. Adv. 2022, 8, eabk0644. [Google Scholar] [CrossRef]
- Misyris, G.S.; Venzke, A.; Chatzivasileiadis, S. Physics-informed neural networks for power systems. In Proceedings of the 2020 IEEE Power & Energy Society General Meeting (PESGM), Montreal, QC, Canada, 2–6 August 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 1–5. [Google Scholar]
- Siano, P. Demand response and smart grids—A survey. Renew. Sustain. Energy Rev. 2014, 30, 461–478. [Google Scholar] [CrossRef]
- Frank, S.; Steponavice, I.; Rebennack, S. Optimal power flow: A bibliographic survey II: Non-deterministic and hybrid methods. Energy Syst. 2012, 3, 259–289. [Google Scholar] [CrossRef]
- Alsac, O.; Bright, J.; Prais, M.; Stott, B. Further developments in LP-based optimal power flow. IEEE Trans. Power Syst. 1990, 5, 697–711. [Google Scholar] [CrossRef]
- Rashed, A.M.H.; Kelly, D.H. Optimal load flow solution using lagrangian multipliers and the Hessian matrix. IEEE Trans. Power App. Syst. 1974, 5, 1292–1297. [Google Scholar] [CrossRef]
- Wei, H.; Sasaki, H.; Kubokawa, J.; Yokoyama, R. An interior point nonlinear programming for optimal power flow problems with a novel data structure. IEEE Trans. Power Syst. 1997, 13, 134–141. [Google Scholar] [CrossRef]
- Yuan, Y.; Low, S.; Ardakanian, O.; Tomlin, C. Inverse power flow problem. arXiv 2016, arXiv:1610.06631. [Google Scholar] [CrossRef]
- Yu, J.; Weng, Y.; Rajagopal, R. Patopa: A data-driven parameter and topology joint estimation framework in distribution grids. IEEE Trans. Power Syst. 2017, 33, 4335–4347. [Google Scholar] [CrossRef]
- Chen, Y.C.; Wang, J.; Domínguez-García, A.D.; Sauer, P.W. Measurement-based estimation of the power flow Jacobian matrix. IEEE Trans. Smart Grid 2016, 7, 2507–2515. [Google Scholar] [CrossRef]
- Yu, J.; Weng, Y.; Rajagopal, R. Mapping rule estimation for power flow analysis in distribution grids. arXiv 2017, arXiv:1702.07948. [Google Scholar]
- Liu, Y.; Zhang, N.; Wang, Y.; Yang, J.; Kang, C. Data-driven power flow linearization: A regression approach. IEEE Trans. Smart Grid 2018, 10, 2569–2580. [Google Scholar] [CrossRef]
- Baghaee, H.R.; Mirsalim, M.; Gharehpetian, G.B.; Talebi, H.A. Threephase ac/dc power-flow for balanced/unbalanced microgrids including wind/solar, droop-controlled and electronically-coupled distributed energy resources using radial basis function neural networks. IET Power Electron. 2017, 10, 313–328. [Google Scholar] [CrossRef]
- Baker, K. Learning warm-start points for AC optimal power flow. In Proceedings of the 2019 IEEE 29th International Workshop on Machine Learning for Signal Processing, Pittsburgh, PA, USA, 13–16 October 2019; pp. 1–6. [Google Scholar] [CrossRef]
- Dong, W.; Xie, Z.; Kestor, G.; Li, D. Smart-PGSim: Using neural network to accelerate AC-OPF power grid simulation. In Proceedings of the SC20: International Conference for High Performance Computing, Networking, Storage and Analysis, Atlanta, GA, USA, 9–19 November 2020; pp. 1–15. [Google Scholar] [CrossRef]
- Long, J.; Jiang, W.; Jin, L.; Zhang, T.; Jiang, H.; Xu, T. A Combination of Linear Power Flow Models to Reduce Linearization Error. In Proceedings of the 2020 IEEE 3rd International Conference of Safe Production and Informatization (IICSPI), Chongqing, China, 28–30 November 2020; pp. 256–260. [Google Scholar] [CrossRef]
- Vrablecová, P.; Ezzeddine, A.B.; Rozinajová, V.; Šárik, S.; Sangaiah, A.K. Smart grid load forecasting using online support vector regression. Comput. Electr. Eng. 2018, 65, 102–117. [Google Scholar] [CrossRef]
- Guha, N.; Wang, Z.; Wytock, M.; Majumdar, A. Machine learning for AC optimal power flow. arXiv 2019, arXiv:1910.08842v1. [Google Scholar]
- Pan, X.; Chen, M.; Zhao, T.; Low, S.H. DeepOPF: A feasibilityoptimized deep neural network approach for AC optimal power flow problems. arXiv 2021, arXiv:2007.01002v5. [Google Scholar] [CrossRef]
- Huang, G.B.; Zhu, Q.Y.; Siew, C.K. Extreme learning machine: Theory and applications. Neurocomputing 2006, 70, 489–501. [Google Scholar] [CrossRef]
- Zhou, H.; Huang, G.; Lin, Z.; Wang, H.; Soh, Y.C. Stacked extreme learning machines. IEEE Trans. Cybern. 2015, 45, 2013–2025. [Google Scholar] [CrossRef] [PubMed]
- Luo, X.; Sun, J.; Wang, L.; Wang, W.; Zhao, W.; Wu, J.; Wang, J.-H.; Zhang, Z. Short-term wind speed forecasting via stacked extreme learning machine with generalized correntropy. IEEE Trans. Ind. Inform. 2018, 14, 4963–4971. [Google Scholar] [CrossRef]
- Zhou, Y.; Wei, Y. Learning hierarchical spectral–spatial features for hyperspectral image classification. IEEE Trans. Cybern. 2016, 46, 1667–1678. [Google Scholar] [CrossRef] [PubMed]
- Lv, F.; Han, M.; Qiu, T. Remote sensing image classification based on ensemble extreme learning machine with stacked autoencoder. IEEE Access 2017, 5, 9021–9031. [Google Scholar] [CrossRef]
- Wong, C.M.; Vong, C.M.; Wong, P.K.; Cao, J. Kernel-based multilayer extreme learning machines for representation learning. IEEE Trans. Neural Netw. Learn. Syst. 2018, 29, 757–762. [Google Scholar] [CrossRef]
- Babaeinejadsarookolaee, S.; Birchfield, A.; Christie, R.D.; Coffrin, C.; DeMarco, C.; Diao, R.; Ferris, M.; Fliscounakis, S.; Greene, S.; Huang, R.; et al. The power grid library for benchmarking AC optimal power flow algorithms. arXiv 2019, arXiv:1908.02788. [Google Scholar]
- Karpatne, A.; Atluri, G.; Faghmous, J.H.; Steinbach, M.; Banerjee, A.; Ganguly, A.; Shekhar, S.; Samatova, N.; Kumar, V. Theory-guided data science: A new paradigm for scientific discovery from data. IEEE Trans. Knowl. Data Eng. 2017, 29, 2318–2331. [Google Scholar] [CrossRef]
- Venzke, A.; Qu, G.; Low, S.; Chatzivasileiadis, S. Learning optimal power flow: Worst-case guarantees for neural networks. In Proceedings of the 2020 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids, (SmartGridComm), Tempe, AZ, USA, 11–13 November 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 1–7. [Google Scholar]
Test Case | Max Loading (MW) | ||||
---|---|---|---|---|---|
case 14 | 14 | 11 | 5 | 20 | 259.3 |
case 39 | 39 | 21 | 10 | 46 | 6254.2 |
case 118 | 118 | 99 | 19 | 186 | 4242.0 |
case 162 | 162 | 113 | 12 | 284 | 7239.1 |
case 300 | 300 | 199 | 69 | 411 | 23,525.9 |
Test Case | Training Time (s) | |||
---|---|---|---|---|
LSTM | Attention | PINN | PICNN | |
case 14 | 2025 | 285 | 279 | 518 |
case 39 | 3979 | 474 | 438 | 976 |
case 118 | 23,896 | 3863 | 2355 | 4020 |
case 162 | 30,679 | 9792 | 9319 | 18,241 |
case 300 | 145,585 | 59,705 | 65,637 | 100,799 |
Test Case | Real Time (ms) | ||||
---|---|---|---|---|---|
LSTM | Attention | PINN | PICNN | N-R Method | |
case 39 | 5.34 | 2.13 | 1.07 | 1.14 | 31.97 |
case 118 | 6.27 | 3.76 | 2.65 | 3.03 | 42.91 |
Test Case | MAE (%) | (%) | (%) | (%) | |
---|---|---|---|---|---|
case 14 | LSTM | 4.75 | 0.00 | −4.74 | 0.38 |
Attention | 2.97 | 0.01 | 5.76 | 0.24 | |
PINN | 0.43 | 0.01 | −0.52 | 0.02 | |
PICNN | 0.08 | 0.01 | −0.3 | 0.01 | |
case 39 | LSTM | 4.64 | 0.01 | 3.83 | 1.75 |
Attention | 3.29 | 0.01 | 12.09 | 1.36 | |
PINN | 2.06 | 0.01 | −2.18 | 0.19 | |
PICNN | 0.48 | 0.00 | 1.57 | 0.10 | |
case 118 | LSTM | 2.49 | 0.01 | −0.15 | 1.14 |
Attention | 2.48 | 0.02 | 7.97 | 1.06 | |
PINN | 1.86 | 0.10 | 7.28 | 0.65 | |
PICNN | 0.58 | 0.02 | −0.19 | 0.30 | |
case 162 | LSTM | 10.10 | 0.14 | −36.75 | 4.15 |
Attention | 10.13 | 0.21 | −36.63 | 4.17 | |
PINN | 5.30 | 0.24 | −16.15 | 2.99 | |
PICNN | 4.41 | 0.08 | 5.77 | 2.25 | |
case 300 | LSTM | 3.25 | 0.00 | 4.40 | 0.01 |
Attention | 3.23 | 0.00 | 4.79 | 0.01 | |
PINN | 0.88 | 0.00 | −8.06 | 0.00 | |
PICNN | 0.79 | 0.00 | 2.83 | 0.00 |
Weight Initialisation Method | MAE (%) | |
---|---|---|
Zero Initialisation | LSTM | 4.84 |
Attention | 4.68 | |
PINN | 0.68 | |
PICNN | 0.28 | |
Random Initialisation | LSTM | 4.95 |
Attention | 5.12 | |
PINN | 0.78 | |
PICNN | 0.31 | |
Uniform Distribution Initialisation | LSTM | 4.78 |
Attention | 4.25 | |
PINN | 0.38 | |
PICNN | 0.23 | |
Glorot Distribution Initialisation | LSTM | 4.81 |
Attention | 4.09 | |
PINN | 0.43 | |
PICNN | 0.21 |
Test Case | MAE (%) | |||
---|---|---|---|---|
100 (%) Data | 50 (%) Data | 20 (%) Data | ||
case 14 | LSTM | 4.75 | 4.98 | 5.25 |
Attention | 2.97 | 4.81 | 5.69 | |
PINN | 0.43 | 0.57 | 0.79 | |
PICNN | 0.08 | 0.12 | 0.23 | |
case 39 | LSTM | 4.64 | 4.81 | 14.71 |
Attention | 3.29 | 4.94 | 16.82 | |
PINN | 2.06 | 2.15 | 6.16 | |
PICNN | 0.48 | 0.45 | 1.28 | |
case 118 | LSTM | 2.49 | 2.75 | 2.87 |
Attention | 2.48 | 2.80 | 2.88 | |
PINN | 1.86 | 2.10 | 2.26 | |
PICNN | 0.58 | 0.64 | 1.03 |
Test Case | rg | ||
---|---|---|---|
MW | (%) Max Loading | ||
case 14 | LSTM | 0.1 | 0.04 |
Attention | 0.11 | 0.04 | |
PINN | 0.01 | 0.01 | |
PICNN | 0.01 | 0.01 | |
case 39 | LSTM | 324 | 5.18 |
Attention | 269 | 4.3 | |
PINN | 132 | 2.11 | |
PICNN | 113 | 1.81 | |
case 118 | LSTM | 457 | 10.77 |
Attention | 398 | 1.06 | |
PINN | 170 | 9.38 | |
PICNN | 134 | 3.16 | |
case 162 | LSTM | 2065 | 28.53 |
Attention | 2534 | 35.00 | |
PINN | 802 | 11.08 | |
PICNN | 713 | 9.85 | |
case 300 | LSTM | 3540 | 15.05 |
Attention | 3989 | 16.96 | |
PINN | 1752 | 7.45 | |
PICNN | 1521 | 6.47 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, C.; Li, Y.; Xu, T. A Neural Network Approach to Physical Information Embedding for Optimal Power Flow. Sustainability 2024, 16, 7498. https://doi.org/10.3390/su16177498
Liu C, Li Y, Xu T. A Neural Network Approach to Physical Information Embedding for Optimal Power Flow. Sustainability. 2024; 16(17):7498. https://doi.org/10.3390/su16177498
Chicago/Turabian StyleLiu, Chenyuchuan, Yan Li, and Tianqi Xu. 2024. "A Neural Network Approach to Physical Information Embedding for Optimal Power Flow" Sustainability 16, no. 17: 7498. https://doi.org/10.3390/su16177498
APA StyleLiu, C., Li, Y., & Xu, T. (2024). A Neural Network Approach to Physical Information Embedding for Optimal Power Flow. Sustainability, 16(17), 7498. https://doi.org/10.3390/su16177498