Blue Carbon as a Nature-Based Mitigation Solution in Temperate Zones
Abstract
:1. Introduction
2. Co-Benefits of Blue Carbon and Their Valorization
3. Scientific Approaches to Building BC Stocks
4. Identifying Financial and Technological Tools to Enhance the Role of Blue Carbon
5. Social and Governance Approaches to Conserving and Rebuilding BCEs
6. Policy Proposals, Conclusions, and Recommendations
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Arias, P.A. Technical Summary. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S.L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M.I., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2021; pp. 33–144. [Google Scholar] [CrossRef]
- IPCC. Summary for Policymakers. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S.L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M.I., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2021; pp. 3–32. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2022: Mitigation of Climate Change. Contribution of Working Group III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Shukla, P.R., Skea, J., Slade, R., Al Khourdajie, A., van Diemen, R., McCollum, D., Pathak, M., Some, S., Vyas, P., Fradera, R., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2022; p. 1528. [Google Scholar] [CrossRef]
- Christianson, A.B.; Cabré, A.; Bernal, B.; Baez, S.K.; Leung, S.; Pérez-Porro, A.; Poloczanska, E. The Promise of Blue Carbon Climate Solutions: Where the Science Supports Ocean-Climate Policy. Front. Mar. Sci. 2022, 9, 851448. [Google Scholar] [CrossRef]
- Feng, C.; Ye, G.; Zeng, J.; Zeng, J.; Jiang, Q.; He, L.; Zhang, Y.; Xu, Z. Sustainably developing global blue carbon for climate change mitigation and economic benefits through international cooperation. Nat. Commun. 2023, 14, 6144. [Google Scholar] [CrossRef]
- Baklaga, L. Synergizing AI and Blockchain: Innovations in Decentralized Carbon Markets for Emission Reduction through Intelligent Carbon Credit Trading. J. Comput. Sci. Technol. Stud. 2024, 6, 111–120. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S.L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M.I., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2021; 2391p, p. 2245. [Google Scholar] [CrossRef]
- IPCC. Summary for Policymakers. In Climate Change 2022: Mitigation of Climate Change. Contribution of Working Group III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Shukla, P.R., Skea, J., Slade, R., Al Khourdajie, A., van Diemen, R., McCollum, D., Pathak, M., Some, S., Vyas, P., Fradera, R., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2022; p. 38. [Google Scholar] [CrossRef]
- McGranahan, G.; Balk, D.; Anderson, B. The rising tide: Assessing the risks of climate change and human settlements in low elevation coastal zones. Environ. Urban. 2007, 19, 17–37. [Google Scholar] [CrossRef]
- Beck, H.E.; Zimmermann, N.E.; McVicar, T.R.; Vergopolan, N.; Berg, A.; Wood, E.F. Present and future Köppen-Geiger climate classification maps at 1-km resolution. Sci. Data 2018, 5, 180214. [Google Scholar] [CrossRef] [PubMed]
- Malerba, M.E.; Friess, D.E.; Peacock, M.; Grinham, A.; Taillardat, P.; Rosentreter, J.A.; Webb, J.; Iram, N.; Al-Haj, A.N.; Macreadie, P.I. Methane and Nitrous oxide emissions complicate the climate benefits of teal and Blue Carbon Wetlands. One Earth 2022, 5, 1336–1341. [Google Scholar] [CrossRef]
- McLeod, E.; Chmura, G.L.; Bouillon, S.; Salm, R.; Björk, M.; Duarte, C.M.; Lovelock, C.E.; Schlesinger, W.H.; Silliman, B.R. A blueprint for blue carbon: Toward an improved understanding of the role of vegetated coastal habitats in sequestering CO2. Front. Ecol. Environ. 2011, 9, 552–560. [Google Scholar] [CrossRef]
- Lima, M.D.A.C.; Ward, R.D.; Joyce, C.B. Environmental drivers of sediment carbon storage in temperate seagrass meadows. Hydrobiologia 2020, 847, 1773–1792. [Google Scholar] [CrossRef]
- Asanopoulos, C.H.; Baldock, J.A.; Macdonald, L.M.; Cavagnaro, T.R. Quantifying blue carbon and nitrogen stocks in surface soils of temperate coastal wetlands. Soil Res. 2021, 59, 619–629. [Google Scholar] [CrossRef]
- Bertram, C.; Quaas, M.; Reusch, T.B.H.; Vafeidis, A.T.; Wolff, C.; Rickels, W. The blue carbon wealth of nations. Nat. Clim. Chang. 2021, 11, 704–709. [Google Scholar] [CrossRef]
- Jennerjahn, T.C. Relevance and magnitude of ‘Blue Carbon’ storage in mangrove sediments: Carbon accumulation rates vs. stocks, sources vs. sinks. Estuarine Coast. Shelf Sci. 2020, 247, 107027. [Google Scholar] [CrossRef]
- Williamson, P.; Gattuso, J.-P. Carbon Removal Using Coastal Blue Carbon Ecosystems Is Uncertain and Unreliable, With Questionable Climatic Cost-Effectiveness. Front. Clim. 2022, 4, 853666. [Google Scholar] [CrossRef]
- Sulivan, N.; Permanence Considerations When Buying Carbon Credits. Carbon Better. 2024. Available online: https://carbonbe ter.com/story/carbon-credit-permanence/ (accessed on 23 July 2024).
- Smale, D.A.; Moore, P.J.; Queirós, A.M.; Higgs, N.D.; Burrows, M.T. Appreciating interconnectivity between habitats is key to blue carbon management. Front. Ecol. Environ. 2018, 16, 71–73. [Google Scholar] [CrossRef]
- Macreadie, P.I.; Anton, A.; Raven, J.A.; Beaumont, N.; Connolly, R.M.; Friess, D.A.; Kelleway, J.J.; Kennedy, H.; Kuwae, T.; Lavery, P.S.; et al. The future of Blue Carbon science. Nat. Commun. 2019, 10, 3998. [Google Scholar] [CrossRef]
- Siikamäki, J.; Sanchirico, J.N.; Jardine, S.; McLaughlin, D.; Morris, D. Blue Carbon: Coastal Ecosystems, Their Carbon Storage, and Potential for Reducing Emissions. Environ. Sci. Policy Sustain. Dev. 2013, 55, 14–29. [Google Scholar] [CrossRef]
- Herr, D.; Landis, E. Coastal Blue Carbon Ecosystems. Opportunities for Nationally Determined Contributions. Policy Brief. Gland, Switzerland: IUCN. Washington, DC: TNC. 2016. Available online: https://portals.iucn.org/library/sites/library/files/documents/Rep-2016-026-En.pdf (accessed on 23 June 2024).
- Barbier, E.B.; Hacker, S.D.; Kennedy, C.; Koch, E.W.; Stier, A.C.; Silliman, B.R. The value of estuarine and coastal ecosystem services. Ecol. Monogr. 2011, 81, 169–193. [Google Scholar] [CrossRef]
- Barbier, E.B. The protective service of mangrove ecosystems: A review of valuation methods. Mar. Pollut. Bull. 2016, 109, 676–681. [Google Scholar] [CrossRef] [PubMed]
- Mazda, Y.; Magi, M.; Ikeda, Y.; Kurokawa, T.; Asano, T. Wave reduction in a mangrove forest dominated by Sonneratia sp. Wetl. Ecol. Manag. 2006, 14, 365–378. [Google Scholar] [CrossRef]
- Salt Marsh Guide. Ecosystem Services. Guide to the Salt Marshes and Tidal Creeks of the Southeastern United States. 2020. Available online: https://www.saltmarshguide.org/guide/ecosystem-services/ (accessed on 23 June 2024).
- Weinstein, M.P.; Kreeger, D.A.; Roman, C.T. Book Review-Concepts and Controversies in Tidal Marsh Ecology. Estuaries-Lawrence 2002, 25, 148. [Google Scholar]
- Lamb, J.B.; Van De Water, J.A.; Bourne, D.G.; Altier, C.; Hein, M.Y.; Fiorenza, E.A.; Abu, N.; Jompa, J.; Harvell, C.D. Seagrass ecosystems reduce exposure to bacterial pathogens of humans, fishes, and invertebrates. Science 2017, 355, 731–733. [Google Scholar] [CrossRef]
- Herr, D.; von Unger, M.; Laffoley, D.; McGivern, A. Pathways for implementation of blue carbon initiatives. Aquat. Conserv. 2017, 27, 116–129. [Google Scholar] [CrossRef]
- Spalding, M.; Parrett, C.L. Global patterns in mangrove recreation and tourism. Mar. Policy 2019, 110, 103540. [Google Scholar] [CrossRef]
- Arruda, G.M. Sustainable Energy Education in the Arctic: The Role of Higher Education, 1st ed.; Routledge: London, UK, 2019. [Google Scholar] [CrossRef]
- Cullen-Unsworth, L.; Unsworth, R. Seagrass Meadows, Ecosystem Services, and Sustainability. Environ. Sci. Policy Sustain. Dev. 2013, 55, 14–28. [Google Scholar] [CrossRef]
- Boyd, J.W.; Banzhaf, H.S. What are ecosystem services? The need for Standardized Environmental Accounting Units. SSRN 2006, preprint. [Google Scholar] [CrossRef]
- Vallecillo, S.; La Notte, A.; Zulian, G.; Ferrini, S.; Maes, J. Ecosystem services accounts: Valuing the actual flow of nature-based recreation from ecosystems to people. Ecol. Model. 2019, 392, 196–211. [Google Scholar] [CrossRef]
- Vallecillo, S.; La Notte, A.; Ferrini, S.; Maes, J. How ecosystem services are changing: An accounting application at the EU level. Ecosyst. Serv. 2019, 40, 101044. [Google Scholar] [CrossRef] [PubMed]
- Boudouresque, C.-F.; Blanfuné, A.; Pergent, G.; Thibaut, T. Restoration of seagrass meadows in the Mediterranean Sea: A critical review of effectiveness and ethical issues. Water 2021, 13, 1034. [Google Scholar] [CrossRef]
- Calumpong, H.P.; Fonseca, M.S. Seagrass transplantation and other seagrass restoration methods. In Global Seagrass Research Methods; Short, T.F., Ed.; Elsevier: Amsterdam, The Netherlands, 2001; pp. 425–443. [Google Scholar] [CrossRef]
- Campbell, M.L. A decision-based framework to increase seagrass transplantation success. Biol. Mar. Mediterr. 2000, 10, 336–340. [Google Scholar]
- Fonseca, M.S.; Kenworthy, W.J.; Thayer, G.W. Guidelines for the Conservation and Restoration of Seagrasses in the United States and Adjacent Waters; NOAA Coastal Ocean Program Decision Analysis Series 12; NOAA: Silver Spring, MD, USA, 1998; p. 222. Available online: https://coastalscience.noaa.gov/data_reports/guidelines-for-the-conservation-and-restoration-of-seagrasses-in-the-united-states-and-adjacent-waters/ (accessed on 23 June 2024).
- Govers, L.L.; Heusinkveld, J.H.T.; Gräfnings, M.L.E.; Smeele, Q.; van der Heide, T. Adaptive intertidal seed-based seagrass restoration in the Dutch Wadden Sea. PLoS ONE 2022, 17, e0262845. [Google Scholar] [CrossRef]
- Gräfnings, M.L.E.; Heusinkveld, J.H.T.; Hoeijmakers, D.J.J.; Smeele, Q.; Wiersema, H.; Zwarts, M.; van der Heide, T.; Govers, L.L. Optimizing seed injection as a seagrass restoration method. Restor. Ecol. 2022, preprint. [Google Scholar] [CrossRef]
- Tan, Y.M.; Dalby, O.; Kendrick, G.A.; Statton, J.; Sinclair, E.A.; Fraser, M.W.; Macreadie, P.I.; Gillies, C.L.; Coleman, R.A.; Waycott, M.; et al. Seagrass restoration is possible: Insights and lessons from Australia and New Zealand. Front. Mar. Sci. 2020, 7, 617. [Google Scholar] [CrossRef]
- Lange, T.; Oncken, N.S.; Svane, N.; Steinfurth, R.C.; Kristensen, E.; Flindt, M.R. Large-scale eelgrass transplantation: A measure for carbon and nutrient sequestration in estuaries. Mar. Ecol. Prog. Ser. 2022, 685, 97–109. [Google Scholar] [CrossRef]
- van der Heide, T.; Temmink, R.J.; Fivash, G.S.; Bouma, T.J.; Boström, C.; Didderen, K.; Esteban, N.; Gaeckle, J.; Gagnon, K.; Infantes, E.; et al. Coastal restoration success via emergent trait-mimicry is context dependent. Biol. Conserv. 2021, 264, 109373. [Google Scholar] [CrossRef]
- van der Heide, T.; van Nes, E.H.; Geerling, G.W.; Smolders, A.J.P.; Bouma, T.J.; van Katwijk, M.M. Positive feedbacks in seagrass ecosystems: Implications for success in conservation and restoration. Ecosystems 2007, 10, 1311–1322. [Google Scholar] [CrossRef]
- Silliman, B.R.; Schrack, E.; He, Q.; Cope, R.; Santoni, A.; van der Heide, T.; Jacobi, R.; Jacobi, M.; van de Koppel, J. Facilitation shifts paradigms and can amplify coastal restoration efforts. Proc. Natl. Acad. Sci. USA 2015, 112, 14295–14300. [Google Scholar] [CrossRef]
- van Katwijk, M.M.; Thorhaug, A.; Marbà, N.; Orth, R.J.; Duarte, C.M.; Kendrick, G.A.; Althuizen, I.H.J.; Balestri, E.; Bernard, G.; Cambridge, M.L.; et al. Global Analysis of seagrass restoration: The importance of large-scale planting. J. Appl. Ecol. 2015, 53, 567–578. [Google Scholar] [CrossRef]
- Halpern, B.S.; Silliman, B.R.; Olden, J.D.; Bruno, J.P.; Bertness, M.D. Incorporating positive interactions in aquatic restoration and conservation. Front. Ecol. Environ. 2007, 5, 153–160. [Google Scholar] [CrossRef]
- Dawkins, P.D.; Fiorenza, E.A.; Gaeckle, J.L.; Lanksbury, J.A.; van de Water, J.A.J.M.; Feeney, W.E.; Harvell, C.D.; Lamb, J.B. Seagrass ecosystems as green urban infrastructure to mediate human pathogens in seafood. Nat. Sustain. 2024. [Google Scholar] [CrossRef]
- van Katwijk, M.M.; van Tussenbroek, B.I.; Hanssen, S.V.; Hendriks, A.J.; Hanssen, L. Rewilding the sea with domesticated seagrass. BioScience 2021, 71, 1171–1178. [Google Scholar] [CrossRef]
- Orth, R.J.; Lefcheck, J.S.; McGlathery, K.S.; Aoki, L.; Luckenbach, M.W.; Moore, K.A.; Oreska, M.P.J.; Snyder, R.; Wilcox, D.J.; Lusk, B. Restoration of seagrass habitat leads to rapid recovery of Coastal Ecosystem Services. Sci. Adv. 2020, 6, eabc6434. [Google Scholar] [CrossRef]
- Adam, P. Salt Marsh Restoration. In Coastal Wetlands; Gerardo, M.E., Ed.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 817–861. [Google Scholar] [CrossRef]
- Billah, M.M.; Alam Bhuiyan, M.K.; Islam, M.A.; Das, J.; Hoque, A.T.M. Salt Marsh Restoration: An overview of techniques and success indicators. Environ. Sci. Pollut. Res. 2022, 29, 15347. [Google Scholar] [CrossRef] [PubMed]
- Callaway, J.C. Hydrology and Substrate. In Handbook for Restoring Tidal Wetlands; Zedler, B., Ed.; CRC Press: Boca Raton, FL, USA, 2001; pp. 89–117. [Google Scholar]
- Balke, T.; Herman, P.M.J.; Bouma, T.J. Critical transitions in disturbance-driven ecosystems: Identifying Windows of Opportunity for recovery. J. Ecol. 2014, 102, 700–708. [Google Scholar] [CrossRef]
- Fivash, G.S.; Temmink, R.J.M.; D’angelo, M.; van Dalen, J.; Lengkeek, W.; Didderen, K.; Ballio, F.; van der Heide, T.; Bouma, T.J. Restoration of biogeomorphic systems by creating windows of opportunity to support natural establishment processes. Ecol. Appl. 2021, 31, e2333. [Google Scholar] [CrossRef] [PubMed]
- Fivash, G.S.; Van Belzen, J.; Temmink, R.J.M.; Didderen, K.; Lengkeek, W.; Van Der Heide, T.; Bouma, T.J. Elevated micro-topography boosts growth rates in Salicornia procumbens by amplifying a tidally driven oxygen pump: Implications for natural recruitment and restoration. Ann. Bot. 2020, 125, 353–364. [Google Scholar] [CrossRef] [PubMed]
- Temmink, R.J.M.; Christianen, M.J.A.; Fivash, G.S.; Angelini, C.; Boström, C.; Didderen, K.; Engel, S.M.; Esteban, N.; Gaeckle, J.L.; Gagnon, K.; et al. Mimicry of emergent traits amplifies coastal restoration success. Nat. Commun. 2020, 11, 3668. [Google Scholar] [CrossRef] [PubMed]
- Burden, A.; Garbutt, A.; Evans, C.D. Effect of restoration on saltmarsh carbon accumulation in Eastern England. Biol. Lett. 2019, 15, 20180773. [Google Scholar] [CrossRef] [PubMed]
- Hilmi, N.; Carranco, M.B.B.; Broussard, D.; Mathew, M.; Djoundourian, S.; Cassotta, S.; Safa, A.; Maliki, S.; Descroix-Comanducci, F.; Allemand, D.; et al. Tropical blue carbon: Solutions and perspectives for valuations of carbon sequestration. Front. Clim. 2023, 5, 1169663. [Google Scholar] [CrossRef]
- Morrisey, D.J.; Swales, A.; Dittmann, S.; Morrison, M.A.; Lovelock, C.E.; Beard, C.M. The Ecology and Management of Temperate Mangroves. In Oceanography and Marine Biology: An Annual Review 1; CRC Press: Boca Raton, FL, USA, 2010; pp. 43–160. [Google Scholar]
- Friess, D.A.; Rogers, K.; Lovelock, C.E.; Krauss, K.W.; Hamilton, S.E.; Lee, S.Y.; Lucas, R.; Primavera, J.; Rajkaran, A.; Shi, S. The state of the world’s mangrove forests: Past, present, and future. Annu. Rev. Environ. Resour. 2019, 44, 89–115. [Google Scholar] [CrossRef]
- Lewis, R.R.; Brown, B.M.; Flynn, L.L. Chapter 24—Methods and criteria for successful mangrove forest rehabilitation. In Coastal Wetlands; Perillo, M.E., Wolanski, E., Cahoon, D.R., Hopkinson, C.S., Eds.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 863–887. [Google Scholar] [CrossRef]
- Lewis, R.R., III; Brown, B.M. Ecological Mangrove Rehabilitation. A Field Manual for Practitioners. Restoring Coastal Livelihoods Program. 2014, p. 151. Available online: https://blue-forests.org/wp-content/uploads/2020/04/Whole-EMR-Manual-English.pdf (accessed on 23 June 2024).
- Lovelock, C.E.; Barbier, E.; Duarte, C.M. Tackling the Mangrove Restoration Challenge. PLoS Biol. 2022, 20, e3001836. [Google Scholar] [CrossRef]
- Lovelock, C.E.; Brown, B.M. Land tenure considerations are key to successful mangrove restoration. Nat. Ecol. Evol. 2019, 3, 1135. [Google Scholar] [CrossRef]
- Lee, S.Y.; Hamilton, S.; Barbier, E.B.; Primavera, J.; Lewis, R.R. Better restoration policies are needed to conserve mangrove ecosystems. Nat. Ecol. Evol. 2019, 3, 870–872. [Google Scholar] [CrossRef] [PubMed]
- Krause-Jensen, D.; Duarte, C.M. Substantial role of macroalgae in marine carbon sequestration. Nat. Geosci. 2016, 9, 737–742. [Google Scholar] [CrossRef]
- Ortega, A.; Geraldi, N.R.; Alam, I.; Kamau, A.A.; Acinas, S.G.; Logares, R.; Gasol, J.M.; Massana, R.; Krause-Jensen, D.; Duarte, C.M. Important contribution of macroalgae to oceanic carbon sequestration. Nat. Geosci. 2019, 12, 748–754. [Google Scholar] [CrossRef]
- Krause-Jensen, D.; Lavery, P.; Serrano, O.; Marbà, N.; Masque, P.; Duarte, C.M. Sequestration of macroalgal carbon: The elephant in the Blue Carbon room. Biol. Lett. 2018, 14, 20180236. [Google Scholar] [CrossRef] [PubMed]
- Ricart, A.M.; Krause-Jensen, D.; Hancke, K.; Price, N.N.; Masqué, P.; Duarte, C.M. Sinking seaweed in the deep ocean for carbon neutrality is ahead of Science and beyond the Ethics. Environ. Res. Lett. 2022, 17, 081003. [Google Scholar] [CrossRef]
- Ross, F.; Tarbuck, P.; Macreadie, P.I. Seaweed afforestation at large-scales exclusively for carbon sequestration: Critical assessment of risks, viability and the state of knowledge. Front. Mar. Sci. 2022, 9, 2269. [Google Scholar] [CrossRef]
- DeAngelo, J.; Saenz, B.; Arzeno-Soltero, I.; Frieder, C.; Long, M.; Hamman, J.; Davis, K.; Davis, S.J. Economic and biophysical limits to sea-weed-based climate solutions. Nat. Plants 2022, 9, 45–57. [Google Scholar] [CrossRef]
- European Marine Board. Blue Carbon: Challenges and Opportunities to Mitigate the Climate and Biodiversity Crises; EMB Policy Brief N°. 11; Zenodo: Genève, Switzerland, 2023; ISSN 0778-3590. ISBN 9789464206203. [Google Scholar] [CrossRef]
- Dankis, S. The Mangrove Restoration Project, Minecraft.net. Minecraft. 2022. Available online: https://www.minecraft.net/en-us/article/the-mangrove-restoration-project#:~:text=Update%3A%20As%20of%20November%202022,need%20carbon%20dioxide%20to%20grow (accessed on 22 November 2022).
- UNDP. What Are Carbon Markets and Why Are They Important? 2022. Available online: https://climatepromise.undp.org/news-and-stories/what-are-carbon-markets-and-why-are-they-important (accessed on 23 June 2024).
- UNFCCC. Guidance on Cooperative Approaches Referred to in Article 6, Paragraph 2, of the Paris Agreement. (Decision-/CMA.3). Glasgow 2021. Available online: https://unfccc.int/sites/default/files/resource/cma3_auv_12a_PA_6.2.pdf (accessed on 23 June 2024).
- IFC. Opportunities for Blue Carbon Finance in Coastal Ecosystems. International Finance Corporation, World Bank Group Report, 13 May 2022. 2023. Available online: https://www.ifc.org/en/insights-reports/2023/blue-carbon-finance-in-coastal-ecosystems (accessed on 23 June 2024).
- Wu, K.; AIChE. Bridging the Finance Gap for Carbon Capture and Storage. January 2016. Available online: https://www.aiche.org/sites/default/files/docs/org-entity/white_paper_-_bridging_the_finance_gap_for_carbon_capture_and_storage.pdf (accessed on 23 June 2024).
- Wylie, L.; Sutton-Grier, A.E.; Moore, A. Keys to Successful Blue Carbon Projects: Lessons Learned from Global Case Studies. Mar. Policy 2016, 65, 76–84. [Google Scholar] [CrossRef]
- Blaufelder, C.; Levy, C.; Mannion, P.; Pinner, D. A Blueprint for Scaling Voluntary Carbon Markets to Meet the Climate Challenge. rep. McKinsey Sustainability. 2021. Available online: https://www.mckinsey.com/capabilities/sustainability/our-insights/a-blueprint-for-scaling-voluntary-carbon-markets-to-meet-the-climate-challenge (accessed on 2 November 2022).
- Coffield, S.R.; Vo, C.D.; Wang, J.A.; Badgley, G.; Goulden, M.L.; Cullenward, D.; Anderegg, W.R.L.; Randerson, J.T. Using remote sensing to quantify the additional climate benefits of California forest carbon offset projects. Glob. Chang. Biol. 2022, 28, 6789–6806. [Google Scholar] [CrossRef]
- Gill-Wiehl, A.; Kammen, D.; Haya, B. Cooking the books: Pervasive over-crediting from cookstoves offset methodologies. Res. Sq. 2023, preprint. [Google Scholar] [CrossRef]
- Ogle, S.M.; Conant, R.T.; Fischer, B.; Haya, B.K.; Manning, D.T.; McCarl, B.A.; Zelikova, T.J. Policy challenges to enhance soil carbon sinks: The dirty part of making contributions to the Paris agreement by the United States. Carbon Manag. 2023, 14, 2268071. [Google Scholar] [CrossRef]
- Marino, B.D.V.; Bautista, N. Commercial forest carbon protocol over-credit bias delimited by zero-threshold carbon accounting. Trees For. People 2022, 7, 100171. [Google Scholar] [CrossRef]
- Thompson, B.S.; Clubbe, C.P.; Primavera, J.H.; Curnick, D.; Koldewey, H.J. Locally assessing the economic viability of blue carbon: A case study from Panay Island, the Philippines. Ecosyst. Serv. 2014, 8, 128–140. [Google Scholar] [CrossRef]
- Morris, J. 4 Ways to Scale Blue Carbon; Centre for Nature and Climate, World Economic Forum: Davos, Switzerland, 2023. [Google Scholar]
- Arruda, G.M.; Johannsdottir, L. Climate Adaptation and Green Investment: Arctic and Non-Arctic World; Routledge: Abingdon, UK, 2023. [Google Scholar]
- Zhou, K.; Li, Y. Carbon finance and carbon market in China: Progress and challenges. J. Clean. Prod. 2019, 214, 536–549. [Google Scholar] [CrossRef]
- Arruda, G.M. Artic resource development. A sustainable prosperity project of co-management. In Renewable Energy for the Arctic: New Perspectives; Arruda, G.M., Ed.; Routledge: Abingdon, UK, 2018. [Google Scholar]
- Arruda, G.M.; Krutkowski, S. Social impacts of climate change and resource development in the Arctic: Implications for Arctic governance. J. Enterprising Communities People Places Glob. Econ. 2017, 11, 277–288. [Google Scholar] [CrossRef]
- Ballad, E.L.; Morooka, Y.; Shinbo, T. Ensuring sustainability of community participation in locally-managed marine protected area in north-western Cagayan, Philippines. Marit. Technol. Res. 2022, 4, 258234. [Google Scholar] [CrossRef]
- Saengsupavanich, C. Which eroding site is more urgent for the government? A reflection from coastal communities. J. Coast. Conserv. 2020, 24, 9. [Google Scholar] [CrossRef]
- Vierros, M. Communities and blue carbon: The role of traditional management systems in providing benefits for carbon storage, biodiversity conservation and livelihoods. Clim. Chang. 2017, 140, 89–100. [Google Scholar] [CrossRef]
- Bennett, N.J.; Le Billon, P.; Belhabib, D.; Satizábal, P. Local marine stewardship and ocean defenders. NPJ Ocean Sustain. 2022, 1, 3. [Google Scholar] [CrossRef]
- Pendleton, L.; Donato, D.C.; Murray, B.C.; Crooks, S.; Jenkins, W.A.; Sifleet, S.; Craft, C.; Fourqurean, J.W.; Kauffman, J.B.; Marbà, N.; et al. Estimating Global “Blue Carbon” Emissions from Conversion and Degradation of Vegetated Coastal Ecosystems. PLoS ONE 2012, 7, e43542. [Google Scholar] [CrossRef]
- Mascia, M.B.; Brosius, J.P.; Dobson, T.A.; Forbes, B.C.; Horowitz, L.; McKean, M.A.; Turner, N.J. Conservation and the Social Sciences. Conserv. Biol. 2003, 17, 649–650. [Google Scholar] [CrossRef]
- Jefferson, R.; McKinley, E.; Griffin, H.; Nimmo, A.; Fletcher, S. Public Perceptions of the Ocean: Lessons for Marine Conservation from a Global Research Review. Front. Mar. Sci. 2021, 8, 711245. [Google Scholar] [CrossRef]
- Otto, S.; Pensini, P. Nature-based environmental education of children: Environmental knowledge and connectedness to nature, together, are related to ecological behaviour. Glob. Environ. Change 2017, 47, 88–94. [Google Scholar] [CrossRef]
- IPBES. Global Assessment Report on Biodiversity and Ecosystem Services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services; Brondizio, E.S., Settele, J., Díaz, S., Ngo, H.T., Eds.; IPBES Secretariat: Bonn, Germany, 2019; 1148p. [Google Scholar] [CrossRef]
- Pickering, J.; Coolsaet, B.; Dawson, N.; Suiseeya, K.M.; Inoue, C.Y.A.; Lim, M. Rethinking and Upholding Justice and Equity in Transformative Biodiversity Governance. In Transforming Biodiversity Governance; Visseren-Hamakers, I.J., Kok, M.T.J., Eds.; Cambridge University Press: Cambridge, UK, 2022; pp. 155–178. [Google Scholar] [CrossRef]
- PBES. Methodological Assessment Report on the Diverse Values and Valuation of Nature of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services; Balvanera, P., Pascual, U., Christie, M., Baptiste, B., González-Jiménez, D., Eds.; IPBES Secretariat: Bonn, Germany, 2022. [Google Scholar] [CrossRef]
- Bennett, N.J.; Chan, K.M.A. The Ethics of Marine Protected Areas; Routledge: London, UK, 2022; pp. 215–229. [Google Scholar] [CrossRef]
- Contreras, C.; Thomas, S. The role of local knowledge in the governance of blue carbon. J. Indian Ocean Reg. 2019, 15, 213–234. [Google Scholar] [CrossRef]
- Quevedo, J.M.D.; Uchiyama, Y.; Kohsaka, R. A blue carbon ecosystems qualitative assessment applying the DPSIR framework: Local perspective of global benefits and contributions. Mar. Policy 2021, 128, 104462. [Google Scholar] [CrossRef]
- Bennett, N.J.; Blythe, J.; White, C.S.; Campero, C. Blue growth and blue justice: Ten risks and solutions for the ocean economy. Mar. Policy 2021, 125, 104387. [Google Scholar] [CrossRef]
- Dawson, N.M.; Coolsaet, B.; Sterling, E.J.; Loveridge, R.; Gross-Camp, N.D.; Wongbusarakum, S.; Sangha, K.K.; Scherl, L.M.; Phuong Phan, H.; Zafra-Calvo, N.; et al. The role of Indigenous peoples and local communities in effective and equitable conservation. Ecol. Soc. 2021, 26. [Google Scholar] [CrossRef]
- Wyborn, C.; Datta, A.; Montana, J.; Ryan, M.; Leith, P.; Chaffin, B.; Miller, C.; Van Kerkhoff, L. Co-producing sustainability: Reordering the governance of science, policy, and practice. Annu. Rev. Environ. Resour. 2019, 44, 319–346. [Google Scholar] [CrossRef]
- Kelly, R.; Evans, K.; Alexander, K.; Bettiol, S.; Corney, S.; Cullen-Knox, C.; Cvitanovic, C.; de Salas, K.; Emad, G.R.; Fullbrook, L.; et al. Connecting to the oceans: Supporting ocean literacy and public engagement. Rev. Fish Biol. Fish. 2022, 32, 123–143. [Google Scholar] [CrossRef]
- Tengö, M.; Hill, R.; Malmer, P.; Raymond, C.M.; Spierenburg, M.; Danielsen, F.; Elmqvist, T.; Folke, C. Weaving knowledge systems in IPBES, CBD and beyond—Lessons learned for sustainability. Curr. Opin. Environ. Sustain. 2017, 26, 17–25. [Google Scholar] [CrossRef]
- McLaren, D.P.; Tyfield, D.P.; Willis, R.; Szerszynski, B.; Markusson, N.O. Beyond “Net-Zero”: A Case for Separate Targets for Emissions Reduction and Negative Emissions. Front. Clim. 2019, 1, 4. [Google Scholar] [CrossRef]
- Zickfeld, K.; Azevedo, D.; Mathesius, S.; Matthews, H.D. Asymmetry in the climate–carbon cycle response to positive and negative CO2 emissions. Nat. Clim. Chang. 2021, 11, 613–617. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cinar, M.; Hilmi, N.; Arruda, G.; Elsler, L.; Safa, A.; van de Water, J.A.J.M. Blue Carbon as a Nature-Based Mitigation Solution in Temperate Zones. Sustainability 2024, 16, 7446. https://doi.org/10.3390/su16177446
Cinar M, Hilmi N, Arruda G, Elsler L, Safa A, van de Water JAJM. Blue Carbon as a Nature-Based Mitigation Solution in Temperate Zones. Sustainability. 2024; 16(17):7446. https://doi.org/10.3390/su16177446
Chicago/Turabian StyleCinar, Mine, Nathalie Hilmi, Gisele Arruda, Laura Elsler, Alain Safa, and Jeroen A. J. M. van de Water. 2024. "Blue Carbon as a Nature-Based Mitigation Solution in Temperate Zones" Sustainability 16, no. 17: 7446. https://doi.org/10.3390/su16177446