Comparative Environmental Life Cycle Assessment on Corn Starch Plasticization and Co-Plasticization Processes
Abstract
1. Introduction
2. Materials and Methods
2.1. Goal and Scope
2.2. Life Cycle Inventory (LCI)
2.3. Life Cycle Impact Assessment (LCIA)
3. Results and Discussion
4. Sensitivity Analysis
4.1. Scenario 1
4.2. Scenario 2
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Avérous, L. Biodegradable Multiphase Systems Based on Plasticized Starch: A Review. J. Macromol. Sci.-Polym. Rev. 2004, 44, 231–274. [Google Scholar] [CrossRef]
- Wan, Z.; Li, G.; Wang, Y.; Zhu, H.; Lan, X.; Xie, L. Mechanochemical Effect of Starch during the Plasticization. J. Food Eng. 2024, 369, 111941. [Google Scholar] [CrossRef]
- Han, Y.; Weng, Y.; Zhang, C. Development of Biobased Plasticizers with Synergistic Effects of Plasticization, Thermal Stabilization, and Migration Resistance: A Review. J. Vinyl Addit. Technol. 2024, 30, 26–43. [Google Scholar] [CrossRef]
- Surendren, A.; Mohanty, A.K.; Liu, Q.; Misra, M. A Review of Biodegradable Thermoplastic Starches, Their Blends and Composites: Recent Developments and Opportunities for Single-Use Plastic Packaging Alternatives. Green Chem. 2022, 24, 8606–8636. [Google Scholar] [CrossRef]
- Wang, J.L.; Cheng, F.; Zhu, P.X. Structure and Properties of Urea-Plasticized Starch Films with Different Urea Contents. Carbohydr. Polym. 2014, 101, 1109–1115. [Google Scholar] [CrossRef] [PubMed]
- Paluch, M.; Ostrowska, J.; Tyński, P.; Sadurski, W.; Konkol, M. Structural and Thermal Properties of Starch Plasticized with Glycerol/Urea Mixture. J. Polym. Environ. 2022, 30, 728–740. [Google Scholar] [CrossRef]
- Salomão Garcia, P.; Victória Eiras Grossmann, M.; Yamashita, F.; Mali, S.; Henrique Dall, L.; Wagner José Barreto, A. Citric Acid as Multifunctional Agent in Blowing Films of Starch/PBAT. Quim. Nova 2011, 34, 1507–1510. [Google Scholar] [CrossRef]
- Ma, X.; Yu, J. Formamide as the Plasticizer for Thermoplastic Starch. J. Appl. Polym. Sci. 2004, 93, 1769–1773. [Google Scholar] [CrossRef]
- Ma, X.F.; Yu, J.G.; Wan, J.J. Urea and Ethanolamine as a Mixed Plasticizer for Thermoplastic Starch. Carbohydr. Polym. 2006, 64, 267–273. [Google Scholar] [CrossRef]
- Shi, R.; Zhang, Z.; Liu, Q.; Han, Y.; Zhang, L.; Chen, D.; Tian, W. Characterization of Citric Acid/Glycerol Co-Plasticized Thermoplastic Starch Prepared by Melt Blending. Carbohydr. Polym. 2007, 69, 748–755. [Google Scholar] [CrossRef]
- Broeren, M.L.M.; Kuling, L.; Worrell, E.; Shen, L. Environmental Impact Assessment of Six Starch Plastics Focusing on Wastewater-Derived Starch and Additives. Resour. Conserv. Recycl. 2017, 127, 246–255. [Google Scholar] [CrossRef]
- Rojas-Bringas, P.M.; De-la-Torre, G.E.; Torres, F.G. Influence of the Source of Starch and Plasticizers on the Environmental Burden of Starch-Brazil Nut Fiber Biocomposite Production: A Life Cycle Assessment Approach. Sci. Total Environ. 2021, 769, 144869. [Google Scholar] [CrossRef] [PubMed]
- Benetto, E.; Jury, C.; Igos, E.; Carton, J.; Hild, P.; Vergne, C.; Di Martino, J. Using Atmospheric Plasma to Design Multilayer Film from Polylactic Acid and Thermoplastic Starch: A Screening Life Cycle Assessment. J. Clean. Prod. 2015, 87, 953–960. [Google Scholar] [CrossRef]
- Ruini, C.; Neri, P.; Cavalaglio, G.; Coccia, V.; Cotana, F.; Raspolli Galletti, A.M.; Morselli, D.; Fabbri, P.; Ferrari, A.M.; Rosa, R. Innovative Bioplasticizers from Residual Cynara Cardunculus L. Biomass-Derived Levulinic Acid and Their Environmental Impact Assessment by LCA Methodology. ACS Sustain. Chem. Eng. 2023, 11, 12014–12026. [Google Scholar] [CrossRef]
- Shafqat, A.; Tahir, A.; Ullah Khan, W.; Mahmood, A.; Abbasi, G.H.; Khan, W.U. Production and Characterization of Rice Starch and Corn Starch Based Biodegradable Bioplastic Using Various Plasticizers and Natural Reinforcing Fillers. Cellul. Chem. Technol. 2021, 55, 867. [Google Scholar] [CrossRef]
- ISO. ISO 14044:2006; International Organisation for Standardisation Environmental Management—Life Cycle Assessment—Requirements and Guidelines. ISO: Geneva, Switzerland, 2006; pp. 1–46.
- ISO. ISO 14040:2006; International Organisation for Standardisation Environmental Management—Life Cycle Assessment—Principles and Framework. ISO: Geneva, Switzerland, 2006; pp. 1–20.
- PRé Sustainability SimaPro 8.4.0. Available online: https://support.simapro.com/s/ (accessed on 5 August 2024).
- Ecoinvent Association Ecoinvent v3.10. Available online: https://ecoinvent.org/ecoinvent-v3-10/ (accessed on 5 June 2024).
- Tanklevska, N.; Petrenko, V.; Karnaushenko, A.; Melnykova, K. World Corn Market: Analysis, Trends, and Prospects of Its Deep Processing. Agric. & Resour. Econ. Int. Sci. E-J. 2020, 6, 96–111. [Google Scholar]
- Canada Energy Regulator. Provincial and Territorial Energy Profiles-Ontario; Canada Energy Regulator: Calgary, AB, Canada, 2024.
- Matthews, H.S.; Hendrickson, C.T.; Matthews, D.H. Life Cycle Assessment: Quantitative Approaches for Decisions That Matter; Self Published, 2014.
- Shi, L.; Liu, L.; Yang, B.; Sheng, G.; Xu, T. Evaluation of Industrial Urea Energy Consumption (EC) Based on Life Cycle Assessment (LCA). Sustainability 2020, 12, 3793. [Google Scholar] [CrossRef]
- Yang, M.; Rosentrater, K.A. Life Cycle Assessment of Urea-Formaldehyde Adhesive and Phenol-Formaldehyde Adhesives. Environ. Process. 2020, 7, 553–561. [Google Scholar] [CrossRef]
- Volpe, V.; De Feo, G.; De Marco, I.; Pantani, R. Use of Sunflower Seed Fried Oil as an Ecofriendly Plasticizer for Starch and Application of This Thermoplastic Starch as a Filler for PLA. Ind. Crops Prod. 2018, 122, 545–552. [Google Scholar] [CrossRef]
- Blanco, E.E.; Ochoa, G.V.; Forero, J.D. Cycle Assessment Indicators to Promote Sustainability in a Paper Production Plant. Resources 2020, 9, 75. [Google Scholar] [CrossRef]
- Motuzienė, V.; Čiuprinskas, K.; Rogoža, A.; Lapinskienė, V. A Review of the Life Cycle Analysis Results for Different Energy Conversion Technologies. Energies 2022, 15, 8488. [Google Scholar] [CrossRef]
- Qudrat-Ullah, H. Green Power in Ontario: A Dynamic Model-Based Analysis. Energy 2014, 77, 859–870. [Google Scholar] [CrossRef]
- Varun; Bhat, I.K.; Prakash, R. LCA of Renewable Energy for Electricity Generation Systems-A Review. Renew. Sustain. Energy Rev. 2009, 13, 1067–1073. [Google Scholar]
Plasticization | Process 1-GPCS | Process 2-UPCS | Process 3-CPCS | Process 4-SAPCS |
---|---|---|---|---|
Corn Starch (as received with 10 wt. % moisture) | 75 wt. % | 75 wt. % | 75 wt. % | 75 wt. % |
Distilled Water (as per the weight of starch) | 10 phr | 10 phr | 10 phr * | 10 phr |
Glycerol | 25 wt. % | 25 wt. % | 25 wt. % | 25 wt. % |
Urea (as per the weight of starch) | - | 5 phr | - | - |
Citric acid (as per the weight of starch) | - | - | 1 phr * | - |
Succinic anhydride (as per the weight of starch) | - | - | - | 1 phr |
Materials | Amount | Unit | Remarks |
---|---|---|---|
* GPCS | |||
Glycerol (Glycerin) | 287.500 | g | |
Deionized water | 86.250 | g | |
Corn starch | 862.500 | g | |
Trasport | 0.077 | tkm | |
Energy | 3.540 | kWh | Total energy used in 1. Kitchen mixer 2. Extruder 3. Pelletizer |
Waste | 0.150 | kg | Deposited to landfill |
* UPCS | |||
Glycerol (Glycerin) | 287.500 | g | |
Urea | 43.125 | g | |
Deionized water | 86.250 | g | |
Wheat starch | 862.500 | g | |
Transport | 0.080 | tkm | |
Energy | 3.535 | kWh | Total energy used in 1. Kitchen mixer 2. Extruder 3. Pelletizer |
Waste | 0.150 | kg | Deposited to landfill |
* CPCS | |||
Glycerol (Glycerin) | 287.500 | g | |
Citric acid | 8.625 | g | |
Deionized water | 86.250 | g | |
Wheat starch | 862.500 | g | |
Transport | 0.078 | tkm | |
Energy | 3.530 | kWh | Total energy used in 1. Kitchen mixer 2. Extruder 3. Pelletizer |
Waste | 0.150 | kg | Deposited to landfill |
* SAPCS | |||
Glycerol (Glycerin) | 287.500 | g | |
Succinic anhydride | 8.625 | g | |
Deionized water | 86.25 | g | |
Wheat starch | 862.5 | g | |
Transport | 0.078 | tkm | |
Energy | 3.536 | kWh | Total energy used in 1. Kitchen mixture 2. Extruder 3. Pelletizer |
Waste | 0.150 | kg | Deposited to landfill |
Material | Distance (km) | Note |
---|---|---|
Corn starch | 68.60 | By road, purchased Ingredion from Mississauga, Ontario, Canada. |
glycerol | 63.20 | By road, Sigma Aldrich, Oakville, Ontario, Canada (local vendor) |
Citric acid | 63.20 | By road, Sigma Aldrich, Oakville, Ontario, Canada (local vendor) |
Succinic anhydride | 63.20 | By road, Sigma Aldrich, Oakville, Ontario, Canada (local vendor) |
Urea | 63.20 | By road, Sigma Aldrich, Oakville, Ontario, Canada (local vendor) |
Water | 0 | From the university’s distilled water supply |
Impact Category | Normalization Factors−1 | Unit |
---|---|---|
Ozone depletion | 6.200 | kg CFC-11 eq |
Global warming | 4.130 × 10−5 | kg CO2 eq |
Smog | 7.180 × 10−4 | kg O3 eq |
Acidification | 1.100 × 10−2 | kg SO2 eq |
Eutrophication | 4.630 × 10−2 | kg N eq |
Carcinogenics | 19,706 | CTUh |
Non carcinogenics | 952 | CTUh |
Respiratory effects | 4.121 × 10−2 | kg PM2.5 eq |
Ecotoxicity | 9.050 ×10−5 | CTUe |
Fossil fuel depletion | 5.790 × 10−5 | MJ surplus |
Impact Category | Indicator/Fu | GPCS | UPCS (%) | CPCS (%) | SAPCS (%) |
---|---|---|---|---|---|
Ozone depletion | kg CFC-11 eq | 1.19 × 10−7 | 21.94 | 12.87 | 5.23 |
Global warming | kg CO2 eq | 1.47 | 22.47 | 17.46 | 14.31 |
Smog | kg O3 eq | 0.09 | 204.36 | 40.36 | 35.90 |
Acidification | kg SO2 eq | 0.01 | 66.54 | 18.09 | 14.83 |
Eutrophication | kg N eq | 0.01 | 8.37 | 5.72 | 3.89 |
Carcinogenics | CTUh | 4.96 × 10−8 | 11.34 | 9.34 | 4.57 |
Non carcinogenics | CTUh | 5.63 × 10−7 | 12.11 | 9.82 | 7.44 |
Respiratory effects | kg PM2.5 eq | 9.48 × 10−4 | 32.60 | 17.33 | 12.67 |
Ecotoxicity | CTUe | 13.73 | 9.49 | 6.30 | 2.63 |
Fossil fuel depletion | MJ surplus | 1.77 | 38.20 | 21.46 | 21.62 |
Cumulative deviation | % | NA | 427.42 | 158.76 | 123.11 |
Impact Category | Unit | GPCS | GPCS-REC * (%) | UPCS | UPCS-REC * (%) | CPCS | CPCS-REC * (%) | SAPCS | SAPCS-REC * (%) |
---|---|---|---|---|---|---|---|---|---|
Ozone depletion | kg CFC-11 eq | 1.19 × 10−7 | 0.112 | 1.45 × 10−7 | 0.092 | 1.34 × 10−7 | 0.1 | 1.25 × 10−7 | 0.107 |
Global warming | kg CO2 eq | 1.469 | 0.24 | 1.799 | 0.196 | 1.725 | 0.204 | 1.679 | 0.21 |
Smog | kg O3 eq | 0.089 | 0.137 | 0.27 | 0.045 | 0.124 | 0.098 | 0.12 | 0.101 |
Acidification | kg SO2 eq | 0.014 | 0.146 | 0.022 | 0.088 | 0.016 | 0.124 | 0.0155 | 0.127 |
Eutrophication | kg N eq | 0.013 | 0.0137 | 0.014 | 0.013 | 0.014 | 0.013 | 0.013 | 0.0134 |
Carcinogenic | CTUh | 4.96 × 10−8 | 0.182 | 5.52 × 10−8 | 0.163 | 5.43 × 10−8 | 0.166 | 5.19 × 10−8 | 0.174 |
Non carcinogenics | CTUh | 5.63 × 10−7 | 0.056 | 6.32× 10−7 | 0.05 | 6.19 × 10−7 | 0.051 | 6.05 × 10−7 | 0.052 |
Respiratory effects | kg PM2.5 eq | 9.48 × 10−4 | 0.141 | 1.257 × 10−3 | 0.106 | 1.113 × 10−3 | 0.12 | 1.068 × 10−3 | 0.125 |
Ecotoxicity | CTUe | 13.73 | 0.271 | 15.034 | 0.247 | 14.596 | 0.255 | 14.092 | 0.264 |
Fossil fuel depletion | MJ surplus | 1.773 | 0.473 | 2.45 | 0.342 | 2.153 | 0.389 | 2.156 | 0.388 |
Impact Category | Unit | GPCS | GPCS-EF (%) | UPCS | UPCS-EF (%) | CPCS | CPCS-EF (%) | SAPCS-corn US | SAPCS-EF (%) |
---|---|---|---|---|---|---|---|---|---|
Ozone depletion | kg CFC-11 eq | 1.19 × 10−7 | 7.69 | 1.45 × 10−7 | 6.3 | 1.34 × 10−7 | 6.82 | 1.25 × 10−7 | 7.31 |
Global warming | kg CO2 eq | 1.47 | 15.55 | 1.79 | 12.7 | 1.72 | 13.24 | 1.68 | 13.61 |
Smog | kg O3 eq | 0.09 | 5.31 | 0.27 | 1.74 | 0.12 | 3.78 | 0.12 | 3.91 |
Acidification | kg SO2 eq | 0.01 | 6.21 | 0.02 | 3.73 | 0.02 | 5.26 | 0.02 | 5.41 |
Eutrophication | kg N eq | 0.01 | 0.79 | 0.01 | 0.73 | 0.01 | 0.75 | 0.01 | 0.76 |
Carcinogenics | CTUh | 4.96 × 10−8 | 9.38 | 5.52 × 10−8 | 8.42 | 5.43 × 10−8 | 8.58 | 5.19 × 10−8 | 8.97 |
Non carcinogenics | CTUh | 5.63 × 10−7 | 2.96 | 6.32 × 10−7 | 2.64 | 6.19 × 107 | 2.69 | 6.05 × 10−7 | 2.76 |
Respiratory effects | kg PM2.5 eq | 9.48 × 10−4 | 5.83 | 1.257 × 10−3 | 4.39 | 1.113 × 10−3 | 4.97 | 1.07 × 10−3 | 5.17 |
Ecotoxicity | CTUe | 13.73 | 16.32 | 15.03 | 14.9 | 14.59 | 15.36 | 14.09 | 15.91 |
Fossil fuel depletion | MJ surplus | 1.77 | 33.21 | 2.45 | 24.03 | 2.15 | 27.34 | 2.16 | 27.31 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Surendren, A.; Hasan, Y.; Mohanty, A.K.; Abbassi, B.; Misra, M. Comparative Environmental Life Cycle Assessment on Corn Starch Plasticization and Co-Plasticization Processes. Sustainability 2024, 16, 7406. https://doi.org/10.3390/su16177406
Surendren A, Hasan Y, Mohanty AK, Abbassi B, Misra M. Comparative Environmental Life Cycle Assessment on Corn Starch Plasticization and Co-Plasticization Processes. Sustainability. 2024; 16(17):7406. https://doi.org/10.3390/su16177406
Chicago/Turabian StyleSurendren, Aarsha, Yusra Hasan, Amar K. Mohanty, Bassim Abbassi, and Manjusri Misra. 2024. "Comparative Environmental Life Cycle Assessment on Corn Starch Plasticization and Co-Plasticization Processes" Sustainability 16, no. 17: 7406. https://doi.org/10.3390/su16177406
APA StyleSurendren, A., Hasan, Y., Mohanty, A. K., Abbassi, B., & Misra, M. (2024). Comparative Environmental Life Cycle Assessment on Corn Starch Plasticization and Co-Plasticization Processes. Sustainability, 16(17), 7406. https://doi.org/10.3390/su16177406