Mapping and Assessing Urban Agriculture in São Paulo: Tackling Socio-Economic and Environmental Issues through Nature-Based Solutions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Habitat Quality
2.3. Questionnaire
3. Results
3.1. Habitat Quality
3.2. Questionnaire Approach
3.2.1. Provisioning Services
3.2.2. Regulating and Maintenance Services
3.2.3. Cultural Services
4. Discussion
4.1. Habitat Quality
4.2. The ES Perception of UA Producers
4.3. UA Integration with Environmental Protection
4.4. Study Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Faivre, N.; Fritz, M.; Freitas, T.; Boissezon, B.; Wandewoestijne, S. Nature-Based Solutions in the EU: Innovating with nature to address social, economic and environmental challenges. Environ. Res. 2017, 159, 509–518. [Google Scholar] [CrossRef] [PubMed]
- Almenar, J.B.; Elliot, T.; Rugani, B.; Philippe, B.; Gutierrez, T.N.; Sonnemann, G.; Geneletti, D. Nexus between nature-based solutions, ecosystem services and urban challenges. Land Use Policy 2021, 100, 104898. [Google Scholar] [CrossRef]
- Larcher, F.; Baldacchini, C.; Ferracini, C.; Vercelli, M.; Ristorini, M.; Battisti, L.; Calfapietra, C. Nature-based Solutions as tools for monitoring the abiotic and biotic factors in urban ecosystems. Urban Serv. Ecosyst. Future City 2021, 17, 131–150. [Google Scholar]
- Kingsley, J.; Egerer, M.; Nuttman, S.; Keniger, L.; Pettitt, P.; Frantzeskaki, N.; Gray, T.; Ossola, A.; Lin, B.; Bailey, A.; et al. Urban agriculture as a nature-based solution to address socio-ecological challenges in Australian cities. Urban For. Urban Green. 2021, 60, 127059. [Google Scholar] [CrossRef]
- Frantzeskaki, N. Seven lessons for planning nature-based solutions in cities. Environ. Sci. Policy 2019, 93, 101–111. [Google Scholar] [CrossRef]
- Eigenbrod, C.; Gruda, N. Urban vegetable for food security in cities. A review. Agron. Sustain. Dev. 2015, 35, 483–498. [Google Scholar] [CrossRef]
- Ferreira, L.M.; Souza, L.C.; Conti, D.M.; Quaresma, C.C.; Tavares, A.R.; Silva, K.G.; Kniess, C.T.; Camargo, P.B. Soil biodiversity in urban forests as a consequence of litterfall management: Implications for São Paulo’s ecosystem services. Sustainability 2018, 10, 684. [Google Scholar] [CrossRef]
- Ramon, M.; Lafortezza, R.; Ribeiro, A.P.; Camargo, P.B.; Domingos, M.; Gomes, E.P.C.; Tavares, A.R.; Dias, A.G.; Kniess, C.T.; Ferreira, M.L. Carbon and nitrogen stock in soils of subtropical urban forests: Isotopic δ13C and δ15N indicators for nature-based solutions in a megacity. Ecol. Indic. 2024, 160, 111743. [Google Scholar] [CrossRef]
- Doshi, M.; Mitchell, M.; Shanahan, D.; Wilson, K.; Ives, C.; Lovelock, C.; Rhodes, J. The role of socio-economic factors in planning and managing urban ecosystem services. Ecosyst. Serv. 2018, 31, 102–110. [Google Scholar] [CrossRef]
- Ouyang, X.; Luo, X. Models for Assessing Urban Ecosystem Services: Status and Outlooks. Sustainability 2022, 14, 4725. [Google Scholar] [CrossRef]
- Dennis, M.; James, P. Urban Social-ecological Innovation: Implications for Adaptive Natural Resource Management. Ecol. Econ. 2018, 150, 153–164. [Google Scholar] [CrossRef]
- Sharp, R.; Tallis, H.T.; Ricketts, T.; Guerry, A.D.; Wood, S.A.; Chapler-Kramer, R.; Nelson, E.; Ennaanay, D.; Wolny, S.; Olwero, N.; et al. InVEST 3.6.0 User’s Guide; Collaborative Publication by the Natural Capital Project, Stanford University, The University of Minnesota, The Nature Conservancy, and the World Wildlife Fund; Stanford University: Stanford, CA, USA, 2018; Available online: https://naturalcapitalproject.stanford.edu/software/invest (accessed on 3 October 2023).
- Niquisse, S.; Cabral, P. Assessment of changes in ecosystem service monetary values in Mozambique. Environ. Dev. 2018, 25, 12–22. [Google Scholar] [CrossRef]
- Czúcz, B.; Ildiko, A.; Miklos, K.; Ferenc, H.; Andras, B.; Andras, Z.; Reka, A. The relevance of habitat quality for biodiversity and ecosystem service policies. In Proceedings of the International Workshop on Remote Sensing and GIS for Monitoring of Habitat Quality, Vienna, Austria, 24–25 September 2014. [Google Scholar]
- Duarte, D.H.S.; Giulio, G.D.; Humberto, R. Oportunidades e Desafios da Urbanização para Adaptação Climática na Megacidade de São Paulo, Brasil; XV Encontro Nacional de Conforto no Ambiente Construído: João Pessoa, Brazil, 2019. [Google Scholar]
- UN-HABITAT—United Nations Human Settlement Programme. Annual Report 2022; UN-HABITAT: Nairobi, Kenya, 2022. [Google Scholar]
- IBGE, Instituto Brasileiro de Geografia e Estatística. São Paulo. 2023. Available online: https://cidades.ibge.gov.br/brasil/sp/sao-paulo/panorama (accessed on 16 November 2023).
- Amato-Lourenço, L.F.; Buralli, R.; Reis Ranieri, G.; Hearn, A.; Williams, C.; Mauad, T. Building knowledge in urban agriculture: The challenges of local food production in São Paulo and Melbourne. Environ. Dev. Sustain. 2021, 23, 2785–2796. [Google Scholar] [CrossRef]
- Giacchè, G.; Porto, L. Políticas públicas de agricultura urbana e periurbana: Uma comparação entre os casos de São Paulo e Campinas. Inf. Econ. 2015, 45, 45–60. [Google Scholar]
- Valdiones, A.P. Panorama da Agricultura Urbana e Periurbana no Município de São Paulo. Master’s Thesis, Social Change and Political Participation Graduate Program. University of São Paulo, São Paulo, Brazil, 2013. [Google Scholar]
- SVMA (Secretaria do Verde e Meio Ambiente de São Paulo). 2023. Biosampa 2022. São Paulo: Brazil. Available online: https://capital.sp.gov.br/web/meio_ambiente/w/noticias/362493 (accessed on 20 June 2024).
- Martins, A.P.G.; Ribeiro, A.P.; Ferreira, M.L.; Martins, M.A.C.; Negri, E.M.; Scapin, M.A.; Oliveira, A.; Saiki, M.; Saldiva, P.H.N.; Lafortezza, R. Infraestrutura verde para monitorar e minimizar os impactos da poluição atmosférica. Estud. Av. 2021, 35, 31–57. [Google Scholar] [CrossRef]
- Ribeiro, A.P.; Bolmann, H.; Oliveira, A.; Rakauskas, F.; Cortese, T.; Costa Rodrigues, M.S.; Quaresma, C.; Ferreira, M.L. The role of tree landscape to reduce effects of urban heat islands: A study in two Brazilian cities. Trees 2021, 37, 17–30. [Google Scholar] [CrossRef]
- Ramon, M.; Ribeiro, A.; Sawamura Theophilo, C.; Moreira, E.; Camargo, P.; Pereira, C.; Saraiva, E.; Tavares, A.; Dias, A.; Nowak, D.; et al. Assessment of four urban forest as environmental indicator of air quality: A study in a Brazilian megacity. Urban Ecosyst. 2023, 26, 197–207. [Google Scholar] [CrossRef]
- UNDP—United Nations Development Programme. Human Development Atlas in the Brazilian Metropolitan Regions; UNDP: Brasilia, Brazil, 2014. [Google Scholar]
- Hearn, A.H.; Mauad, T.; Williams, C.; Fernando, L.; Amato-Lourenco, L.; Ranieri, R. Digging up the past: Urban agriculture narratives in Melbourne and São Paulo. J. Urban Int. Res. Placemaking Urban Sustain. 2020, 14, 309–336. [Google Scholar] [CrossRef]
- Caldas, E.L.; Jayo, M. Agriculturas urbanas em São Paulo: Histórico e tipologia. Confins 2019, 39. [Google Scholar] [CrossRef]
- Salata, S.; Ronchi, S.; Arcidiacono, A.; Ghirardelli, F. Mapping habitat quality in the Lombardy region, Italy. One Ecosyst. 2017, 2, 11402. [Google Scholar] [CrossRef]
- Burkhard, B.; Kroll, F.; Nedkov, S.; Muller, F. Mapping ecosystem service supply, demand and budgets. Ecol. Indic. 2012, 21, 17–29. [Google Scholar] [CrossRef]
- Duarte, G.T.; Ribeiro, M.C.; Paglia, A.P. Ecosystem Services Modeling as a Tool for Defining Priority Areas for Conservation. PLoS ONE 2016, 11, e0154573. [Google Scholar] [CrossRef] [PubMed]
- Zanaga, D.; Van De Kerchove, R.; Daems, D.; De Keersmaecker, W.; Brockmann, C.; Kirches, G.; Wevers, J.; Cartus, O. ESA WorldCover 10 m 2021 v200. 2022. Available online: https://pure.iiasa.ac.at/id/eprint/18478/ (accessed on 8 December 2023). [CrossRef]
- GEOFABRIK. OpenStreetMap Data Extracts. 2022. Available online: https://download.geofabrik.de/ (accessed on 8 December 2023).
- SAMPA+RURAL. Sampa mais Rural. São Paulo City Hall. 2022. Available online: https://sampamaisrural.prefeitura.sp.gov.br/ (accessed on 30 May 2022).
- European Commission. Mapping and Assessment of Ecosystems and Their Services—An Analytical Framework for Ecosystem Assessments under Action 5 of the EU Biodiversity Strategy to 2020; European Commission: Brussels, Belgium, 2013. [Google Scholar]
- Tabachnick, B.G.; Fidell, L.S. Using Multivariate Statistics, 7th ed.; Pearson: London, UK, 2019. [Google Scholar]
- Bratman, G.N.; Anderson, C.B.; Berman, M.G.; Cochran, B.; Vries, S.; Flanders, J.; Folke, C.; Frumkin, H.; Gross, J.J.; Hartig, T.; et al. Nature and mental health: An ecosystem service perspective. Sci. Adv. 2019, 5, 903. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Liang, X.; Wang, J. Parameter assignment for InVEST habitat quality module based on principal component analysis and grey coefficient analysis. Math. Biosci. Eng. 2022, 21, 13928–13948. [Google Scholar] [CrossRef] [PubMed]
- Aneseyee, A.B.; Noszczyk, T.; Soromessa, T.; Elias, E. The InVEST Habitat Quality Model Associated with Land Use/Cover Changes: A Qualitative Case Study of the Winike Watershed in the Omo-Gibe Basin, Southwest Ethiopia. Remote Sens. 2020, 12, 1103. [Google Scholar] [CrossRef]
- Xiao, P.; Zhou, Y.; Li, M.; Xu, J. Spatiotemporal patterns of habitat quality and its topographic gradient effects of Hubei Province based on the InVEST model. Environ. Dev. Sustain. 2022, 25, 6419–6448. [Google Scholar] [CrossRef]
- Nagib, G. The political space of urban agriculture as activism in São Paulo and Paris. L’Espace Polit. 2020, 40. [Google Scholar]
- Bai, L.; Xiu, C.; Feng, X.; Liu, D. Influence of urbanization on regional habitat quality: A case study of Changchun City. Habitat Int. 2019, 93, 102042. [Google Scholar] [CrossRef]
- Evans, D.L.; Falagan, N.; Hardman, C.A.; Kourmpetli, S.; Liu, L.; Mead, B.; Davies, J. Ecosystem service delivery by urban agriculture and green infrastructure—A systematic review. Ecosyst. Serv. 2022, 54, 101405. [Google Scholar] [CrossRef]
- Haase, D.; Larondelle, N.; Andersson, E.; Artmann, M.; Borgstrom, S.; Breuste, J.; Gomez-Baggethun, E.; Gren, A.; Hamstead, Z.; Hansen, R.; et al. A Quantitative Review of Urban Ecosystem Service Assessments: Concepts, Models, and Implementation. Ambio 2014, 43, 413–433. [Google Scholar] [CrossRef]
- Meerow, S.; Newell, J.P. Spatial planning for multifunctional green infrastructure: Growing resilience in Detroit. Landsc. Urban Plan. 2017, 159, 62–75. [Google Scholar] [CrossRef]
- Camps-Calvet, M.; Langemeyer, J.; Calvet-Mir, L.; Gomez-Baggethun, E. Assessment and valuation of ecosystem services provided by urban gardens: Insights for policy and planning. Environ. Sci. Policy 2016, 62, 14–23. [Google Scholar] [CrossRef]
- Schwarz, N.; Moretti, M.; Bugalho, M.; Davies, Z.; Haase, D.; Hack, J.; Hof, A.; Melero, Y.; Pett, T.; Knapp, S. Understanding biodiversity-ecosystem service relationships in urban areas: A comprehensive literature review. Ecosyst. Serv. 2017, 27 Pt A, 161–171. [Google Scholar] [CrossRef]
- Sanyé-Mengual, E.; Specht, K.; Vavra, J.; Artmann, M.; Orsini, F.; Gianquinto, G. Ecosystem Services of Urban Agriculture: Perceptions of Project Leaders, Stakeholders and the General Public. Sustainability 2020, 12, 10446. [Google Scholar] [CrossRef]
- Arcas-Pilz, V.; Gabarrell Durany, X.; Orsini, F.; Villalba, G. Literature review on the potential of urban waste for the fertilization of urban agriculture: A closer look at the metropolitan area of Barcelona. Sci. Total Environ. 2023, 905, 167193. [Google Scholar] [CrossRef] [PubMed]
- Ercilla-Montserrat, M.; Sanjuan-Delmas, D.; Sanye-Mengual, E.; Calvet-Mir, L.; Banderas, K.; Rieradevall, J.; Gabarrell Durany, X. Analysis of the consumer’s perception of urban food products from a soilless system in rooftop greenhouses: A case study from the Mediterranean Area of Barcelona (Spain). Agric. Hum. Values 2019, 36, 375–393. [Google Scholar] [CrossRef]
- Sanyé-Mengual, E.; Martinez-Blanco, J.; Finkbeiner, M.; Cerda-Domenech, M.; Camargo, M.; Ometto, A.; VelaSquez, L.; Villada, G.; Niza, S.; Pina, A. Urban horticulture in retail parks: Environmental assessment of the potential implementation of rooftop greenhouses in European and South American cities. J. Clean. Prod. 2018, 172, 3081–3091. [Google Scholar] [CrossRef]
- Canet-Martí, A.; Pineda-Martos, R.; Junge, R.; Bohn, K.; Paco, T.; Delgado, C.; Alencikiene, G.; Skar, S.V.; Baganz, G. Nature-Based Solutions for Agriculture in Circular Cities: Challenges, Gaps, and Opportunities. Water 2021, 13, 2565. [Google Scholar] [CrossRef]
- Diekmann, L.O.; Gray, L.C.; Baker, G.A. Growing ‘good food’: Urban gardens, culturally acceptable produce and food security. Renew. Agric. Food Syst. 2020, 35, 169–181. [Google Scholar] [CrossRef]
- Giovannucci, D. Evaluation of Organic Agriculture and Poverty Reduction in Asia; International Fund for Agricultural Development (IFAD): Rome, Italy, 2006. [Google Scholar]
- Breuste, J.; Artmann, M. Allotment gardens contribute to urban ecosystem service: Case study Salzburg, Austria. J. Urban Plann. Dev. 2014, 141, A5014005. [Google Scholar] [CrossRef]
- Keshavarz, N.; Simon, B.; Zilans, A.; Hursthouse, A.; Voigt, A.; Hobbelink, A.; Zammit, A.; Jokinen, A.; Mikkelsen, B.; Notteboom, B.; et al. A history of urban gardens in Europe. In Urban Allotment Gardens in Europe; Routledge: London, UK, 2016; pp. 8–32. [Google Scholar]
- Schroter, M.; Kramer, R.; Mantel, M.; Kabisch, N.; Hecker, S.; Richter, A.; Neumeier, V.A.; Bonn, A. Citizen science for assessing ecosystem services: Status, challenges, and opportunities. Ecosyst. Serv. 2017, 28, 80–94. [Google Scholar] [CrossRef]
- Grafius, D.R.; Edmondson, J.; Norton, B.; Clark, R.; Mears, M.; Leake, J.; Corstanje, R.; Harris, J.; Warren, P. Estimating food production in an urban landscape. Sci. Rep. 2020, 10, 5141. [Google Scholar] [CrossRef] [PubMed]
- Pradhan, P.; Callaghan, M.; Hu, Y.; Dahal, Y.; Hunecke, C.; Reusswig, F.; Lotze-Campen, H.; Kropp, J. A systematic review highlights that there are multiple benefits of urban agriculture besides food. Glob. Food Secur. 2023, 38, 100700. [Google Scholar] [CrossRef]
- De Bon, H.; Parrot, L.; Moustier, P. Sustainable urban agriculture in developing countries. A review. Agron. Sustain. Dev. 2010, 30, 21–32. [Google Scholar] [CrossRef]
- Krikser, T.; Piorr, A.; Berges, R.; Opitz, I. Urban agriculture oriented towards self-supply, social and commercial purpose: A typology. Land 2016, 5, 28. [Google Scholar] [CrossRef]
- Mougeot, L.J.A. Agropolis: The Social, Political and Environmental Dimensions of Urban Agriculture; Routledge: London, UK, 2005. [Google Scholar]
- Abdoellah, O.S.; Suparman, Y.; Safitri, K.; Basagevan, R.; Fianti, N.; Wulandari, I.; Husodo, T. Between food fulfillment and income: Can urban agriculture contribute to both? Geogr. Sustain. 2023, 4, 127–137. [Google Scholar] [CrossRef]
- Dimitri, C.; Oberholtzer, L.; Pressman, A. Urban agriculture: Connecting producers with consumers. Br. Food J. 2016, 118, 603–617. [Google Scholar] [CrossRef]
- McClintock, N. Radical, reformist, and garden-variety neoliberal: Coming to terms with urban agriculture’s contradictions. Local Environ. 2014, 19, 147–171. [Google Scholar] [CrossRef]
- Giacchè, G.; Consales, J.N.; Baptiste Jean-Paul, G.; Daniel, A.C.; Chenu, C. Toward an Evaluation of Cultural Ecosystem Services Delivered by Urban Micro-Farms. Sustainability 2021, 13, 1716. [Google Scholar] [CrossRef]
- Biazoti, A.R.; Leao, V.; Buralli, R.; Mauad, T. Agricultura urbana no município de São Paulo: Considerações sobre produção e comercialização. Estud. Av. 2021, 35, 101. [Google Scholar] [CrossRef]
- Orsini, F.; Kahane, R.; Nono-Womdim, R.; Gianquinto, G. Urban agriculture in the developing world: A review. Agron. Sustain. Dev. 2013, 33, 695–720. [Google Scholar] [CrossRef]
- Van Veenhuizen, R. Cities farming for the future. In Urban Agriculture for Sustainable Cities; RUAF Foundation, IDRC and IIRR: Leusden, The Netherlands, 2016. [Google Scholar]
- Olivier, D.W.; Heinecken, L. Beyond food security: Women’s experiences of urban agriculture in Cape Town. Agric. Hum. Values 2017, 34, 743–755. [Google Scholar] [CrossRef]
- Hovorka, A.; Zeeuw, H.; Njenga, M. Women Feeding Cities: Mainstreaming Gender in Urban Agriculture and Food Security; CTA/Practical Action: Wageningen, The Netherlands, 2009. [Google Scholar]
- Nabulo, G.; Kiguli, J.; Kiguli, L. Gender analysis of urban agriculture in Kampala, Uganda. Urban Agric. Mag. 2004, 12, 32–33. [Google Scholar]
- Jancz, C.; Rosana, M.; Marques, G.; Nobre, M.; Moreno, R.; Saori, S.; Franco, V. Práticas Feministas de Transformação da Economia. Autonomia das Mulheres e Agroecologia no Vale do Ribeira. Sempreviva Organ. Fem. 2018, 84. [Google Scholar]
- Castellar, A.C.; Popartan, L.; Puyeo-Ros, J.; Atanasova, N.; Langergraber, G.; Saumel, I.; Corominas, L.; Comas, J.; Acuna, V. Nature-based solutions in the urban context: Terminology, classification and scoring for urban challenges and ecosystem services. Sci. Total Environ. 2021, 779, 146237. [Google Scholar] [CrossRef] [PubMed]
- Skar, S.L.G.; Pineda-Martos, R.; Timpe, A.; Polling, B.; Bohn, K.; Kulvik, M.; Delgado, C.; Pedras, C.M.G.; Paco, T.; Cujic, M.; et al. Urban agriculture as a keystone contribution towards securing sustainable and healthy development for cities in the future. Blue-Green Syst. 2019, 2, 1–27. [Google Scholar] [CrossRef]
- Ryschawy, J.; Tiffany, S.; Gaudin, A.; Niles, M.; Garrett, M. Moving niche agroecological initiatives to the mainstream: A case-study of sheep-vineyard integration in California. Land Use Policy 2021, 109, 105680. [Google Scholar] [CrossRef]
LULC Class Name | Description |
---|---|
Tree cover | Any geographic area dominated by trees with a cover of 10% or more. Areas planted with trees for afforestation purposes and plantations are included in this class. This class also includes tree-covered areas seasonally or permanently flooded with fresh water, except for mangroves. |
Schrubland | Any geographic area dominated by natural shrubs having a cover of 10% or more. Trees can be present in scattered form if their cover is less than 10%. Herbaceous plants can also be present at any density. |
Grassland | Any geographic area dominated by natural herbaceous plants (plants without persistent stems or shoots above ground and lacking definite firm structure): (grasslands, prairies, steppes, savannahs, pastures) with a cover of 10% or more, irrespective of different human and/or animal activities. |
Cropland | Land covered with annual cropland that is sowed/planted and harvestable at least once within 12 months after the sowing/planting date. |
Built-up | Land covered by buildings, roads, and other artificial structures, such as railroads. Buildings include both residential and industrial buildings. Waste dump deposits and extraction sites are considered bare. |
Bare-sparse vegetation | Lands with exposed soil, sand, or rocks that never have more than 10% vegetated cover during any time of the year. |
Permanent water bodies | This includes any geographic area covered for most of the year (more than 9 months) by water bodies such as lakes, reservoirs, and rivers. |
Herbaceous wetland | Natural herbaceous vegetation (cover of 10% or more) that is permanently or regularly flooded by fresh, brackish, or salt water. It excludes unvegetated sediment, swamp forests (classified as tree cover), and mangroves. |
Mangroves | Salt-tolerant tree and other plant species, which thrive in intertidal zones of sheltered tropical shores, “overwash” islands, and estuaries. |
Moss and lichen | Land covered with lichens and/or mosses. |
Motorway | A restricted access major divided highway, normally with two or more running lanes plus emergency hard shoulder. Equivalent to the freeway, autobahn, etc. |
Motorway link | The link roads (slip roads/ramps) leading to/from a motorway from/to a motorway or lower-class highway. Normally with the same motorway restrictions. |
Primary | The next most important road in a country’s system (often link larger towns). |
Secondary | The next most important road in a country’s system (often link towns). |
Secondary link | The link roads (slip roads/ramps) leading to/from a secondary road from/to a secondary road or lower-class highway. |
Primary link | The link roads (slip roads/ramps) leading to/from a primary road from/to a primary road or lower-class highway. |
Threat | Weight | M_Distance | Decay |
---|---|---|---|
Built-up | 0.8 | 0.5 | exponential |
Motorway | 1 | 0.9 | exponential |
Primary | 0.9 | 0.8 | exponential |
Secondary | 0.9 | 0.7 | exponential |
No. | LULC | HABITAT | Bui ¹ | Mot 2 | Pri 3 | Sec 4 |
---|---|---|---|---|---|---|
0 | No data | 0 | 0 | 0 | 0 | 0 |
1 | Motorway | 0.1 | 0 | 0 | 0 | 0 |
2 | Motorway link | 0.1 | 0 | 0 | 0 | 0 |
3 | Primary | 0.15 | 0 | 0 | 0 | 0 |
4 | Secondary | 0.3 | 0 | 0 | 0 | 0 |
5 | Secondary link | 0.3 | 0 | 0 | 0 | 0 |
6 | Primary link | 0.2 | 0 | 0 | 0 | 0 |
10 | Tree cover | 0.85 | 0.85 | 0.85 | 0.85 | 0.85 |
20 | Shrubland | 0.7 | 0.7 | 0.7 | 0.7 | 0.7 |
30 | Grassland | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 |
40 | Cropland | 0.6 | 0.6 | 0.6 | 0.6 | 0.6 |
50 | Built-up | 0.25 | 0 | 0 | 0 | 0 |
60 | Bare-sparse vegetation | 0.75 | 0.75 | 0.75 | 0.75 | 0.75 |
80 | Permanent water bodies | 0.9 | 0.8 | 0.8 | 0.8 | 0.4 |
90 | Herbaceous wetland | 1 | 1 | 1 | 1 | 1 |
95 | Mangroves | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 |
# | Question | Options | Type |
---|---|---|---|
1 | The initiative is part of a cooperative or association. |
| Likert Scale |
2 | The land where I work is of public origin. |
| Likert Scale |
3 | The initiative receives/received some financial resources from the municipal, state, or federal spheres. |
| Likert Scale |
4 | The initiative receives/received some financial resources from the private sector or a non-governmental organization. |
| Likert Scale |
5 | The place where I work has an organic production certification. |
| Likert Scale |
6 | In the system where I work, fertilisers or chemical pesticides are used in crops. |
| Likert Scale |
7 | In the system where I work, there are projects focused on social, food, or environmental education themes. |
| Likert Scale |
8 | In the environment where I work, there is a financial return on the activity. |
| Likert Scale |
9 | A fair is held to sell production on site or external fairs are participated in. |
| Likert Scale |
10 | In the environment where I work, composting is carried out on site. |
| Likert Scale |
11 | How many families does production attend in total (absolute number)? | Text | |
12 | What is the estimated number of women in the activity (%)? | Text | |
13 | What is the area destined for the crops (m2)? | Text | |
14 | What is planted, and how much is produced on average (kg) per year of each item? | Text | |
15 | If there are commercial establishments that buy products, where are they from? | Text | |
16 | If there are animals in the places, what are they? | Text | |
17 | What are the main challenges faced for the success of the initiative? | Text |
CICES Approach | Present Work | |||
---|---|---|---|---|
Section | Division | Group | Class | Codes |
Provisioning | Nutrition | Biomass | Cultivated crops | Food supply |
Reared animals and their outputs | ||||
Wild plants, algae, and their outputs | Food supply | |||
Wild animals and their outputs | ||||
Animals from in-situ aquaculture | Food supply | |||
Water | Surface water for drinking | |||
Groundwater for drinking | ||||
Materials | Biomass | Fibres and other materials from plants, algae, and animals for direct processing | ||
Materials from plants, algae, and animals for agricultural use | ||||
Genetic materials from all biota | ||||
Water | Surface water for non-drinking purposes | |||
Ground water for non-drinking purposes | ||||
Energy | Biomass-based energy sources | Plant-based resources | ||
Animal-based resources | ||||
Mechanical energy | Animal-based energy | |||
Regulation and Maintenance | Mediation of waste, toxic and other nuisances | Mediation by biota | Bioremediation by microorganisms, algae, plants, and animals | Composting |
Filtration/sequestration/storage/accumulation by microorganisms, algae, plants, and animals | ||||
Mediation by ecosystems | Dilution by atmosphere, freshwater, and marine ecosystems | |||
Mediation of smell/noise/visual impacts | ||||
Mediation of flows | Mass flows | Mass stabilisation and control of erosion rates | ||
Buffering and attenuation of mass flows | ||||
Liquid flows | Hydrological cycle and water flow maintenance | |||
Flood protection | ||||
Gaseous/air flows | Storm protection | |||
Ventilation and transpiration | ||||
Maintenance of physical, chemical, biological conditions | Lifecycle maintenance, habitat and gene pool protection | Pollination and seed dispersal | Bees | |
Maintaining nursery populations and habitats | Wild life | |||
Pest and disease control | Pest control | |||
Disease control | ||||
Soil formation and composition | Weathering processes | Organic | ||
Decomposition and fixing processes | ||||
Water conditions Atmospheric composition and climate regulation | Chemical condition of freshwater | |||
Chemical condition of salt waters | ||||
Global climate regulation by reducing greenhouse gas concentrations | ||||
Micro- and regional climate regulation | ||||
Cultural | Physical and intellectual interactions with biota, ecosystems, and land-/seascapes | Physical and Experiential interactions | Experiential use of plants, animals, and land/seascapes in different environmental settings | |
Physical use of land/seascapes in different environmental settings | Leisure; social | |||
Intellectual and representative interactions | Scientific | |||
Educational | Education | |||
Heritage, cultural | ||||
Entertainment | ||||
Aesthetic | ||||
Spiritual, symbolic and other interactions with biota, ecosystems, and land-/seascapes | Spiritual and/or emblematic | Symbolic | ||
Sacred and/or religious | ||||
Other cultural outputs | Existence | Well-being | ||
Bequest |
LULC Name | Area (ha) | % |
---|---|---|
No data | 92.61 | 0.01% |
Motorway | 1626.05 | 0.27% |
Motorway link | 439.70 | 0.07% |
Primary | 1993.11 | 0.33% |
Secondary | 3489.33 | 0.58% |
Secondary link | 89.48 | 0.01% |
Primary link | 115.58 | 0.01% |
Tree cover | 318,843.6 | 53.4% |
Shrubland | 0.44 | 0.004% |
Grassland | 48,490.3 | 8.12% |
Cropland | 2212.20 | 0.37% |
Built-up | 158,597.2 | 26.55% |
Bare-sparse vegetation | 3455.06 | 0.57% |
Permanent water bodies | 50,479.3 | 8.45% |
Herbaceous wetland | 1093.82 | 0.18% |
Mangroves | 6142.48 | 1.02% |
Question | Totally Disagree | Disagree | Indifferent | Agree | Totally Agree | Not Answer | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Count | % | Count | % | Count | % | Count | % | Count | % | Count | % | |
Format of a cooperative/association. | 22 | 44.89 | 0 | 0 | 2 | 4.08 | 3 | 6.12 | 19 | 38.77 | 3 | 6.12 |
Land of public origin. | 31 | 63.26 | 3 | 6.12 | 1 | 2.04 | 1 | 2.04 | 10 | 20.4 | 3 | 6.12 |
Financial resources from the municipal, state, or federal spheres. | 30 | 62.22 | 3 | 6.12 | 2 | 4.08 | 3 | 6.12 | 7 | 14.28 | 4 | 8.16 |
Financial resources from the private sector or from a non-governmental organisation. | 30 | 62.22 | 3 | 6.12 | 2 | 4.08 | 3 | 6.12 | 7 | 14.28 | 4 | 8.16 |
Presence of organic production certification. | 36 | 73.46 | 0 | 0 | 1 | 2.04 | 2 | 4.08 | 10 | 20.4 | 0 | 0 |
Use of fertilisers or chemical pesticides. | 42 | 85.71 | 1 | 2.04 | 0 | 0 | 0 | 0 | 4 | 8.16 | 2 | 4.08 |
Presence of social, food, or environmental education projects. | 5 | 10.2 | 2 | 4.08 | 2 | 4.08 | 2 | 4.08 | 38 | 77.55 | 0 | 0 |
Presence of financial return. | 28 | 57.14 | 4 | 8.16 | 4 | 8.16 | 2 | 4.08 | 10 | 20.4 | 1 | 2.04 |
Commercialisation of the food. | 30 | 61.22 | 1 | 2.04 | 5 | 10.2 | 1 | 2.04 | 12 | 24.48 | 0 | 0 |
Presence of composting. | 6 | 12.24 | 2 | 4.08 | 1 | 2.04 | 0 | 0 | 40 | 81.63 | 0 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bennedetti, L.V.; Ronchi, S.; Lamano Ferreira, M.; Lemes de Oliveira, F. Mapping and Assessing Urban Agriculture in São Paulo: Tackling Socio-Economic and Environmental Issues through Nature-Based Solutions. Sustainability 2024, 16, 7388. https://doi.org/10.3390/su16177388
Bennedetti LV, Ronchi S, Lamano Ferreira M, Lemes de Oliveira F. Mapping and Assessing Urban Agriculture in São Paulo: Tackling Socio-Economic and Environmental Issues through Nature-Based Solutions. Sustainability. 2024; 16(17):7388. https://doi.org/10.3390/su16177388
Chicago/Turabian StyleBennedetti, Luiza Vigne, Silvia Ronchi, Maurício Lamano Ferreira, and Fabiano Lemes de Oliveira. 2024. "Mapping and Assessing Urban Agriculture in São Paulo: Tackling Socio-Economic and Environmental Issues through Nature-Based Solutions" Sustainability 16, no. 17: 7388. https://doi.org/10.3390/su16177388
APA StyleBennedetti, L. V., Ronchi, S., Lamano Ferreira, M., & Lemes de Oliveira, F. (2024). Mapping and Assessing Urban Agriculture in São Paulo: Tackling Socio-Economic and Environmental Issues through Nature-Based Solutions. Sustainability, 16(17), 7388. https://doi.org/10.3390/su16177388