Evaluating Seawater and Wood Distillate for Sustainable Hydroponic Cultivation: Implications for Crop Growth and Nutritional Quality
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Design and Growing Conditions
2.2. Photosynthetic Parameters
2.3. Biometric Parameters
2.4. Macro- and Micronutrient Contents
2.5. Leaf Ascorbic Acid
2.6. Statistical Analysis
3. Results
3.1. Effects of SW Addition
3.2. Effects of WD Addition at Different SW Concentrations
3.3. Differences between WD-Untreated and WD-Treated Plants at Various SW Concentrations
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wuebbles, D.J.; Jain, A.K. Concerns about climate change and the role of fossil fuel use. Fuel Process. Technol. 2001, 71, 99–119. [Google Scholar]
- Gopalakrishnan, T.; Hasan, M.K.; Haque, A.S.; Jayasinghe, S.L.; Kumar, L. Sustainability of coastal agriculture under climate change. Sustainability 2019, 11, 7200. [Google Scholar] [CrossRef]
- Nguyen, M.T.; Renaud, F.G.; Sebesvari, Z. Drivers of change and adaptation pathways of agricultural systems facing increased salinity intrusion in coastal areas of the Mekong and Red River deltas in Vietnam. Environ. Sci. Policy 2019, 92, 331–348. [Google Scholar]
- FAO. Available online: https://www.fao.org/fileadmin/user_upload/esag/docs/AT2050_revision_summary.pdf (accessed on 8 February 2024).
- Ampim, P.A.; Obeng, E.; Olvera-Gonzalez, E. Indoor Vegetable Production: An Alternative Approach to Increasing Cultivation. Plants 2022, 11, 2843. [Google Scholar] [CrossRef] [PubMed]
- Fussy, A.; Papenbrock, J. An overview of soil and soilless cultivation techniques—Chances, challenges and the neglected question of sustainability. Plants 2022, 11, 1153. [Google Scholar]
- Lakhiar, I.A.; Gao, J.; Syed, T.N.; Chandio, F.A.; Buttar, N.A. Modern plant cultivation technologies in agriculture under controlled environment: A review on aeroponics. J. Plant Interact. 2018, 13, 338–352. [Google Scholar]
- Benke, K.; Tomkins, B. Future food-production systems: Vertical farming and controlled-environment agriculture. Sustain. Sci. Pract. Policy 2017, 13, 13–26. [Google Scholar]
- Romeo, D.; Vea, E.B.; Thomsen, M. Environmental Impacts of Urban Hydroponics in Europe: A Case Study in Lyon. Proc. CIRP 2018, 69, 540–545. [Google Scholar]
- Despommier, D. The Rise of Vertical Farms. Sci. Am. 2009, 301, 80–87. [Google Scholar]
- Sheikh, B.A. Hydroponics: Key to sustain agriculture in water stressed and urban environment. Pak. J. Agric. Agric. Eng. Vet. Sci. 2006, 22, 53–57. [Google Scholar]
- Atzori, G.; Mancuso, S.; Masi, E. Seawater potential use in soilless culture: A review. Sci. Hortic. 2019, 249, 199–207. [Google Scholar]
- Allison, L.E. Salinity in relation to irrigation. Adv. Agron. 1964, 16, 139–180. [Google Scholar]
- Bauder, J.W.; Bauder, T.A.; Waskom, R.M.; Scherer, T.F. Assessing the suitability of water (Quality) for irrigation-Salinity and Sodium. In Western Fertilizer Handbook; Waveland Press: Long Grove, IL, USA, 2008. [Google Scholar]
- Hillel, D. Salinity Management for Sustainable Irrigation: Integrating Science, Environment, and Economics; World Bank Publications: Washington, DC, USA, 2000. [Google Scholar]
- Araghian, S.; Bagherzadeh, A.; Sadrabadi, R. Effect of brown algae and vermicompost application on some cherry tomato traits in hydroponic system. Agroecol. J. 2015, 10, 77–83. [Google Scholar]
- Kalozoumis, P.; Vourdas, C.; Ntatsi, G.; Savvas, D. Can Biostimulants Increase Resilience of Hydroponically-Grown Tomato to Combined Water and Nutrient Stress? Horticulturae 2021, 7, 297. [Google Scholar] [CrossRef]
- Yu, J.Q.; Lee, K.S.; Matsui, Y. Effect of the addition of activated charcoal to the nutrient solution on the growth of tomato in hydroponic culture. Soil Sci. Plant Nutr. 1993, 39, 13–20. [Google Scholar]
- Vernieri, P.; Borghesi, E.; Ferrante, A.; Magnani, G. Application of biostimulants in floating system for improving rocket quality. Int. J. Environ. Sci. Technol. 2005, 3, 86–88. [Google Scholar]
- Ali, Q.; Shehzad, F.; Waseem, M.; Shahid, S.; Hussain, A.I.; Haider, M.Z.; Habib, N.; Hussain, S.M.; Javed, M.T.; Perveen, R. Plant-based biostimulants and plant stress responses. In Plant Ecophysiology and Adaptation under Climate Change: Mechanisms and Perspectives I: General Consequences and Plant Responses; Springer: Singapore, 2020; pp. 625–661. [Google Scholar]
- Ahmed, W.; Shah, A.N.; Abbas, A.; Nawaz, M.; Qayyum, A.; Hassan, M.U.; Qaisrani, M.M.; Khan, J. Role of Plant Bio-stimulants and Their Classification. In Biofertilizers for Sustainable Soil Management; CRC Press: Boca Raton, FL, USA, 2023; pp. 65–88. [Google Scholar]
- Powlson, D.S.; Gregory, P.J.; Whalley, W.R.; Quinton, J.N.; Hopkins, D.W.; Whitmore, A.P.; Hirsch, P.R.; Goulding, K.W. Soil management in relation to sustainable agriculture and ecosystem services. Food Policy 2011, 36, S72–S87. [Google Scholar]
- Grewal, A.; Abbey, L.; Gunupuru, L.R. Production, prospects and potential application of pyroligneous acid in agriculture. J. Anal. Appl. Pyrolysis 2018, 135, 152–159. [Google Scholar]
- Fedeli, R.; Marotta, L.; Frattaruolo, L.; Panti, A.; Carullo, G.; Fusi, F.; Loppi, S. Nutritionally enriched tomatoes (Solanum lycopersicum L.) grown with wood distillate: Chemical and biological characterization for quality assessment. J. Food Sci. 2023, 88, 5324–5338. [Google Scholar]
- Fedeli, R.; Vannini, A.; Grattacaso, M.; Loppi, S. Wood distillate (pyroligneous acid) boosts nutritional traits of potato tubers. Ann. Appl. Biol. 2023, 183, 135–140. [Google Scholar]
- Italian Ministerial Decree 6793. Available online: https://www.gazzettaufficiale.it/eli/id/2018/09/05/18A05693/sg (accessed on 18 July 2023).
- European Commission. Farm to Fork Strategy [Internet Document]. Available online: https://food.ec.europa.eu/horizontal-topics/farm-fork-strategy_en (accessed on 8 February 2024).
- Ofoe, R.; Qin, D.; Gunupuru, L.R.; Thomas, R.H.; Abbey, L. Effect of pyroligneous acid on the productivity and nutritional quality of greenhouse tomato. Plants 2022, 11, 1650. [Google Scholar] [CrossRef]
- Chen, J.; Wu, J.H.; Si, H.P.; Lin, K.Y. Effects of adding wood vinegar to nutrient solution on the growth, photosynthesis, and absorption of mineral elements of hydroponic lettuce. J. Plant Nutr. 2016, 39, 456–462. [Google Scholar]
- Fedeli, R.; Cruz, C.; Loppi, S.; Munzi, S. Hormetic Effect of Wood Distillate on Hydroponically Grown Lettuce. Plants 2024, 13, 447. [Google Scholar] [CrossRef]
- Wei, Q.; Ma, X.; Dong, J. Preparation, chemical constituents and antimicrobial activity of pyroligneous acids from walnut tree branches. J. Anal. Appl. Pyrolysis 2010, 87, 24–28. [Google Scholar]
- Pan, X.; Zhang, Y.; Wang, X.; Liu, G. Effect of adding biochar with wood vinegar on the growth of cucumber. IOP Conf. Ser. Earth Environ. Sci. 2017, 61, 012149. [Google Scholar]
- Fedeli, R.; Fiaschi, T.; Angiolini, C.; Maccherini, S.; Loppi, S.; Fanfarillo, E. Dose-Dependent and Species-Specific Effects of Wood Distillate Addition on the Germination Performance of Threatened Arable Plants. Plants 2023, 12, 3028. [Google Scholar] [CrossRef]
- Chu, L.; Liu, H.; Zhang, Z.; Zhan, Y.; Wang, K.; Yang, D.; Yu, J. Evaluation of Wood Vinegar as an Herbicide for Weed Control. Agronomy 2022, 12, 3120. [Google Scholar] [CrossRef]
- Cruz, C.; Bio, A.F.M.; Domínguez-Valdivia, M.D.; Aparicio-Tejo, P.M.; Lamsfus, C.; Martins-Louçao, M.A. How does glutamine synthetase activity determine plant tolerance to ammonium? Planta 2006, 223, 1068–1080. [Google Scholar] [PubMed]
- Fedeli, R.; Celletti, S.; Loppi, S. Wood Distillate Promotes the Tolerance of Lettuce in Extreme Salt Stress Conditions. Plants 2024, 13, 1335. [Google Scholar] [CrossRef]
- Lichtenthaler, H.K.; Buschmann, C. Chlorophylls and carotenoids: Measurement and characterization by UV-VIS spectroscopy. Curr. Protoc. Food Anal. Chem. 2001, 1, F4-3. [Google Scholar]
- Vannini, A.; Jamal, M.B.; Gramigni, M.; Fedeli, R.; Ancora, S.; Monaci, F.; Loppi, S. Accumulation and release of mercury in the lichen Evernia prunastri (L.) Ach. Biology 2021, 10, 1198. [Google Scholar] [CrossRef]
- ISO 11885:2007; Water Quality—Determination of Selected Elements by Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES). International Organization for Standardization: Geneva, Switzerland, 2007.
- Boyd, C.E.; Boyd, C.E. Micronutrients and other trace elements. In Water Quality: An Introduction; Springer: Cham, Switzerland, 2020; pp. 335–378. [Google Scholar]
- Fedeli, R.; Mazza, I.; Perini, C.; Salerni, E.; Loppi, S. New Frontiers in the Cultivation of Edible Fungi: The Application of Biostimulants Enhances the Nutritional Characteristics of Pleurotus eryngii (DC.) Quél. Agriculture 2024, 14, 1012. [Google Scholar] [CrossRef]
- Aldesuquy, H.S.; Ibrahim, A.H. Interactive effect of seawater and growth bioregulators on water relations, abscisic acid concentration and yield of wheat plants. J. Agron. Crop Sci. 2001, 187, 185–193. [Google Scholar]
- Antolinos, V.; Sanchez-Martinez, M.J.; Maestre-Valero, J.F.; Lopez-Gomez, A.; Martinez-Hernandez, G.B. Effects of irrigation with desalinated seawater and hydroponic system on tomato quality. Water 2020, 12, 518. [Google Scholar] [CrossRef]
- Aziz, I.; Khan, M.A. Effect of Seawater on the Growth, Ion Content and Water Potential of Rhizophora mucronata Lam. J. Plant Res. 2001, 114, 369. [Google Scholar]
- Long, X.; Huang, Z.; Zhang, Z.; Li, Q.; Zed, R.; Liu, Z. Seawater stress differentially affects germination, growth, photosynthesis, and ion concentration in genotypes of Jerusalem artichoke (Helianthus tuberosus L.). J. Plant Growth Regul. 2010, 29, 223–231. [Google Scholar]
- Zhu, J.K. Plant salt stress. eLS 2007. [Google Scholar] [CrossRef]
- Vannini, A.; Fedeli, R.; Guarnieri, M.; Loppi, S. Foliar application of wood distillate alleviates ozone-induced damage in lettuce (Lactuca sativa L.). Toxics 2022, 10, 178. [Google Scholar] [CrossRef]
- Celletti, S.; Fedeli, R.; Ghorbani, M.; Aseka, J.M.; Loppi, S. Exploring sustainable alternatives: Wood distillate alleviates the impact of bioplastic in basil plants. Sci. Total Environ. 2023, 900, 166484. [Google Scholar]
- Balasubramaniam, T.; Shen, G.; Esmaeili, N.; Zhang, H. Plants’ response mechanisms to salinity stress. Plants 2023, 12, 2253. [Google Scholar] [CrossRef]
- Alam, S.M. Nutrient uptake by plants under stress conditions. In Handbook of Plant and Crop Stresss; Marcel Dekker: New York, NY, USA, 1999; Volume 2, pp. 285–313. [Google Scholar]
- Bienertova-Vasku, J.; Lenart, P.; Scheringer, M. Eustress and distress: Neither good nor bad, but rather the same? BioEssays 2020, 42, 1900238. [Google Scholar]
- Calzadilla, P.I.; Carvalho, F.E.L.; Gomez, R.; Neto, M.L.; Signorelli, S. Assessing photosynthesis in plant systems: A cornerstone to aid in the selection of resistant and productive crops. Environ. Exp. Bot. 2022, 201, 104950. [Google Scholar]
- Wu, Q.; Zhang, Y.; Xie, M.; Zhao, Z.; Yang, L.; Liu, J.; Hou, D. Estimation of Fv/Fm in spring wheat using UAV-Based multispectral and RGB imagery with multiple machine learning methods. Agronomy 2023, 13, 1003. [Google Scholar] [CrossRef]
- Paciolla, C.; Fortunato, S.; Dipierro, N.; Paradiso, A.; de Leonardis, S.; Mastropasqua, L.; de Pinto, M.C. Vitamin C in Plants: From Functions to Biofortification. Antioxidants 2019, 8, 519. [Google Scholar] [CrossRef]
- Gupta, D.K.; Palma, J.M.; Corpas, F.J. (Eds.) Redox State as a Central Regulator of Plant-Cell Stress Responses; Springer: Berlin/Heidelberg, Germany, 2016; pp. 1–386. [Google Scholar]
- Ofoe, R.; Mousavi, S.M.N.; Thomas, R.H.; Abbey, L. Foliar application of pyroligneous acid acts synergistically with fertilizer to improve the productivity and phytochemical properties of greenhouse-grown tomato. Sci. Rep. 2024, 14, 1934. [Google Scholar]
- Hepler, P.K. Calcium: A central regulator of plant growth and development. Plant Cell 2005, 17, 2142–2155. [Google Scholar] [PubMed]
- Verbruggen, N.; Hermans, C. Physiological and molecular responses to magnesium nutritional imbalance in plants. Plant Soil 2013, 368, 87–99. [Google Scholar]
- Grattan, S.R.; Grieve, C.M. Mineral element acquisition and growth response of plants grown in saline environments. Agric. Ecosyst. Environ. 1992, 38, 275–300. [Google Scholar]
- Overlach, S.; Diekmann, W.; Raschke, K. Phosphate translocator of isolated guard-cell chloroplasts from Pisum sativum L. transports glucose-6-phosphate. Plant Physiol. 1993, 101, 1201–1207. [Google Scholar]
- Hasegawa, P.M.; Bressan, R.A.; Zhu, J.K.; Bohnert, H.J. Plant cellular and molecular responses to high salinity. Annu. Rev. Plant Biol. 2000, 51, 463–499. [Google Scholar]
- Luo, Q.; Yu, B.; Liu, Y. Differential sensitivity to chloride and sodium ions in seedlings of Glycine max and G. soja under NaCl stress. J. Plant Physiol. 2005, 162, 1003–1012. [Google Scholar]
- Shabala, S.; Shabala, L. Ion transport and osmotic adjustment in plants and bacteria. Biomol. Concepts 2011, 2, 407–419. [Google Scholar]
- Serraj, R.; Sinclair, T.R. Osmolyte accumulation: Can it really help increase crop yield under drought conditions? Plant Cell Environ. 2002, 25, 333–341. [Google Scholar]
- Sanders, G.J.; Arndt, S.K. Osmotic adjustment under drought conditions. In Plant Responses to Drought Stress: From Morphological to Molecular Features; Springer: Berlin/Heidelberg, Germany, 2012; pp. 199–229. [Google Scholar]
- Zafar, A.M.; Javed, M.A.; Hassan, A.A.; Mehmood, K.; Sahle-Demessie, E. Recent updates on ions and nutrients uptake by halotolerant freshwater and marine microalgae in conditions of high salinity. J. Water Process Eng. 2021, 44, 102382. [Google Scholar]
- Grattan, S.R.; Grieve, C.M. Mineral nutrient acquisition and response by plants grown in saline environments. In Handbook of Plant and Crop Stress; Marcel Dekker: New York, NY, USA, 1999; Volume 2, pp. 203–229. [Google Scholar]
Seawater [%] | 0 | 3 | 6 | 12 | ||||
---|---|---|---|---|---|---|---|---|
No WD | WD | No WD | WD | No WD | WD | No WD | WD | |
Chlorophyll a (µg cm−1) | 2.03 ± 0.18 c* | 3.39 ± 0.39 C | 3.59 ± 0.25 b* | 4.97 ± 0.28 A | 2.94 ± 0.39 bc* | 4.42 ± 0.3 AB | 5.19 ± 0.42 a* | 3.71 ± 0.37 BC |
Chlorophyll b (µg cm−1) | 0.5 ± 0.03 b* | 0.68 ± 0.08 B | 0.62 ± 0.07 b* | 0.94 ± 0.05 A | 0.57 ± 0.06 b* | 0.83 ± 0.05 AB | 1.02 ± 0.08 a* | 0.70 ± 0.07 B |
Carotenoids (µg cm−1) | 0.71 ± 0.05 c* | 1.12 ± 0.11 B | 1.08 ± 0.09 ab* | 1.56 ± 0.09 A | 1.05 ± 0.11 bc* | 1.34 ± 0.09 AB | 1.52 ± 0.13 a* | 1.16 ± 0.14 B |
Micro- and Macroelements | Seawater [%] | |||||||
---|---|---|---|---|---|---|---|---|
0 | 3 | 6 | 12 | |||||
No WD | WD | No WD | WD | No WD | WD | No WD | WD | |
Al (ug gDW−1) | 133 ± 10 c | 140 ± 13 | 144 ± 6 bc | 141 ± 8 | 175 ± 10 a* | 138 ± 16 | 169 ± 10 ab* | 134 ± 14 |
As (ug gDW−1) | 4.0 ± 0.4 | 4.6 ± 0.6 | 4.6 ± 0.8 | 4.6 ± 0.7 | 5.2 ± 0.4 * | 4.2 ± 0.4 | 5.5 ± 0.4 * | 3.3 ± 1.3 |
Ba (ug gDW−1) | 1.4 ± 0.2 | 1.3 ± 0.1 | 1.5 ± 0.1 | 1.5 ± 0.2 | 1.6 ± 0.1 | 1.4 ± 0.1 | 1.6 ± 0.1 | 1.3 ± 0.1 |
Ca (%) | 2.2 ± 0.0 * | 3.0 ± 0.1 | 2.2 ± 0.1 * | 2.6 ± 0.2 | 2.3 ± 0.1 | 2.5 ± 0.1 | 2.2 ± 0.1 | 1.9 ± 0.4 |
Cu (ug gDW−1) | 97 ± 1 a | 120 ± 23 | 57 ± 2 b | 61 ± 19 | 42 ± 1 c | 48 ± 3 | 45 ± 2 c | 41 ± 4 |
Fe (ug gDW−1) | 134 ± 2 ab* | 155 ± 6 | 151 ± 7 a | 132 ± 10 | 129 ± 10 b | 134 ± 6 | 130 ± 3 b | 133 ± 7 |
K (ug gDW−1) | 0.8 ± 0.0 a* | 0.9 ± 0.0 A | 0.4 ± 0.1 b* | 0.7 ± 0.1 B | 0.3 ± 0.1 b* | 0.6 ± 0.0 B | 0.4 ± 0.0 b* | 0.5 ± 0.0 B |
Mg (%) | 0.4 ± 0.0 a* | 0.6 ± 0.0 | 0.3 ± 0.0 b* | 0.5 ± 0.1 | 0.2 ± 0.0 b* | 0.4 ± 0.0 | 0.2± 0.1 b* | 0.4 ± 0.1 |
Mn (ug gDW−1) | 202 ± 3 a* | 184 ± 9 A | 167 ± 13 b* | 190 ± 4 A | 157 ± 11 b | 158 ± 4 B | 173 ± 8 ab | 164 ± 13 B |
Na (ug gDW−1) | 0.1 ± 0.0 c | 0.1 ± 0.0 B | 0.2 ± 0.0 b | 0.3 ± 0.1 A | 0.3 ± 0.1 ab | 0.3 ± 0.1 A | 0.3 ± 0.0 a | 0.3 ± 0.1 A |
P (%) | 0.6 ± 0.0 a | 0.7 ± 0.1 | 0.4 ± 0.0 b* | 0.7 ± 0.1 | 0.5 ± 0.1 ab | 0.6 ± 0.1 | 0.6 ± 0.0 a | 0.6 ± 0.1 |
Zn (ug gDW−1) | 32 ± 1 c* | 36 ± 2 B | 50 ± 4 ab* | 40 ± 3 AB | 63 ± 8 a* | 44 ± 2 B | 42 ± 1 bc* | 32 ± 5 B |
Micro- and Macroelements | Seawater [%] | |||||||
---|---|---|---|---|---|---|---|---|
0 | 3 | 6 | 12 | |||||
No WD | WD | No WD | WD | No WD | WD | No WD | WD | |
Al (ug gDW−1) | 137 ± 3 | 129 ± 5 | 158 ± 14 | 142 ± 12 | 148 ± 20 | 162 ± 9 | 152 ± 13 * | 129 ± 13 |
As (ug gDW−1) | 4.0 ± 0.6 | 5.0 ± 0.7 AB | 4.8 ± 0.9 | 5.2 ± 0.2 A | 5.2 ± 0.9 * | 3.8 ± 0.1 B | 5.9 ± 0.0 * | 3.1 ± 0.1 B |
Ba (ug gDW−1) | 1.5 ± 0.0 | 1.3 ± 0.2 | 1.5 ± 0.1 | 1.5 ± 0.1 | 1.4 ± 0.1 | 1.6 ± 0.0 | 1.4 ± 0.1 | 1.4 ± 0.1 |
Ca (%) | 2.4 ± 0.1 ab | 2.6 ± 0.1 B | 2.3 ± 0.0 ab* | 3.0 ± 0.1 A | 2.5 ± 0.2 a | 2.5 ± 0.0 B | 2.1 ± 0.1 b | 2.0 ± 0.1 C |
Cu (ug gDW−1) | 95 ± 2 a | 91 ± 3 A | 67 ± 5 b* | 44 ± 1 B | 44 ± 3 c | 47 ± 4 B | 44 ± 2 c | 44 ± 4 B |
Fe(ug gDW−1) | 132 ± 1 * | 169 ± 9 | 143 ± 16 | 127 ± 3 | 149 ± 7 | 161 ± 19 | 152 ± 19 b* | 112 ± 24 |
K (ug gDW−1) | 0.6 ± 0.0 a* | 0.8 ± 0.1 | 0.4 ± 0.0 b* | 0.6 ± 0.0 | 0.4 ± 0.0 b* | 0.6 ± 0.1 | 0.3 ± 0.0 b* | 0.6 ± 0.1 |
Mg (%) | 0.4 ± 0.0 a* | 0.5 ± 0.0 AB | 0.2 ± 0.0 b* | 0.6 ± 0.0 A | 0.3 ± 0.0 b* | 0.4 ± 0.0 B | 0.2 ± 0.0 b* | 0.4 ± 0.0 B |
Mn (ug gDW−1) | 200 ± 1 a | 180 ± 9 A | 144 ± 3 c | 164 ± 7 A | 165 ± 12 bc | 177 ± 11 A | 171 ± 9 b* | 111 ± 17 B |
Na (ug gDW−1) | 0.1 ± 0.0 c | 0.1 ± 0.0 B | 0.2 ± 0.0 b | 0.3 ± 0.0 A | 0.3 ± 0.0 b | 0.3 ± 0.0 A | 0.4 ± 0.0 a | 0.3 ± 0.0 A |
P (%) | 0.5 ± 0.0 ab* | 0.8 ± 0.1 A | 0.4 ± 0.0 b* | 0.7 ± 0.0 A | 0.5 ± 0.0 a | 0.5 ± 0.1 B | 0.5 ± 0.0 a* | 0.7 ± 0.1 A |
Zn (ug gDW−1) | 34 ± 2 c | 39 ± 1 AB | 53 ± 3 b* | 42 ± 2 AB | 64 ± 4 a* | 44 ± 3 A | 42 ± 2 c* | 33 ± 6 B |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fedeli, R.; Loppi, S.; Cruz, C.; Munzi, S. Evaluating Seawater and Wood Distillate for Sustainable Hydroponic Cultivation: Implications for Crop Growth and Nutritional Quality. Sustainability 2024, 16, 7186. https://doi.org/10.3390/su16167186
Fedeli R, Loppi S, Cruz C, Munzi S. Evaluating Seawater and Wood Distillate for Sustainable Hydroponic Cultivation: Implications for Crop Growth and Nutritional Quality. Sustainability. 2024; 16(16):7186. https://doi.org/10.3390/su16167186
Chicago/Turabian StyleFedeli, Riccardo, Stefano Loppi, Cristina Cruz, and Silvana Munzi. 2024. "Evaluating Seawater and Wood Distillate for Sustainable Hydroponic Cultivation: Implications for Crop Growth and Nutritional Quality" Sustainability 16, no. 16: 7186. https://doi.org/10.3390/su16167186
APA StyleFedeli, R., Loppi, S., Cruz, C., & Munzi, S. (2024). Evaluating Seawater and Wood Distillate for Sustainable Hydroponic Cultivation: Implications for Crop Growth and Nutritional Quality. Sustainability, 16(16), 7186. https://doi.org/10.3390/su16167186