Optimization Strategies for Waterfront Plant Landscapes in Traditional Villages: A Scenic Beauty Estimation–Entropy Weighting Method Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Scenic Beauty Estimation (SBE) Method
2.2.1. Photography
2.2.2. Evaluators
2.2.3. Evaluation Method
2.3. Entropy Weighting Method (EEM)
- (1)
- Data Normalization: normalize the data for each indicator to ensure that all indicator values fall within the range of 0 to 1.
- (2)
- Calculate the weight of the jth indicator for the ith user:
- (3)
- Compute the information entropy for the jth indicator.
- (4)
- Determine the weight of the jth indicator.
3. Results and Discussion
3.1. Scenic Beauty Estimation (SBE) Method Analysis
3.1.1. Comprehensive Evaluation Analysis
3.1.2. Threshold (Critical Value) Analysis
3.1.3. Inter-Judge Correlation Analysis in Scoring
3.2. Analysis of Evaluation Results Using the EMM and Correlative Examination of SBE and EEM Evaluation Outcomes
3.3. Factor Analysis of Common Factors
4. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pfund, J.L. Landscape-scale research for conservation and development in the tropics: Fighting persisting challenges. Curr. Opin. Environ. Sustain. 2010, 2, 117–126. [Google Scholar] [CrossRef]
- Franch-Pardo, I.; Cancer-Pomar, L.; Napoletano, B.M. Visibility analysis and landscape evaluation in Martin river cultural park (Aragon, Spain) integrating biophysical and visual units. J. Maps 2017, 13, 415–424. [Google Scholar] [CrossRef]
- Medeiros, A.; Fernandes, C.; Gonçalves, J.F.; Farinha-Marques, P. Research trends on integrative landscape assessment using indicators—A systematic review. Ecol. Indic. 2021, 129, 107815. [Google Scholar] [CrossRef]
- Shaker, R.R.; Mackay, B.R. Hidden patterns of sustainable development in Asia with underlying global change correlations. Ecol. Indic. 2021, 131, 108227. [Google Scholar] [CrossRef]
- La Rosa, D.; Martinico, F. Assessment of hazards and risks for landscape protection planning in Sicily. J. Environ. Manag. 2013, 127, S155–S167. [Google Scholar] [CrossRef] [PubMed]
- Gulinck, H.; Múgica, M.; de Lucio, J.V.; Atauri, J.A. A framework for comparative landscape analysis and evaluation based on land cover data, with an application in the Madrid region (Spain). Landsc. Urban Plan. 2001, 55, 257–270. [Google Scholar] [CrossRef]
- Di, F.; Yang, Z.; Liu, X.; Wu, J.; Ma, Z. Estimation on aesthetic value of tourist landscapes in a natural heritage site: Kanas National Nature Reserve, Xinjiang, China. Chin. Geogr. Sci. 2010, 20, 59–65. [Google Scholar] [CrossRef]
- Osgood, C.E.; Suci, G.J.; Tannenbaum, P.H. The Measurement of Meaning (No. 47); University of Illinois Press: Champaign, IL, USA, 1957. [Google Scholar]
- Leal, M.; Reis, E.; Santos, P.P. Exploring spatial relationships between stream channel features, water depths and flow velocities during flash floods using HEC-GeoRAS and Geographic Information Systems. J. Geogr. Sci. 2022, 32, 757–782. [Google Scholar] [CrossRef]
- Smith, J.R.; Chang, S.F. Integrated spatial and feature image query. Multimed. Syst. 1999, 7, 129–140. [Google Scholar] [CrossRef]
- Li, J.; Min, Q.; Li, W.; Bai, Y.; Yang, L.; Dhruba Bijaya, G.C. Evaluation of water resources conserved by forests in the Hani rice terraces system of Honghe County, Yunnan, China: An application of the fuzzy comprehensive evaluation model. J. Mt. Sci. 2016, 13, 744–753. [Google Scholar] [CrossRef]
- Singh, K.P.; Malik, A.; Mohan, D.; Sinha, S. Multivariate statistical techniques for the evaluation of spatial and temporal variations in water quality of Gomti River (India)—A case study. Water Res. 2004, 38, 3980–3992. [Google Scholar] [CrossRef] [PubMed]
- Reshetylo, O. Fragmentation degree and effective mesh size of nature-protected areas of the Western Ukraine. Біoлoгічні Студії 2015, 9, 207–210. [Google Scholar] [CrossRef]
- Peponis, J.; Ross, C.; Rashid, M. The structure of urban space, movement and co-presence: The case of Atlanta. Geoforum 1997, 28, 341–358. [Google Scholar] [CrossRef]
- Dhami, I.; Deng, J.; Burns, R.C.; Pierskalla, C. Identifying and mapping forest-based ecotourism areas in West Virginia–Incorporating visitors’ preferences. Tour. Manag. 2014, 42, 165–176. [Google Scholar] [CrossRef]
- Daniel, T.C.; Meitner, M.M. Representational validity of landscape visualizations: The effects of graphical realism on perceived scenic beauty of forest vistas. J. Environ. Psychol. 2001, 21, 61–72. [Google Scholar] [CrossRef]
- Svobodova, K.; Sklenicka, P.; Vojar, J. How does the representation rate of features in a landscape affect visual preferences? A case study from a post-mining landscape. Int. J. Min. Reclam. Environ. 2015, 29, 266–276. [Google Scholar] [CrossRef]
- Materia, V.C.; Pascucci, S.; Dries, L. Are in-house and outsourcing innovation strategies correlated? Evidence from the European agri-food sector. J. Agric. Econ. 2017, 68, 249–268. [Google Scholar] [CrossRef]
- Cai, Y.; Zhang, H.; Pan, W.; Chen, Y.; Wang, X. Urban expansion and its influencing factors in natural wetland distribution area in Fuzhou City, China. Chin. Geogr. Sci. 2012, 22, 568–577. [Google Scholar] [CrossRef]
- Stigsdotter, U.K.; Corazon, S.S.; Sidenius, U.; Refshauge, A.D.; Grahn, P. Forest design for mental health promotion—Using perceived sensory dimensions to elicit restorative responses. Landsc. Urban Plan. 2017, 160, 1–15. [Google Scholar] [CrossRef]
- Osgood, C.E.; Luria, Z. A blind analysis of a case of multiple personality using the semantic differential. J. Abnorm. Soc. Psychol. 1954, 49, 579. [Google Scholar] [CrossRef] [PubMed]
- Calvin, J.S.; Dearinger, J.A.; Curtin, M.E. An attempt at assessing preferences for natural landscape. Environ. Behav. 1972, 4, 447. [Google Scholar]
- Wohlwill, J.F.; Altman, I. Behaviour and the Natural Environment; Plenum Press: New York, NY, USA, 1983. [Google Scholar]
- Sun, L.; Shao, H.; Li, S.; Huang, X.; Yang, W. Integrated application of eye movement analysis and beauty estimation in the visual landscape quality estimation of urban waterfront park. Int. J. Pattern Recognit. Artif. Intell. 2018, 32, 1856010. [Google Scholar] [CrossRef]
- Broadbent, G. Emerging Concepts in Urban Space Design; Taylor & Francis: Abingdon, UK, 2003. [Google Scholar]
- Zhang, Z.; Qie, G.; Wang, C.; Jiang, S.; Li, X.; Li, M. Relationship between forest color characteristics and scenic beauty: Case study analyzing pictures of mountainous forests at sloped positions in Jiuzhai Valley, China. Forests 2017, 8, 63. [Google Scholar] [CrossRef]
- Weng, S.; Zhu, J.; Su, Z.; Yuan, Z.; Gao, C. Landscape quality assessment of waterfront plants in green areas of Lingnan region. Sci. Silvae Sin. 2017, 53, 20–27. [Google Scholar]
- Clay, G.R.; Daniel, T.C. Scenic landscape assessment: The effects of land management jurisdiction on public perception of scenic beauty. Landsc. Urban Plan. 2000, 49, 1–13. [Google Scholar] [CrossRef]
- Batty, M. Exploring isovist fields: Space and shape in architectural and urban morphology. Environ. Plan. B Plan. Des. 2001, 28, 123–150. [Google Scholar] [CrossRef]
- Brown, T.C.; Daniel, T.C. Predicting scenic beauty of timber stands. For. Sci. 1986, 32, 471–487. [Google Scholar] [CrossRef]
- Deng, C.; Huang, Z.; Zhang, X.; Zhao, H.; Jiang, S.; Ren, Y. Correlation between Vegetation Structure and Species Diversity in Traditional Villages in Karst Topographic Regions of the Zunyi City, China. Plants 2022, 11, 3161. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y. The meanings of landscape elements in traditional village place names in southern Hunan, China. Acad. J. Humanit. Soc. Sci. 2022, 5, 99–107. [Google Scholar]
- Daniel, T.C. Measuring Landscape Esthetics: The Scenic Beauty Estimation Method (Vol. 167); Department of Agriculture, Forest Service, Rocky Mountain Forest and Range Experiment Station: Fort Collins, CO, USA, 1976.
- Guo, Q.; Liu, X. Evaluation and Optimization Design for Microclimate Comfort of Traditional Village Squares Based on Extension Correlation Function. J. Environ. Public Health 2022, 2022, 6106463. [Google Scholar] [CrossRef] [PubMed]
- Wen, B.; Burley, J.B. Expert opinion dimensions of rural landscape quality in Xiangxi, Hunan, China: Principal component analysis and factor analysis. Sustainability 2020, 12, 1316. [Google Scholar] [CrossRef]
- Jiang, Z.; Sun, Y. Exploring the spatial image of traditional villages from the tourists’ hand-drawn sketches. Sustainability 2022, 14, 5977. [Google Scholar] [CrossRef]
- Zhang, M.; Li, Z.; Wu, X. Semantic segmentation method accelerated quantitative analysis of the spatial characteristics of traditional villages. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2021, 46, 933–939. [Google Scholar] [CrossRef]
- Beccaro, G.L.; Donno, D.; Randriamampionona, D.; Torti, V.; Andriamaniraka, H.; Mellano, M.G.; Giacoma, C. Phytochemical characterization of traditional villagers’ remedies in Madagascar: Brachylaena ramiflora decoctions and infusions. In Proceedings of the International Symposium on Survey of Uses of Plant Genetic Resources to the Benefit of Local Populations 2017, Antananarivo, Madagascar, 18–22 September 2017; Volume 1267, pp. 97–104. [Google Scholar]
- Mao, B.; Gong, L.; Xu, C.Y. Evaluating the Scenic Beauty of Individual Trees: A Case Study Using a Nonlinear Model for a Pinus tabulaeformis Scenic Forest in Beijing, China. Forests 2015, 6, 1933–1948. [Google Scholar] [CrossRef]
- Peng, S.H.; Tang, C. Blending the Analytic Hierarchy Process and Fuzzy Logical Systems in Scenic Beauty Assessment of Check Dams in Streams. Water 2015, 7, 6983–6998. [Google Scholar] [CrossRef]
- Cavalcante, C.E.; Souza, W.J.d.; Fernandes, L.T.; Cortez, C.L.B. “Why am i a volunteer?”: Building a quantitative scale. REAd. Rev. Eletrôn. Adm. 2013, 19, 569–587. [Google Scholar] [CrossRef]
- Buch, R.S.; Moitra, M.; Damor, R.; Chauhan, N. Decision-Making Skills: An Assessment among Adolescents in Surat City. Indian J. Community Med. 2021, 46, 195–200. [Google Scholar]
- Haile, G.; Lemenih, M.; Senbeta, F.; Itanna, F. Plant diversity and determinant factors across smallholder agricultural management units in Central Ethiopia. Agrofor. Syst. 2017, 91, 677–695. [Google Scholar] [CrossRef]
- Ohta, H. A phenomenological approach to natural landscape cognition. J. Environ. Psychol. 2001, 21, 387–403. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, J.P. Application of countermeasure research on rain adaptative landscape in Fujian coastal cities. In Proceedings of the 3rd Technical Conference on Hydraulic Engineering (CHE), Hong Kong, China, 13–14 December 2014; pp. 165–169. [Google Scholar]
- Li, R.; Zhang, C. Selection and Application of Garden Plants in the Construction of Sponge City in Northwest China. J. Coast. Res. 2020, 103, 1139–1143. [Google Scholar] [CrossRef]
- Shi, L.; Maruthaveeran, S.; Yusof, M.J.M.; Zhao, J.; Liu, R.S. Exploring Herbaceous Plant Biodiversity Design in Chinese Rain Gardens: A Literature Review. Water 2024, 16, 1586. [Google Scholar] [CrossRef]
- Yang, Y.Q.; Ignatieva, M.; Gaynor, A.; Chen, C.D. Urban biodiversity in design: Insights into the debate on native versus non-native plants and bees in Western Australia. Urban For. Urban Green. 2024, 98, 128391. [Google Scholar] [CrossRef]
- Zube, E.H.; Sell, J.L.; Taylor, J.G. Landscape perception: Research, application and theory. Landsc. Plan. 1982, 9, 1–33. [Google Scholar] [CrossRef]
- Choumert, J.; Cormier, L. The provision of urban parks: An empirical test of spatial spillovers in an urban area using geographic information systems. Ann. Reg. Sci. 2011, 47, 437–450. [Google Scholar] [CrossRef]
Classification of Common Factors | Code Name | Elements | Category | ||||||
---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | |||
Ecological factors | A1 | Native tree species | 1 species | 2~3 species | 4~5 species | 6~7 species | 8~10 species | 11~12 species | More than 13 species |
A2 | Species diversity | 1 species | 2~3 species | 4~5 species | 6~7 species | 8~10 species | 11~12 species | More than 13 species | |
A3 | Rich in layers | 1 floor | 2 floors | 3 floors | Above 3 floors | ||||
A4 | Planting density | <0.1 | 0.1~0.2 | 0.2~0.3 | 0.3~0.4 | 0.4~0.5 | 0.5~0.6 | >0.6 | |
A5 | Revetment landscape | Extremely stiff | Very stiff | Stiff | General | Natural | Very natural | Extremely natural | |
Elements of art | B1 | Harmonious coexistence | Extremely bad | Very bad | Bad | General | Good | Very good | Excellent |
B2 | Artistic composition | Concise | Complete | Equilibrium | |||||
B3 | Both the real and the virtual are born together | Extremely bad | Very bad | Bad | General | Good | Very good | Excellent | |
B4 | Seasonal phase change | Color number 1 | Color number 2 | Color number 3 | More than 3 kinds of color | ||||
B5 | Green rate | <1/3 | 1/3~2/3 | >2/3 | |||||
Functional elements | C1 | Anti-jamming capability | Extremely bad | Very bad | Bad | General | Good | Very good | Excellent |
C2 | Wide field of vision | Closed | Semi-open | Open | |||||
C3 | Scale affinity | Extremely bad | Very bad | Bad | General | Good | Very good | Excellent | |
C4 | Accessibility | Extremely bad | Very bad | Bad | General | Good | Very good | Excellent | |
C5 | Degree of residence | Extremely bad | Very bad | Bad | General | Good | Very good | Excellent |
Community Vertical Structure Type | NO. | Plant Configuration Structure Composition Name | Growth | Scenic Value | Entropy Weight | Results | Ranking |
---|---|---|---|---|---|---|---|
Tree brush grass | D8 | Pterocarya stenoptera C. DC + Melia azedarach + Osmanthus fragrans var. semperflorens + Sapium sebiferum (L.) Roxb + Podocarpus macrophyllus (Thunb.) D. Don + Musa basjoo Siebold + Yulania liliiflora Desr. + Cerasus sp. + Cercis chinensis Bunge + Chaenomeles speciosa (Sweet) Nakai + Rhododendron pulchrum Sweet + Pittosporum tobira (Thunb.) W. T. Aiton + Camellia japonica L. + Salvia leucantha + Nandina domestica Thunb. + Cyperus involucratus Rottb. + Festuca elata Keng ex E. B. Alexeev. | Exuberant | 0.265 | 0.732 | Excellent | 1 |
D4 | Sapium sebiferum (L.) Roxb + Acer palmatum Thunb. in Murray + Cyperus involucratus Rottbo + Ruellia simplex + Thalia dealbata Fraser + Oenanthe javanica (Blume) DC. + Petunia hybrida (Hook.) E. Vilm. + Vinca major Linn. + Variegata Loud + Lonicera japonica Thunb. + Arundo donax var. Versiocolor Stokes + Phalaris arundinacea Linn. + Iris tectorum Maxim. + Euphorbia humifusa Willd. ex Schlecht. | Good | 0.131 | 0.564 | Very good | 6 | |
D16 | Koelreuteria elegans + Sapium sebiferum (L.) Roxb + Sapindus mukorossi Gaertn. + Magnolia Grandiflora Linn. + Cinnamomum camphora (L.) Presl. + Hibiscus mutabilis Linn. + Nerium indicum Mill + Rosa chinensis Jacq. + Gardenia jasminoides J. Ellis + Camellia japonica L. + Liriope platyphylla Wang et Tang + Festuca elata Keng ex E. B. Alexeev | Exuberant | 0.189 | 0.583 | Very good | 4 | |
D18 | Pterocarya stenoptera C. DC + Muehlenbeckia complexa Meisn. + Ligustrum lucidum + Ginkgo biloba L. + Rhododendronsimsii&R + Osmanthus sp. + Hedera nepalensis var. sinensis (Tobl.) Rehd + Dianthus chinensis L. + Populus nigra L. + Citrus maxima (Burm.) Merr. cv. Jiangyong Yu + Punica granatum L. + Populus davidiana Dode + Pelargonium hortorum L. H. Bailey + Ceratostigma plumbaginoides + Ophiopogon bodinieri Levl. + Liriope platyphylla (Decne.) L. H. Bailey | Good | 0.125 | 0.506 | Very good | 8 | |
D6 | Catalpa speciosa (Barney) Engelm + Eucalyptus robusta Smith + Cinnamomum zeylanicum + Phyllostachys nigra (Lodd. ex Lindl.) Munro + Livistona chinensis (Jacq.) R. Br. + Pterocarya stenoptera C. DC + Distylium racemosum Sieb. et Zucc. + ephyranthescandida | Good | 0.043 | 0.422 | Good | 17 | |
D5 | Pterocarya stenoptera C. DC + Broussonetia papyrifera + Melia azedarach L. + Pteroceltis tatarinowii Maxim. + Nandina domestica Thunb. + Morus nigra L. + Osmanthus sp. + Mucunapruriens (L.) DC. + Sabina chinensis (L.) Ant. + Clematis acerifolia + Celtis australis + Mallotus repandus + Paulownia tomentosa + Senna bicapsularis + Bambusa vulgaris + Nephrolepis cordifolia | Good | 0.059 | 0.448 | Good | 14 | |
D3 | Elaeocarpus sylvestris + Celtis sinensis + Magnolia liliiflora Desr. + Cinnamomum camphora (L.) Presl. + Ginkgo biloba L. + Ligustrum×vicaryi Rehder + Isodon rubescens | General | −0.048 | 0.097 | Very bad | 27 | |
D29 | Populus tomentosa Carr + Pterocarya stenoptera C. DC + Ligustrum lucidum + Platanus acerifolia + Ginkgo biloba L. + Dendrocalamus latiflorus Munro + Lycium chinense Miller + Photinia serrulata Lindl. + Loropetalum chinense (R. Br.) Oliv. | Exuberant | 0.199 | 0.685 | Very good | 3 | |
D10 | Salix + Loropetalum chinense (R. Br.) Oliv. + Ligustrumquihoui Carr + Festuca elata Keng ex E. B. Alexeev | General | −0.054 | 0.012 | Bad | 28 | |
D9 | Pterocarya stenoptera C. DC + Davidia involucrata Baill. + Acer negundo L. + Acacia dealbata Link + Aruncus sylvester Kostel. + Cyperus involucratus Rottboll | General | −0.046 | 0.081 | Bad | 25 | |
D1 | Salix babylonica + Sapium sebiferum (L.) Roxb + Rhododendron pulchrum Sweet + Iris tectorum Maxim. | General | −0.136 | 0.032 | Very bad | 31 | |
D25 | Yulania×soulangeana (Soul.-Bod.) D. L. Fu + Prunus cerasifera Ehrhar f. + Amygdalus persica L. + Gardenia jasminoides Ellis + Ligustrum×vicaryi Rehder + Festuca elata Keng ex E. B. Alexeev | Good | 0.079 | 0.463 | Very good | 12 | |
D24 | Cryptomeria fortunei Hooibrenk + Michelia figo (Lour.) Spreng + Canna indica + Ilex crenata cv. Convexa Makino | Good | 0.026 | 0.325 | General | 20 | |
D30 | Sapium sebiferum (L.) Roxb + Urtica fissa E.Pritz. + Cinnamomum camphora (L.) Presl. + Oreocnide frutescens (Thunb.) Miq. + Streblus asper Lour. + Debregeasia orientalis C.J.Chen + Cinnamomum zeylanicum | Good | 0.039 | 0.457 | General | 19 | |
Joe Grass | D17 | Magnolia Grandiflora Linn. + Salix + Magnolia liliflora Desr + Cerasus sp. + Lagerstroemia indica L. + Osmanthus sp. + Prunuspseudocerasus + Rhododendron pulchrum + Ligustrum lucidum + Loropetalum chinense var. rubrum + Buxus sinica | Exuberant | 0.254 | 0.680 | Very good | 2 |
D26 | Cinnamomum camphora (L.) Presl. + Photinia serrulata Lindl. + Catalpa ovata G.Don + Melia azedarach + Pterocarya stenoptera C. DC + Metasequoia glyptostroboides Hu & W. C. Cheng + Catalpa speciosa (Barney) Engelm + Dendrocalamus latiflorus Munro + Sambucus chinensis Lindl. | Good | 0.024 | 0.389 | Good | 21 | |
D11 | Dendrocalamus latiflorus Munro + Pterocarya stenoptera C. DC + Broussonetia papyrifera + Cercis chinensis Bunge + Hymenocallis littoralis (Jacq.) Scalisb. + Spiraea thunbergii Bl. + Mikania micrantha Kunth + Polypogon fugax Nees ex Steud. + Ophiopogon bodinieri Levl. + Scilla scilloides (Lindl.) Druce + Reineckia carnea (Andr.) Kunth + Fatsia japonica (Thunb.) Decne. et Planch + Jasminum mesnyi Hance + Liriope platyphylla Wang et Tang + Nandina domestica Thunb. | Good | 0.018 | 0.409 | Good | 22 | |
D20 | Pterocarya stenoptera C. DC + Celtis australis + Jasminum mesnyi Hance + Euryops pectinatus + Spiraea japonica L. f. + Nephrolepis exaltata var. Bostoniens (L.) Darenport + Salvia leucantha | Good | 0.089 | 0.435 | Good | 11 | |
D28 | Ginkgo biloba L. + Liquidambar formosana + Taxodium distichum (L.) Rich. + Rhododendronsimsii&R + Iris tectorum Maxim. + Puerariae Lobatae Radix | General | 0.101 | 0.264 | General | 10 | |
D2 | Metasequoia glyptostroboides Hu & W. C. Cheng + Cinnamomum camphora (L.) Presl. + Paulownia + Pinus massoniana Lamb. + Phoebe zhennan S. Lee + Indocalamus tessellatus (Munro) Keng f. + Cortaderia selloana + Jasminum mesnyi Hance | General | −0.047 | 0.051 | Bad | 26 | |
D13 | Cinnamomum camphora (L.) Presl. + Pistacia chinensis Bunge + Pteris semipinnata L. Sp. | Good | 0.073 | 0.423 | Very good | 13 | |
D22 | Pterocarya stenoptera C. DC + Elaeocarpus sylvestris + Salix + Melia azedarach + Zoysia tenuifolia Willd. ex Trin. | Bad | −0.032 | 0.016 | Bad | 24 | |
D19 | Celtis australis + Artemisia sylvatica + Pinellia ternata (Thunb.) Breit. + Pteris multifida Poir. | Bad | −0.141 | 0.074 | Bad | 32 | |
D27 | Pterocarya stenoptera C. DC + Miscanthus sinensis cv. + Oxalis corymbosa DC. | Bad | −0.120 | 0.062 | Bad | 30 | |
D12 | Pterocarya stenoptera C. DC + Picea asperata mast + Platanus wrightii + Dendrocalamus latiflorus Munro + Broussonetia papyrifera + Setaria viridis (L.) Beauv. | Good | 0.040 | 0.451 | Good | 18 | |
D31 | Fraxinus excelsior + Amygdalus persica (L.) Batsch + Iris japonica Thunb. | General | 0.010 | 0.298 | General | 23 | |
D7 | Quercus palustris Muench. + Pterocarya stenoptera C. DC + Robinia pseudoacacia L. + C. florida | Good | 0.114 | 0.478 | Good | 9 | |
Shrub and grass | D21 | Acer palmatum Thunb. + Hosta plantaginea (Lam.) Aschers. + Hydrangea macrophylla + Ligustrumquihoui Carr + Chlorophytum comosum (Thunb.) Jacques + Camellia oleifera Abel. + Nandina domestica Thunb. + O. gratissimum var. gratissimum + Tagetes erecta L. + Mentha spicata | Good | 0.149 | 0.604 | Very good | 5 |
D15 | Campsis radicans (L.) Seem + Euphorbia humifusa Willd. ex Schlecht. + Jasminum mesnyi Hance + Dianthusbarbatus + Mentha spicata + Catharanthus roseus (L.) G. Don + Acorus tatarinowii + Glandularia tenera (Spreng.) Cabrera + Ceratostigma plumbaginoides + Salvia leucantha + Rosa multiflora Thunb. | Good | 0.058 | 0.501 | Good | 15 | |
D14 | Ailanthus altissima (Mill.) Swingle + Melia azedarach + Salix alba L. + Euphorbia humifusa Willd. ex Schlecht. + Fallopia multiflora (Thunb.) Harald | Good | 0.045 | 0.489 | Good | 16 | |
D23 | Taxodium ascendens Brongn. + Salix + Cinnamomum camphora (L.) Presl. + Eichhorniacrassipes | General | −0.089 | 0.022 | Very bad | 29 | |
The grass | D32 | Ruellia simplex + Canna glauca L. + Cyperus involucratus Rottboll + Hedera nepalensis var. sinensis (Tobl.) Rehd + Jasminum nudiflorum + Pontederia cordata L. + Rosa chinensis Jacq. + Epipremnum aureum + Iris pseudacorus L. | Exuberant | 0.127 | 0.596 | Very good | 7 |
Models | Non-Standardized Coefficients | Significance | Entropy Weight | ||
---|---|---|---|---|---|
B | Standard Error | ||||
1 | (constant) | 0.072 | 0.346 | 0.834 | |
Ecological elements | Species diversity | 0.012 | 0.008 | 0.018 | 0.274 |
Rich in layers | 0.036 | 0.009 | 0.000 | 0.301 | |
Planting density | −0.053 | 0.010 | 0.000 | 0.014 | |
Revetment landscape | 0.025 | 0.009 | 0.005 | 0.216 | |
Harmonious coexistence | −0.028 | 0.009 | 0.001 | 0.066 | |
Artistic elements | Artistic composition | −0.037 | 0.009 | 0.000 | 0.010 |
Both the real and the virtual are born together | −0.042 | 0.010 | 0.000 | 0.039 | |
Seasonal phase change | 0.045 | 0.010 | 0.000 | 0.352 | |
Green rate | 0.013 | 0.011 | 0.028 | 0.104 | |
Functional elements | Anti-jamming capability | 0.030 | 0.013 | 0.037 | 0.222 |
Wide field of vision | 0.023 | 0.009 | 0.006 | 0.287 | |
Scale affinity | 0.044 | 0.010 | 0.000 | 0.343 | |
Degree of residence | −0.032 | 0.009 | 0.000 | 0.021 |
Serial Number | Classification of Common Factors | Project (Variable Layer) | Component | ||||
---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | |||
1 | Ecological elements | Species diversity | 0.787 | 0.618 | −0.446 | 0.588 | 0.596 |
2 | Rich in layers | −0.010 | −0.598 | 0.044 | 0.768 | 0.225 | |
3 | Planting density | 0.415 | −0.593 | 0.431 | 0.501 | 0.361 | |
4 | Revetment landscape | −0.278 | −0.155 | 0.541 | −0.358 | 0.692 | |
5 | Artistic elements | Harmonious coexistence | 0.707 | 0.419 | 0.169 | −0.576 | 0.402 |
6 | Artistic composition | 0.535 | 0.347 | 0.769 | 0.537 | 0.051 | |
7 | Both the real and the virtual are born together | 0.478 | 0.688 | 0.625 | −0.307 | 0.402 | |
8 | Seasonal phase change | 0.674 | 0.496 | 0.391 | 0.304 | 0.233 | |
9 | Green rate | 0.868 | −0.422 | 0.347 | 0.513 | 0.201 | |
10 | Functional elements | Anti-jamming capability | −0.579 | 0.344 | 0.526 | 0.345 | −0.389 |
11 | Wide field of vision | 0.947 | 0.618 | 0.391 | 0.620 | 0.555 | |
12 | Scale affinity | −0.365 | 0.504 | −0.525 | 0.267 | 0.515 | |
13 | Degree of residence | 0.594 | −0.610 | 0.127 | 0.471 | −0.361 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, L.; Sun, C.; Wang, M. Optimization Strategies for Waterfront Plant Landscapes in Traditional Villages: A Scenic Beauty Estimation–Entropy Weighting Method Analysis. Sustainability 2024, 16, 7140. https://doi.org/10.3390/su16167140
Wang L, Sun C, Wang M. Optimization Strategies for Waterfront Plant Landscapes in Traditional Villages: A Scenic Beauty Estimation–Entropy Weighting Method Analysis. Sustainability. 2024; 16(16):7140. https://doi.org/10.3390/su16167140
Chicago/Turabian StyleWang, Lie, Chuanhao Sun, and Mo Wang. 2024. "Optimization Strategies for Waterfront Plant Landscapes in Traditional Villages: A Scenic Beauty Estimation–Entropy Weighting Method Analysis" Sustainability 16, no. 16: 7140. https://doi.org/10.3390/su16167140
APA StyleWang, L., Sun, C., & Wang, M. (2024). Optimization Strategies for Waterfront Plant Landscapes in Traditional Villages: A Scenic Beauty Estimation–Entropy Weighting Method Analysis. Sustainability, 16(16), 7140. https://doi.org/10.3390/su16167140