Features of the Microalgae and Cyanobacteria Growth in the Flue Gas Atmosphere with Different CO2 Concentrations
Abstract
:1. Introduction
2. Materials and Methods
2.1. Microalgae Strains
2.2. Composition of Nutrient Media
2.3. Experimental Facility
2.4. Cultivation Methodology
2.5. Experimental Procedure
- -
- On the 0th and 12th day: optical density (OD), pH of the medium, microscopy, and composition of the culture medium;
- -
- On the 3rd and 9th day: OD and pH of the medium;
- -
- On the 6th day: OD, pH of the medium, and microscopy.
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Montzka, S.A.; Dlugokencky, E.J.; Butler, J.H. Non-CO2 Greenhouse Gases and Climate Change. Nature 2011, 476, 43–50. [Google Scholar] [CrossRef]
- Sovacool, B.K.; Griffiths, S.; Kim, J.; Bazilian, M. Climate Change and Industrial F-Gases: A Critical and Systematic Review of Developments, Sociotechnical Systems and Policy Options for Reducing Synthetic Greenhouse Gas Emissions. Renew. Sustain. Energy Rev. 2021, 141, 110759. [Google Scholar] [CrossRef]
- Iglina, T.; Iglin, P.; Pashchenko, D. Industrial CO2 Capture by Algae: A Review and Recent Advances. Sustainability 2022, 14, 3801. [Google Scholar] [CrossRef]
- Vale, M.A.; Ferreira, A.; Pires, J.C.M.; Gonçalves, A.L. CO2 Capture Using Microalgae. In Advances in Carbon Capture; Rahimpour, M.R., Farsi, M., Makarem, M.A., Eds.; Woodhead Publishing: Sawston, UK, 2020; pp. 381–405, Chapter 17; ISBN 978-0-12-819657-1. [Google Scholar]
- Klinthong, W.; Yang, Y.-H.; Huang, C.-H.; Tan, C.-S. A Review: Microalgae and Their Applications in CO2 Capture and Renewable Energy. Aerosol Air Qual. Res. 2015, 15, 712–742. [Google Scholar] [CrossRef]
- Wollmann, F.; Dietze, S.; Ackermann, J.-U.; Bley, T.; Walther, T.; Steingroewer, J.; Krujatz, F. Microalgae Wastewater Treatment: Biological and Technological Approaches. Eng. Life Sci. 2019, 19, 860–871. [Google Scholar] [CrossRef]
- Chernova, N.; Kiseleva, S. The Wastewater Using in Technologies of Bio-Oil Production from Microalgae: CO2 Capture and Storage. In Proceedings of the IOP Conference Series: Materials Science and Engineering, Athens, Greece, 14–15 December 2020; Volume 1037, p. 012045. [Google Scholar] [CrossRef]
- Hossain, N.; Mahlia, T.M.I.; Saidur, R. Latest Development in Microalgae-Biofuel Production with Nano-Additives. Biotechnol. Biofuels 2019, 12, 125. [Google Scholar] [CrossRef]
- Li, S.; Chang, H.; Zhang, S.; Ho, S.-H. Production of Sustainable Biofuels from Microalgae with CO2 Bio-Sequestration and Life Cycle Assessment. Environ. Res. 2023, 227, 115730. [Google Scholar] [CrossRef] [PubMed]
- Chiu, S.-Y.; Kao, C.-Y.; Chen, C.-H.; Kuan, T.-C.; Ong, S.C.; Lin, C.-S. Reduction of CO2 by a High-Density Culture of Chlorella sp. in a Semicontinuous Photobioreactor. Bioresour. Technol. 2008, 99, 3389–3396. [Google Scholar] [CrossRef] [PubMed]
- Yeh, K.-L.; Chang, J.-S. Effects of Cultivation Conditions and Media Composition on Cell Growth and Lipid Productivity of Indigenous Microalga Chlorella Vulgaris ESP-31. Bioresour. Technol. 2011, 105, 120–127. [Google Scholar] [CrossRef]
- Na’, M.; Brummer, V.; Lošák, P.; Máša, V.; Sukačová, K.; Tatarová, D.; Pernica, M.; Prochazkova, M. Waste-to-Energy Plants Flue Gas CO2 Mitigation Using a Novel Tubular Photobioreactor While Producing Chlorella Algae. J. Clean. Prod. 2022, 385, 135721. [Google Scholar] [CrossRef]
- Duarte, J.H.; Fanka, L.S.; Costa, J.A.V. Utilization of Simulated Flue Gas Containing CO2, SO2, NO and Ash for Chlorella Fusca Cultivation. Bioresour. Technol. 2016, 214, 159–165. [Google Scholar] [CrossRef]
- Solovchenko, A.; Khozin-Goldberg, I. High-CO2 Tolerance in Microalgae: Possible Mechanisms and Implications for Biotechnology and Bioremediation. Biotechnol. Lett. 2013, 35, 1745–1752. [Google Scholar] [CrossRef] [PubMed]
- Ong, S.-C.; Kao, C.-Y.; Chiu, S.-Y.; Tsai, M.-T.; Lin, C.-S. Characterization of the Thermal-Tolerant Mutants of Chlorella sp. with High Growth Rate and Application in Outdoor Photobioreactor Cultivation. Bioresour. Technol. 2010, 101, 2880–2883. [Google Scholar] [CrossRef]
- Latypov, O.R.; Laptev, A.B.; Shevlyakov, F.B.; Golubev, I.A.; Shaposhnikov, N.O. Utilization of Carbon Dioxide Taking into Account the Climatic Characteristics of The Region. Probl. Gather. Treat. Transp. Oil Oil Prod. 2023, 2, 174–194. [Google Scholar]
- Osundeko, O.; Dean, A.; Davies, H.; Pittman, J. Acclimation of Microalgae to Wastewater Environments Involves Increased Oxidative Stress Tolerance Activity. Plant Cell Physiol. 2014, 55, 1848–1857. [Google Scholar] [CrossRef]
- Rezaei, R.; Akbulut, A.; Sanin, S. Effect of Algae Acclimation to the Wastewater Medium on the Growth Kinetics and Nutrient Removal Capacity. Environ. Monit. Assess. 2019, 191, 679. [Google Scholar] [CrossRef] [PubMed]
- Al-Farttoosy, A.; Pandhal, J.; Okurowska, K.; Karunakaran, E.; Couto, N. Adapting the Algal Microbiome for Growth on Domestic Landfill Leachate. Bioresour. Technol. 2020, 319, 124246. [Google Scholar] [CrossRef]
- Chen, J.; Dai, L.; Mataya, D.; Cobb, K.; Chen, P.; Ruan, R. Enhanced Sustainable Integration of CO2 Utilization and Wastewater Treatment Using Microalgae in Circular Economy Concept. Bioresour. Technol. 2022, 366, 128188. [Google Scholar] [CrossRef]
- Mavrommati, M.; Daskalaki, A.; Papanikolaou, S.; Aggelis, G. Adaptive Laboratory Evolution Principles and Applications in Industrial Biotechnology. Biotechnol. Adv. 2022, 54, 107795. [Google Scholar] [CrossRef]
- Cheng, D.; Li, X.; Yuan, Y.; Yang, C.; Tang, T.; Zhao, Q.; Sun, Y. Adaptive Evolution and Carbon Dioxide Fixation of Chlorella sp. in Simulated Flue Gas. Sci. Total Environ. 2019, 650, 2931–2938. [Google Scholar] [CrossRef]
- Cheng, J.; Zhu, Y.; Zhang, Z.; Yang, W. Modification and Improvement of Microalgae Strains for Strengthening CO2 Fixation from Coal-Fired Flue Gas in Power Plants. Bioresour. Technol. 2019, 291, 121850. [Google Scholar] [CrossRef] [PubMed]
- Barati, B.; Zeng, K.; Baeyens, J.; Wang, S.; Addy, M.; Gan, S.Y.; Abomohra, A.E.F. Recent Progress in Genetically Modified Microalgae for Enhanced Carbon Dioxide Sequestration. Biomass Bioenergy 2021, 145, 105927. [Google Scholar] [CrossRef]
- Yoshihara, K.-I.; Nagase, H.; Eguchi, K.; Hirata, K.; Miyamoto, K. Biological Elimination of Nitric Oxide and Carbon Dioxide from Flue Gas by Marine Microalga NOA-113 Cultivated in a Long Tubular Photobioreactor. J. Ferment. Bioeng. 1996, 82, 351–354. [Google Scholar] [CrossRef]
- Jiang, Y.; Zhang, W.; Wang, J.; Chen, Y.; Shen, S.; Liu, T. Utilization of Simulated Flue Gas for Cultivation of Scenedesmus Dimorphus. Bioresour. Technol. 2012, 128C, 359–364. [Google Scholar] [CrossRef] [PubMed]
- Chiu, S.-Y.; Kao, C.-Y.; Huang, T.-T.; Lin, C.-J.; Ong, S.-C.; Chen, C.-D.; Chang, J.-S.; Lin, C.-S. Microalgal Biomass Production and On-Site Bioremediation of Carbon Dioxide, Nitrogen Oxide and Sulfur Dioxide from Flue Gas Using Chlorella sp. Cultures. Bioresour. Technol. 2011, 102, 9135–9142. [Google Scholar] [CrossRef] [PubMed]
- Radmann, E.M.; Camerini, F.V.; Santos, T.D.; Costa, J.A.V. Isolation and Application of SOX and NOX Resistant Microalgae in Biofixation of CO2 from Thermoelectricity Plants. Energy Convers. Manag. 2011, 52, 3132–3136. [Google Scholar] [CrossRef]
- Yanagi, M.; Watanabe, Y.; Saiki, H. CO2 Fixation by Chlorella sp. HA-1 and Its Utilization. Energy Convers. Manag. 1995, 36, 713–716. [Google Scholar] [CrossRef]
- Chunzhuk, E.A.; Grigorenko, A.V.; Kiseleva, S.V.; Chernova, N.I.; Ryndin, K.G.; Kumar, V.; Vlaskin, M.S. The Influence of Elevated CO2 Concentrations on the Growth of Various Microalgae Strains. Plants 2023, 12, 2470. [Google Scholar] [CrossRef]
- Chernova, N.I.; Grigorenko, A.V.; Kiseleva, S.V.; Larina, O.M.; Kumar, V.; Vlaskin, M.S. Comparative Evaluation of Pyrolysis and Hydrothermal Liquefaction for Obtaining Biofuel from a Sustainable Consortium of Microalgae Arthrospira Platensis with Heterotrophic Bacteria. Processes 2022, 10, 2202. [Google Scholar] [CrossRef]
- Grigorenko, A.; Kostyukevich, Y.; Chernova, N.; Kiseleva, S.; Kiseleva, E.; Popel’, O.; Vladimirov, G.; Nikolaev, E.; Kumar, V.; Vlaskin, M. Hydrothermal Liquefaction of Arthrospira Platensis for Bio-Oil Production and Study of Chemical Composition for Bio-Oil and Its Gasoline Fraction. Russ. J. Appl. Chem. 2019, 92, 1480–1486. [Google Scholar] [CrossRef]
- Efremenko, E.; Nikolskaya, A.B.; Lyagin, I.; Senko, O.; Makhlis, T.A.; Stepanov, N.A.; Maslova, O.; Mammadova, F.; Varfolomeev, S. Production of Biofuels from Pretreated Microalgae Biomass by Anaerobic Fermentation with Immobilized Clostridium Acetobutylicum Cells. Bioresour. Technol. 2012, 114, 342–348. [Google Scholar] [CrossRef]
- Bradford, M.M. A Rapid and Sensitive Method for the Quantitation of Microgram Quantities of Protein Utilizing the Principle of Protein-Dye Binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef] [PubMed]
- DuBois, M.; Gilles, K.A.; Hamilton, J.K.; Rebers, P.A.; Smith, F. Colorimetric Method for Determination of Sugars and Related Substances. Anal. Chem. 1956, 28, 350–356. [Google Scholar] [CrossRef]
- Chunzhuk, E.A.; Grigorenko, A.V.; Kiseleva, S.V.; Chernova, N.I.; Vlaskin, M.S.; Ryndin, K.G.; Butyrin, A.V.; Ambaryan, G.N.; Dudoladov, A.O. Effects of Light Intensity on the Growth and Biochemical Composition in Various Microalgae Grown at High CO2 Concentrations. Plants 2023, 12, 3876. [Google Scholar] [CrossRef]
- Matsumoto, H.; Hamasaki, A.; Sioji, N.; Ikuta, Y. Influence of CO2, SO2 and NO in Flue Gas on Microalgae Productivity. J. Chem. Eng. Jpn. 1997, 30, 620–624. [Google Scholar] [CrossRef]
- Yen, H.-W.; Ho, S.-H.; Chen, C.-Y.; Chang, J.-S. CO2, NOx and SOx Removal from Flue Gas via Microalgae Cultivation: A Critical Review. Biotechnol. J. 2015, 10, 829–839. [Google Scholar] [CrossRef] [PubMed]
- Brányiková, I.; Doucha, J.; Livansky, K.; Machát, J.; Novak, P.; Umysova, D.; Zachleder, V.; Vitova, M. Simultaneous Flue Gas Bioremediation and Reduction of Microalgal Biomass Production Costs. Appl. Microbiol. Biotechnol. 2009, 82, 179–185. [Google Scholar] [CrossRef]
- Kumar, A.; Yuan, X.; Sahu, A.; Dewulf, J.; Ergas, S.; Van Langenhove, H. A Hollow Fiber Membrane Photo-Bioreactor for CO2 Sequestration from Combustion Gas Coupled with Wastewater Treatment: A Process Engineering Approach. J. Chem. Technol. Biotechnol. 2010, 85, 387–394. [Google Scholar] [CrossRef]
- Baohua, Z.; Sun, F.; Yang, M.; Lu, L.; Yang, G.; Pan, K. Large-Scale Biodiesel Production Using Flue Gas from Coal-Fired Power Plants with Nannochloropsis Microalgal Biomass in Open Raceway Ponds. Bioresour. Technol. 2014, 174, 53–59. [Google Scholar] [CrossRef]
- Zeiler, K.G.; Heacox, D.A.; Toon, S.T.; Kadam, K.L.; Brown, L.M. The Use of Microalgae for Assimilation and Utilization of Carbon Dioxide from Fossil Fuel-Fired Power Plant Flue Gas. Energy Convers. Manag. 1995, 36, 707–712. [Google Scholar] [CrossRef]
- Vlaskin, M.; Kiseleva, S.; Chernova, N.; Grigorenko, A.; Ryndin, K.; Popel’, O.; Malanii, S.; Slavkina, O.; Naves, F.; Kumar, V. Effectiveness of CO2 Capture by Arthrospira Platensis Microalgae from a Mixture Simulating Flue Gases. Therm. Eng. 2023, 70, 370–383. [Google Scholar] [CrossRef]
- Zhao, B.; Su, Y. Process Effect of Microalgal-Carbon Dioxide Fixation and Biomass Production: A Review. Renew. Sustain. Energy Rev. 2014, 31, 121–132. [Google Scholar] [CrossRef]
- Raslavičius, L.; Semenov, V.G.; Chernova, N.I.; Keršys, A.; Kopeyka, A.K. Producing Transportation Fuels from Algae: In Search of Synergy. Renew. Sustain. Energy Rev. 2014, 40, 133–142. [Google Scholar] [CrossRef]
- Chernova, N.; Kiseleva, S. Microalgae Biofuels: Induction of Lipid Synthesis for Biodiesel Production and Biomass Residues into Hydrogen Conversion. Int. J. Hydrogen Energy 2017, 42, 2861–2867. [Google Scholar] [CrossRef]
- Lam, M.; Lee, K.T.; Mohamed, A. Current Status and Challenges on Microalgae-Based Capture. Int. J. Greenh. Gas Control 2012, 10, 456–469. [Google Scholar] [CrossRef]
Microalgae | The Growth Rate of Microalgae Biomass, g·L−1·d−1 | ||
---|---|---|---|
3% | 6% | 8% | |
C. vulgaris | 0.64 ± 0.03 | 0.79 ± 0.05 | 0.74 ± 0.04 |
C. ellipsoidea | 0.58 ± 0.03 | 0.74 ± 0.04 | 0.68 ± 0.03 |
E. subsphaerica | 0.56 ± 0.03 | 0.51 ± 0.03 | 0.51 ± 0.02 |
G. pulchra | 0.49 ± 0.02 | 0.42 ± 0.02 | 0.48 ± 0.03 |
A. platensis | 0.21 ± 0.01 | 0.21 ± 0.01 | 0.27 ± 0.02 |
Microalgae | CO2, % | Light Intensity, µmol Quanta·m−2·s−1 | Biomass Productivity, g·L−1·d−1 | Reference |
---|---|---|---|---|
Chlorella vulgaris | 10–13 | 1150 | 2.500 | [39] |
Chlorella fusca Leb 111 | 10 | 41.6 | 0.140 | [13] |
Spirulina platensis | 15 | 120 | 0.170 | [40] |
Nannochloropsis oceanica KA2 | 13 | Outdoor (variable) | 0.013 | [41] |
Monoraphidium minutum | 13.6 | 200 | 0.189 | [42] |
Scenedesmus dimorphus | 15 | 100 | 0.485 | [26] |
Nannochloropsis salina | 10–11 | Outdoor (variable) | 0.032 | [37] |
Chlorella vulgaris | 8 | 200 | 0.740 | This work |
Elliptochloris subsphaerica | 8 | 200 | 0.510 | This work |
Arthrospira platensis | 8 | 200 | 0.270 | This work |
Microalgae | CO2 Absorbtion by Microalgae (from Flue Gases), g·L−1 | ||
---|---|---|---|
3% | 6% | 9% | |
C. vulgaris | 15.4 | 19.0 | 17.8 |
C. ellipsoidea | 13.9 | 17.8 | 16.3 |
E. subsphaerica | 13.4 | 12.2 | 12.2 |
G. pulchra | 11.8 | 10.1 | 11.5 |
A. platensis | 5.0 | 5.0 | 6.5 |
CO2 | Microalgae Strains | Proteins, % | Lipids, % | Carbohydrates, % | |||
---|---|---|---|---|---|---|---|
CO2 and Air | Flue Gases | CO2 and Air | Flue Gases | CO2 and Air | Flue Gases | ||
3% | C. vulgaris | 44.4 ± 11.1 | 49.8 ± 6.7 | 22.8 ± 2.1 | 22.2 ± 1.1 | 25.4 ± 7.3 | 11.7 ± 3.9 |
C. ellipsoidea | 48.1 ± 8.3 | 56.2 ± 5.1 | 21.8 ± 1.5 | 20.6 ± 1.2 | 25.4 ± 7.3 | 10.6 ± 3.5 | |
E. subsphaerica | 35.8 ± 7.3 | 36.1 ± 5.9 | 22.0 ± 1.6 | 18.9 ± 1.1 | 33.2 ± 7.9 | 22.1 ± 5.3 | |
G. pulchra | 41.4 ± 6.8 | 36.9 ± 5.0 | 21.8 ± 1.9 | 19.6 ± 1.2 | 33.3 ± 5.7 | 18.6 ± 4.3 | |
A. platensis | 22.8 ± 7.2 | 57.2 ± 6.5 | 16.3 ± 1.6 | 22.3 ± 1.5 | 23.0 ± 7.1 | 18.0 ± 5.1 | |
6% | C. vulgaris | 45.5 ± 8.3 | 58.9 ± 9.7 | 20.8 ± 1.8 | 28.1 ± 1.8 | 41.4 ± 9.8 | 5.3 ± 1.0 |
C. ellipsoidea | 34.6 ± 10.5 | 64.1 ± 12.0 | 20.3 ± 2.2 | 29.8 ± 0.4 | 42.8 ± 9.6 | 6.3 ± 1.0 | |
E. subsphaerica | 46.2 ± 11.2 | 42.6 ± 3.5 | 22.9 ± 2.0 | 27.7 ± 1.8 | 27.4 ± 7.4 | 7.1 ± 1.3 | |
G. pulchra | 43.8 ± 12.1 | 45.8 ± 1.8 | 20.8 ± 2.6 | 27.9 ± 6.2 | 34.5 ± 7.8 | 8.3 ± 1.1 | |
A. platensis | 19.7 ± 10.4 | 59.2 ± 1.5 | 13.2 ± 1.6 | 21.3 ± 1.7 | 21.0 ± 5.8 | 7.1 ± 2.4 | |
8–9% | C. vulgaris | 39.6 ± 12.3 | 24.8 ± 1.1 | 20.3 ± 2.7 | 28.9 ± 1.2 | 32.8 ± 8.2 | 27.8 ± 0.1 |
C. ellipsoidea | 49.8 ± 12.1 | 30.9 ± 2.3 | 23.4 ± 3.1 | 26.1 ± 2.1 | 34.0 ± 7.2 | 25.2 ± 1.4 | |
E. subsphaerica | 42.2 ± 10.9 | 35.1 ± 1.0 | 22.2 ± 3.0 | 20.3 ± 4.0 | 34.9 ± 7.5 | 20.7 ± 1.5 | |
G. pulchra | 41.8 ± 9.4 | 38.9 ± 1.2 | 21.2 ± 2.4 | 22.8 ± 3.7 | 30.3 ± 5.4 | 24.5 ± 1.2 | |
A. platensis | 16.3 ± 8.1 | 28.1 ± 3.4 | 13.1 ± 1.7 | 19.5 ± 5.3 | 26.5 ± 6.9 | 29.4 ± 1.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chunzhuk, E.A.; Grigorenko, A.V.; Kiseleva, S.V.; Chernova, N.I.; Volkov, D.A.; Nurgaliev, R.G.; Leng, L.; Kumar, V.; Vlaskin, M.S. Features of the Microalgae and Cyanobacteria Growth in the Flue Gas Atmosphere with Different CO2 Concentrations. Sustainability 2024, 16, 7075. https://doi.org/10.3390/su16167075
Chunzhuk EA, Grigorenko AV, Kiseleva SV, Chernova NI, Volkov DA, Nurgaliev RG, Leng L, Kumar V, Vlaskin MS. Features of the Microalgae and Cyanobacteria Growth in the Flue Gas Atmosphere with Different CO2 Concentrations. Sustainability. 2024; 16(16):7075. https://doi.org/10.3390/su16167075
Chicago/Turabian StyleChunzhuk, Elizaveta A., Anatoly V. Grigorenko, Sophia V. Kiseleva, Nadezhda I. Chernova, Dmitry A. Volkov, Renat G. Nurgaliev, Lijian Leng, Vinod Kumar, and Mikhail S. Vlaskin. 2024. "Features of the Microalgae and Cyanobacteria Growth in the Flue Gas Atmosphere with Different CO2 Concentrations" Sustainability 16, no. 16: 7075. https://doi.org/10.3390/su16167075
APA StyleChunzhuk, E. A., Grigorenko, A. V., Kiseleva, S. V., Chernova, N. I., Volkov, D. A., Nurgaliev, R. G., Leng, L., Kumar, V., & Vlaskin, M. S. (2024). Features of the Microalgae and Cyanobacteria Growth in the Flue Gas Atmosphere with Different CO2 Concentrations. Sustainability, 16(16), 7075. https://doi.org/10.3390/su16167075