Relationship between Plant-Available Water and Soil Compaction in Brazilian Soils
Abstract
:1. Introduction
2. Materials and Methods
2.1. Organization of a Dataset
2.2. Estimating of Plant Available Water Content in the Dataset
2.3. Splitting the Dataset by Textural Classes
2.4. Relationships of AW with Bulk Density, Particle Size Fractions and Organic Matter
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gupta, S.; Lehmann, P.; Bickel, S.; Bonetti, S.; Dani, O. Global mapping of potential and climatic plant-available soil water. J. Adv. Model. Earth Syst. 2023, 15, 1–16. [Google Scholar] [CrossRef]
- Mulazzani, R.P.; Gubiani, P.I.; Zanon, A.J.; Drescher, M.S.; Schenato, R.B.; Girardello, V.C. Impact of soil compaction on 30-year soybean yield simulated with CROPGRO-DSSAT. Agr. Syst. 2022, 203, 103523. [Google Scholar] [CrossRef]
- Teixeira, W.G.; Victoria, D.C.; Barros, A.H.C.; Lumbreras, J.F.; Araujo Filho, J.C.; Silva, F.A.M.; Lima, E.P.; Bueno Filho, J.S.S.; Monteiro, J.E.B.A. Predição da Água Disponível no solo em Função da Granulometria para uso nas Análises de Risco no Zoneamento Agrícola de Risco Climático; Embrapa Solos: Rio de Janeiro, Brazil, 2021. [Google Scholar]
- Giarola, N.F.B.; Silva, A.P.; Imhoff, S. Relações entre propriedades físicas e características de solos da região sul do Brasil. Rev. Bras. Cienc. Solo 2002, 26, 885–893. [Google Scholar] [CrossRef]
- Saxton, K.E.; Rawls, W.J.; Romberger, J.S.; Papendick, R.I. Estimating generalized soil-water characteristics from texture. Soil. Sci. Soc. Am. J. 1986, 50, 1031–1036. [Google Scholar] [CrossRef]
- Amorim, R.S.S.; Albuquerque, J.A.; Couto, E.G.; Kunz, M.; Rodrigues, M.F.; Silva, L.C.M.; Reichert, J.M. Water retention and availability in Brazilian Cerrado (neotropical savanna) soils under agricultural use: Pedotransfer functions and decision trees. Soil Tillage Res. 2022, 224, 1–14. [Google Scholar] [CrossRef]
- Arya, L.M.; Paris, J.F. Physicoempirical model to predict the soil moisture characteristic from particle-size distribution and bulk density data. Soil Sci. Soc. Am. J. 1981, 45, 1023–1030. [Google Scholar] [CrossRef]
- Costa, A.; Albuquerque, J.A.; Costa, A.; Pértile, P.; Silva, F.R. Water retention and availability in soils of the State of Santa Catarina-Brazil: Effect of textural classes, soil classes and lithology. Rev. Bras. Cienc. Solo 2013, 37, 1535–1548. [Google Scholar] [CrossRef]
- Gupta, S.C.; Larson, W.E. Estimating soil water retention characteristics from particle size distribution, organic matter percent, and bulk density. Water Resour. Res. 1979, 15, 1633–1635. [Google Scholar] [CrossRef]
- Reichert, J.M.; Albuquerque, J.A.; Kaiser, D.R.; Reinert, D.J.; Urach, F.L.; Carlesso, R. Estimation of water retention and availability in soils of Rio Grande do Sul. Rev. Bras. Cienc. Solo 2009, 33, 1547–1560. [Google Scholar] [CrossRef]
- Ritchie, J.T.; Gerakis, A.; Suleiman, A.A. Simple model to estimate field-measured soil water limits. Trans. ASAE 1999, 42, 1609–1614. [Google Scholar] [CrossRef]
- Fuentes-Llanillo, R.; Telles, T.S.; Soares Junior, D.; de Melo, T.R.; Friedrich, T.; Kassam, A. Expansion of no-tillage practice in conservation agriculture in Brazil. Soil Tillage Res. 2021, 208, 104877. [Google Scholar] [CrossRef]
- Reichert, J.M.; Suzuki, L.E.A.S.; Reinert, D.J. Compactação do solo em sistemas agropecuários e florestais: Identificação, efeitos, limites críticos e mitigação. Tópicos Em Ciência Do Solo 2007, 5, 49–134. [Google Scholar]
- Klein, V.A.; Reichert, J.M.; Reinert, D.J. Água disponível em um Latossolo Vermelho argiloso e murcha fisiológica de culturas. Bras. Eng. Agr. Amb. 2006, 10, 646–650. [Google Scholar] [CrossRef]
- Zhang, Y.; Schaap, M.G. Weighted recalibration of the Rosetta pedotransfer model with improved estimates of hydraulic parameter distributions and summary statistics (Rosetta3). J. Hydrol. 2017, 547, 39–53. [Google Scholar] [CrossRef]
- De Jong van Lier, Q.; Wendroth, O. Reexamination of the Field Capacity Concept in a Brazilian Oxisol. Soil. Sci. Soc. Am. J. 2016, 80, 264–274. [Google Scholar] [CrossRef]
- Melo, M.L.A.; de Jong van Lier, Q. FluxPAW: A standalone software to calculate flux-based plant available water. Softw. Impacts 2023, 15, 1–4. [Google Scholar] [CrossRef]
- Santos, R.D.; Santos, H.G.; Ker, J.C.; Anjos, L.H.C.; Shimizu, S.H. Manual de Descrição e Coleta de solo no Campo, 7th ed.; SBCS: Viçosa, Brazil, 2015. [Google Scholar]
- Mukaka, M.M. Statistics Corner: A guide to appropriate use of correlation coefficient in medical research. Malawi Med. J. 2012, 24, 69–71. [Google Scholar] [PubMed]
- Schober, P.; Boer, C.; Schwarte, L.A. Correlation coefficients: Appropriate use and interpretation. Anesth. Analg. 2018, 126, 63–1768. [Google Scholar] [CrossRef]
- Bitencourt Junior, D.; Suzuki, L.E.A.S.; Pauletto, E.A.; Bamberg, A.L.; Nunes, M.R.; Perazzoli, D. Estrutura e água disponível de um cambissolo submetido a períodos de pastejo rotacionado. Agroamazon 2021, 1, 50–59. [Google Scholar] [CrossRef]
- Kaiser, D.R. Estrutura e Água em Argissolo sob Distintos Preparos na Cultura do Milho. Ph.D. Thesis, Universidade Federal de Santa Maria, Santa Maria, Brazil, 2010. [Google Scholar]
- Suzuki, L.E.A.S.; Reinert, D.J.; Alves, M.C.; Reichert, J.M. Medium-term no-tillage, additional compaction, and chiseling as affecting clayey subtropical soil physical properties and yield of corn, soybean and wheat crops. Sustainability 2022, 14, 9717. [Google Scholar] [CrossRef]
- Moraes, M.T.; Debiasi, H.; Franchini, J.C.; Mastroberti, A.A.; Levien, R.; Leitner, D.; Schnepf, A. Soil compaction impacts soybean root growth in an Oxisol from subtropical Brazil. Soil. Tillage Res. 2020, 200, 104611. [Google Scholar] [CrossRef]
- Guillaume, B.; Boukbida, H.A.; Bakker, G.; Bieganowski, A.; Brostaux, Y.; Cornelis, W.; Durner, W.; Hartmann, C.; Iversen, B.V.; Javaux, M.; et al. Reproducibility of the wet part of the soil water retention curve: A European interlaboratory comparison. EGUsphere 2023, 9, 365–379. [Google Scholar] [CrossRef]
- Ottoni, M.V.; Ottoni Filho, T.B.; Schaap, M.G.; Lopes-Assad, M.L.R.C.; Rotunno Filho, O.C. Hydrophysical database for Brazilian soils (HYBRAS) and pedotransfer functions for water retention. Vadose Zone J. 2018, 17, 1–17. [Google Scholar] [CrossRef]
- De Jong Van Lier, Q.; Pinheiro, E.A.R.; Inforsato, L. Hydrostatic equilibrium between soil samples and pressure plates used in soil water retention determination: Consequences of a questionable assumption. Rev. Bras. Cienc. Solo 2019, 43, 1–14. [Google Scholar] [CrossRef]
- Stolf, R.; Thurler, A.M.; Bacchi, O.O.S.; Reichardt, K. Method to estimate soil macroporosity and microporosity based on sand content and bulk density. Rev. Bras. Cienc. Solo 2011, 35, 447–459. [Google Scholar] [CrossRef]
- Leão, T.P. Water retention and penetration resistance equations for the least limiting water range. Sci. Agric. 2021, 76, 172–178. [Google Scholar] [CrossRef]
Sub-Dataset | Statistics | Sand | Silt | Clay | BD | FC | PWP | AW |
---|---|---|---|---|---|---|---|---|
Sand (n = 147) | Average | 90 | 7 | 4 | 1.54 | 0.14 | 0.04 | 0.10 |
SD | 3 | 4 | 2 | 0.13 | 0.05 | 0.01 | 0.05 | |
Min | 86 | 1 | 2 | 0.99 | 0.05 | 0.02 | 0.00 | |
Max | 96 | 12 | 8 | 1.89 | 0.25 | 0.07 | 0.22 | |
Loamy Sand (n = 215) | Average | 84 | 10 | 7 | 1.58 | 0.20 | 0.07 | 0.13 |
SD | 3 | 5 | 4 | 0.12 | 0.05 | 0.02 | 0.05 | |
Min | 80 | 1 | 2 | 1.00 | 0.05 | 0.02 | 0.01 | |
Max | 89 | 17 | 14 | 1.89 | 0.31 | 0.10 | 0.24 | |
Sandy Loam (n = 25) | Average | 61 | 27 | 12 | 1.66 | 0.25 | 0.08 | 0.17 |
SD | nv | nv | nv | 0.07 | 0.01 | 0.00 | 0.01 | |
Min | 61 | 27 | 12 | 1.47 | 0.24 | 0.07 | 0.16 | |
Max | 61 | 27 | 12 | 1.74 | 0.28 | 0.08 | 0.20 | |
Sandy Clay Loam (n = 299) | Average | 62 | 12 | 25 | 1.52 | 0.25 | 0.12 | 0.13 |
SD | 6 | 6 | 5 | 0.14 | 0.05 | 0.05 | 0.05 | |
Min | 45 | 0 | 20 | 0.96 | 0.12 | 0.04 | 0.02 | |
Max | 78 | 26 | 35 | 1.84 | 0.38 | 0.25 | 0.27 | |
Loam (n = 216) | Average | 46 | 38 | 16 | 1.62 | 0.29 | 0.18 | 0.11 |
SD | 4 | 4 | 3 | 0.11 | 0.03 | 0.04 | 0.04 | |
Min | 31 | 28 | 12 | 1.18 | 0.21 | 0.08 | 0.04 | |
Max | 53 | 48 | 28 | 1.92 | 0.37 | 0.28 | 0.23 | |
Sandy clay (n = 81) | Average | 50 | 10 | 40 | 1.45 | 0.31 | 0.21 | 0.10 |
SD | 3 | 3 | 3 | 0.17 | 0.06 | 0.04 | 0.04 | |
Min | 45 | 5 | 35 | 0.79 | 0.19 | 0.13 | 0.03 | |
Max | 59 | 17 | 46 | 1.73 | 0.44 | 0.31 | 0.19 |
Sub-Dataset | Statistics | Sand | Silt | Clay | BD | FC | PWP | AW |
---|---|---|---|---|---|---|---|---|
Clay Loam (n = 102) | Average | 34 | 32 | 34 | 1.41 | 0.33 | 0.19 | 0.15 |
SD | 6 | 7 | 3 | 0.22 | 0.04 | 0.03 | 0.05 | |
Min | 20 | 16 | 28 | 0.46 | 0.24 | 0.13 | 0.05 | |
Max | 45 | 49 | 40 | 1.67 | 0.41 | 0.28 | 0.26 | |
Silty Loam (n = 191) | Average | 20 | 57 | 23 | 1.44 | 0.37 | 0.15 | 0.22 |
SD | 3 | 2 | 2 | 0.17 | 0.03 | 0.03 | 0.04 | |
Min | 15 | 54 | 18 | 1.00 | 0.31 | 0.08 | 0.11 | |
Max | 29 | 63 | 26 | 1.83 | 0.44 | 0.20 | 0.33 | |
Silty Clay Loam (n = 8) | Average | 13 | 52 | 34 | 1.30 | 0.39 | 0.22 | 0.17 |
SD | 3 | 2 | 4 | 0.14 | 0.02 | 0.08 | 0.07 | |
Min | 9 | 50 | 29 | 1.11 | 0.36 | 0.12 | 0.11 | |
Max | 16 | 56 | 40 | 1.53 | 0.43 | 0.30 | 0.27 | |
Silty Clay (n = 171) | Average | 12 | 42 | 46 | 1.22 | 0.38 | 0.22 | 0.17 |
SD | 2 | 1 | 2 | 0.13 | 0.03 | 0.05 | 0.04 | |
Min | 4 | 40 | 41 | 0.46 | 0.28 | 0.11 | 0.09 | |
Max | 17 | 51 | 52 | 1.51 | 0.46 | 0.34 | 0.28 | |
Clay (n = 475) | Average | 25 | 26 | 49 | 1.29 | 0.36 | 0.23 | 0.13 |
SD | 9 | 10 | 4 | 0.17 | 0.05 | 0.05 | 0.05 | |
Min | 8 | 6 | 40 | 0.76 | 0.25 | 0.08 | 0.03 | |
Max | 45 | 40 | 60 | 1.83 | 0.47 | 0.34 | 0.27 | |
Very clayey (n = 549) | Average | 13 | 22 | 65 | 1.27 | 0.39 | 0.26 | 0.13 |
SD | 5 | 5 | 6 | 0.13 | 0.04 | 0.03 | 0.03 | |
Min | 2 | 1 | 60 | 0.85 | 0.29 | 0.18 | 0.04 | |
Max | 33 | 35 | 96 | 1.61 | 0.49 | 0.34 | 0.22 |
Sub-Dataset | BD (Mg m−3) | Sand (%) | Silt (%) | Clay (%) | OM (%) |
---|---|---|---|---|---|
Sand (n = 147) | 0.07 * | 0.26 * | 0.16 * | <0.01 | 0.03 (n = 10) |
Loamy Sand (n = 215) | 0.01 | 0.17 * | 0.34 * | 0.31 * | <0.01 (n = 6) |
Sandy Loam (n = 25) | 0.03 | nv | nv | nv | nd |
Sandy Clay Loam (n = 299) | 0.01 | <0.01 | 0.04 * | 0.06 * | 0.02 (n = 83) |
Loam (n = 216) | 0.13 * | <0.01 | <0.01 | <0.01 | 0.09 * (n = 202) |
Sandy Clay (n = 81) | 0.04 | <0.01 | 0.03 | <0.01 | 0.05 (n = 58) |
Clay Loam (n = 102) | 0.02 | 0.10 * | 0.14 * | 0.04 * | 0.38 * (n = 7) |
Silty Loam (n = 191) | 0.26 * | 0.34 * | 0.11 * | 0.39 * | nd |
Silty Clay Loam (n = 8) | nv | nv | nv | nv | nd |
Silty Clay (n = 171) | <0.01 | <0.01 | 0.11 * | 0.04 * | <0.01 (n = 11) |
Clay (n = 475) | 0.07 * | 0.23 * | 0.28 * | 0.04 * | 0.01 (n = 79) |
Very Clayey (n = 549) | 0.06 * | 0.02 * | 0.18 * | 0.06 * | 0.09 * (n = 98) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gubiani, P.I.; do Santos, V.P.; Mulazzani, R.P.; Sanches Suzuki, L.E.A.; Drescher, M.S.; Zwirtes, A.L.; Koppe, E.; Pereira, C.A.; Mentges, L.R.; Galarza, R.d.M.; et al. Relationship between Plant-Available Water and Soil Compaction in Brazilian Soils. Sustainability 2024, 16, 6951. https://doi.org/10.3390/su16166951
Gubiani PI, do Santos VP, Mulazzani RP, Sanches Suzuki LEA, Drescher MS, Zwirtes AL, Koppe E, Pereira CA, Mentges LR, Galarza RdM, et al. Relationship between Plant-Available Water and Soil Compaction in Brazilian Soils. Sustainability. 2024; 16(16):6951. https://doi.org/10.3390/su16166951
Chicago/Turabian StyleGubiani, Paulo Ivonir, Venesa Pinto do Santos, Rodrigo Pivoto Mulazzani, Luis Eduardo Akiyoshi Sanches Suzuki, Marta Sandra Drescher, Anderson Luiz Zwirtes, Ezequiel Koppe, Caroline Andrade Pereira, Lenise Raquel Mentges, Rodrigo de Moraes Galarza, and et al. 2024. "Relationship between Plant-Available Water and Soil Compaction in Brazilian Soils" Sustainability 16, no. 16: 6951. https://doi.org/10.3390/su16166951
APA StyleGubiani, P. I., do Santos, V. P., Mulazzani, R. P., Sanches Suzuki, L. E. A., Drescher, M. S., Zwirtes, A. L., Koppe, E., Pereira, C. A., Mentges, L. R., Galarza, R. d. M., Boeno, D., Eurich, K., Bitencourt Junior, D., Marcolin, C. D., & Müller, E. A. (2024). Relationship between Plant-Available Water and Soil Compaction in Brazilian Soils. Sustainability, 16(16), 6951. https://doi.org/10.3390/su16166951