Assessing Urban Ventilation in Common Street Morphologies for Climate-Responsive Design toward Effective Outdoor Space Regeneration
Abstract
:1. Introduction
1.1. Background and Street Canyon Characterization
1.2. Objectives
2. Materials and Methods
2.1. Numerical Model
2.2. Parameters
2.3. Indicators
2.4. Computational Domain
3. Results
3.1. Numerical Domain Optimization
- (1)
- Quadrilateral cells. When the geometry is not very complex, this is the preferred one because it usually provides better mesh quality.
- (2)
- The cell size is dependent on the height reference. This means that the mesh cell size is proportional to the scale of the model, preventing excessive growth.
- (3)
- The cell size is dependent on the AR. If it was constant for every AR, the number of cells in the entrance line of the canyon would be very high for wide streets but very low for narrow streets, which could lead to accuracy problems in the latter.
- (4)
- The numeric domain is split into two areas. The “inner zone” is the one related to the street canyon itself and the surrounding area. Here, the mesh cell is finer because it is the area where the most accuracy is needed to obtain good results. On the other hand, the “outer zone” is the rest of the domain where the meshing is coarser because no results are obtained there.
3.2. AR Characterization
3.3. Wind Speed Characterization
4. Discussion
Limitations
5. Conclusions
Future Research
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kim, H.H. Urban heat island. Int. J. Remote. Sens. 1992, 13, 2319–2336. [Google Scholar] [CrossRef]
- Yang, L.; Qian, F.; Song, D.-X.; Zheng, K.-J. Research on Urban Heat-Island Effect. Procedia Eng. 2016, 169, 11–18. [Google Scholar] [CrossRef]
- Santamouris, M.; Kolokotsa, D. On the impact of urban overheating and extreme climatic conditions on housing, energy, comfort and environmental quality of vulnerable population in Europe. Energy Build. 2015, 98, 125–133. [Google Scholar] [CrossRef]
- Nazarian, N.; Krayenhoff, E.S.; Bechtel, B.; Hondula, D.M.; Paolini, R.; Vanos, J.; Cheung, T.; Chow, W.T.L.; de Dear, R.; Jay, O.; et al. Integrated Assessment of Urban Overheating Impacts on Human Life. Earths Futur. 2022, 10, e2022EF002682. [Google Scholar] [CrossRef]
- Wang, X.; Li, Y.; Yang, X.; Chan, P.W.; Nichol, J.; Li, Q. The Street Air Warming Phenomenon in a High-Rise Compact City. Atmosphere 2018, 9, 402. [Google Scholar] [CrossRef]
- Karimimoshaver, M.; Khalvandi, R.; Khalvandi, M. The effect of urban morphology on heat accumulation in urban street canyons and mitigation approach. Sustain. Cities Soc. 2021, 73, 103127. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhuang, Z.; Yang, F.; Yu, Y.; Xie, X. Urban morphology on heat island and building energy consumption. Procedia Eng. 2017, 205, 2401–2406. [Google Scholar] [CrossRef]
- Deilami, K.; Kamruzzaman, M.; Liu, Y. Urban heat island effect: A systematic review of spatio-temporal factors, data, methods, and mitigation measures. Int. J. Appl. Earth Obs. Geoinf. 2017, 67, 30–42. [Google Scholar] [CrossRef]
- Shahmohamadi, P.; Che-Ani, A.I.; Ramly, A.; Maulud, K.N.A.; Mohd-Nor, M.F.I. Reducing urban heat island effects: A system-atic review to achieve energy consumption balance. Int. J. Phys. Sci. 2010, 5, 626–636. Available online: http://www.academicjournals.org/IJPS (accessed on 13 October 2023).
- Shindell, D.; Zhang, Y.; Scott, M.; Ru, M.; Stark, K.; Ebi, K.L. The Effects of Heat Exposure on Human Mortality Throughout the United States. GeoHealth 2020, 4, e2019GH000234. [Google Scholar] [CrossRef]
- Libert, J.P.; Di Nisi, J.; Fukuda, H.; Muzet, A.; Ehrhart, J.; Amoros, C. Effect of Continuous Heat Exposure on Sleep Stages in Humans. Sleep 1988, 11, 195–209. [Google Scholar] [CrossRef]
- Gimeno, J.G. Air distribution in street canyons: A CFD study. Bachelor’s Thesis, Universitat Politècnica de Catalunya, Barcelona, Spain, 2019. [Google Scholar]
- Nosek, Š.; Kukačka, L.; Kellnerová, R.; Jurčáková, K.; Jaňour, Z. Ventilation Processes in a Three-Dimensional Street Canyon. Boundary-Layer Meteorol. 2016, 159, 259–284. [Google Scholar] [CrossRef]
- Hang, J.; Chen, G. Experimental study of urban microclimate on scaled street canyons with various aspect ratios. Urban Clim. 2022, 46, 101299. [Google Scholar] [CrossRef]
- Memon, R.A.; Leung, D.Y.; Liu, C.-H. Effects of building aspect ratio and wind speed on air temperatures in urban-like street canyons. J. Affect. Disord. 2010, 45, 176–188. [Google Scholar] [CrossRef]
- Saqr, K.M.; Wmy, A.; Csn, A.; Saqr, K. Effects of buildings aspect ratio, wind speed and wind direction on flow structure and pollutant dispersion in symmetric street canyons: A review. Int. J. Mech. Mater. Eng. 2012, 7, 158–165. [Google Scholar]
- Yang, H.; Lam, C.K.C.; Lin, Y.; Chen, L.; Mattsson, M.; Sandberg, M.; Hayati, A.; Claesson, L.; Hang, J. Numerical investigations of Re-independence and influence of wall heating on flow characteristics and ventilation in full-scale 2D street canyons. J. Affect. Disord. 2021, 189, 107510. [Google Scholar] [CrossRef]
- Salizzoni, P.; Soulhac, L.; Mejean, P. Street canyon ventilation and atmospheric turbulence. Atmos. Environ. 2009, 43, 5056–5067. [Google Scholar] [CrossRef]
- Reiminger, N.; Vazquez, J.; Blond, N.; Dufresne, M.; Wertel, J. CFD evaluation of mean pollutant concentration variations in step-down street canyons. J. Wind. Eng. Ind. Aerodyn. 2020, 196, 104032. [Google Scholar] [CrossRef]
- Li, X.-X.; Liu, C.-H.; Leung, D.Y.C. Large-Eddy Simulation of Flow and Pollutant Dispersion in High-Aspect-Ratio Urban Street Canyons with Wall Model. Boundary-Layer Meteorol. 2008, 129, 249–268. [Google Scholar] [CrossRef]
- Kumar, P.; Garmory, A.; Ketzel, M.; Berkowicz, R.; Britter, R. Comparative study of measured and modelled number concentrations of nanoparticles in an urban street canyon. Atmos. Environ. 2009, 43, 949–958. [Google Scholar] [CrossRef]
- Baik, J.-J.; Kang, Y.-S.; Kim, J.-J. Modeling reactive pollutant dispersion in an urban street canyon. Atmos. Environ. 2007, 41, 934–949. [Google Scholar] [CrossRef]
- Oke, T.R.; Mills, G.; Christen, A.; Voogt, J. Urban Climates; Cambridge University Press: Cambridge, UK, 2017; pp. 1–525. [Google Scholar]
- Oke, T.R. Street design and urban canopy layer climate. Energy Build. 1988, 11, 103–113. [Google Scholar] [CrossRef]
- Monteith, J.L.; Oke, T.R. Boundary Layer Climates. J. Appl. Ecol. 1979, 17, 517. [Google Scholar] [CrossRef]
- Barlow, J.F. Progress in observing and modelling the urban boundary layer. Urban Clim. 2014, 10, 216–240. [Google Scholar] [CrossRef]
- Sini, J.-F.; Anquetin, S.; Mestayer, P.G. Pollutant dispersion and thermal effects in urban street canyons. Atmos. Environ. 1996, 30, 2659–2677. [Google Scholar] [CrossRef]
- Xie, X.; Huang, Z.; Wang, J. The impact of urban street layout on local atmospheric environment. J. Affect. Disord. 2006, 41, 1352–1363. [Google Scholar] [CrossRef]
- Chen, G.; Wang, D.; Wang, Q.; Li, Y.; Wang, X.; Hang, J.; Gao, P.; Ou, C.; Wang, K. Scaled outdoor experimental studies of urban thermal environment in street canyon models with various aspect ratios and thermal storage. Sci. Total. Environ. 2020, 726, 138147. [Google Scholar] [CrossRef]
- Chen, G.; Hang, J.; Chen, L.; Lin, Y. Comparison of uniform and non-uniform surface heating effects on in-canyon airflow and ventilation by CFD simulations and scaled outdoor experiments. J. Affect. Disord. 2023, 244, 110744. [Google Scholar] [CrossRef]
- Baratian-Ghorghi, Z.; Kaye, N.B. The effect of canyon aspect ratio on flushing of dense pollutants from an isolated street canyon. Sci. Total Environ. 2013, 443, 112–122. [Google Scholar] [CrossRef]
- Garau, M.; Badas, M.G.; Ferrari, S.; Seoni, A.; Querzoli, G. Turbulence and Air Exchange in a Two-Dimensional Urban Street Canyon Between Gable Roof Buildings. Boundary-Layer Meteorol. 2018, 167, 123–143. [Google Scholar] [CrossRef]
- Chew, L.W.; Aliabadi, A.A.; Norford, L.K. Flows across high aspect ratio street canyons: Reynolds number independence revisited. Environ. Fluid Mech. 2018, 18, 1275–1291. [Google Scholar] [CrossRef]
- Zhang, Y.-W.; Gu, Z.-L.; Lee, S.-C.; Fu, T.-M.; Ho, K.-F. Numerical Simulation and In Situ Investigation of Fine Particle Dispersion in an Actual Deep Street Canyon in Hong Kong. Indoor Built Environ. 2011, 20, 206–216. [Google Scholar] [CrossRef]
- Mei, S.-J.; Luo, Z.; Zhao, F.-Y.; Wang, H.-Q. Street canyon ventilation and airborne pollutant dispersion: 2-D versus 3-D CFD simulations. Sustain. Cities Soc. 2019, 50, 101700. [Google Scholar] [CrossRef]
- Hang, J.; Chen, X.; Chen, G.; Chen, T.; Lin, Y.; Luo, Z.; Zhang, X.; Wang, Q. The influence of aspect ratios and wall heating conditions on flow and passive pollutant exposure in 2D typical street canyons. J. Affect. Disord. 2020, 168, 106536. [Google Scholar] [CrossRef]
- Li, X.-X.; Britter, R.E.; Norford, L.K.; Koh, T.-Y.; Entekhabi, D. Flow and Pollutant Transport in Urban Street Canyons of Different Aspect Ratios with Ground Heating: Large-Eddy Simulation. Boundary-Layer Meteorol. 2012, 142, 289–304. [Google Scholar] [CrossRef]
- Chung, T.N.H.; Liu, C.-H. On the Mechanism of Air Pollutant Removal in Two-Dimensional Idealized Street Canyons: A Large-Eddy Simulation Approach. Boundary-Layer Meteorol. 2013, 148, 241–253. [Google Scholar] [CrossRef]
- Parente, A.; Gorlé, C.; van Beeck, J.; Benocci, C. Improved k–ε model and wall function formulation for the RANS simulation of ABL flows. J. Wind. Eng. Ind. Aerodyn. 2011, 99, 267–278. [Google Scholar] [CrossRef]
- Richards, P.; Hoxey, R. Appropriate boundary conditions for computational wind engineering models using the k-ε turbulence model. In Computational Wind Engineering 1; Elsevier: Amsterdam, The Netherlands, 1993; pp. 145–153. [Google Scholar] [CrossRef]
- Li, X.-X.; Liu, C.-H.; Leung, D.Y.; Lam, K. Recent progress in CFD modelling of wind field and pollutant transport in street canyons. Atmos. Environ. 2006, 40, 5640–5658. [Google Scholar] [CrossRef]
- Salim, S.M.; Buccolieri, R.; Chan, A.; DI Sabatino, S. Numerical simulation of atmospheric pollutant dispersion in an urban street canyon: Comparison between RANS and LES. J. Wind Eng. Ind. Aerodyn. 2011, 99, 103–113. [Google Scholar] [CrossRef]
- Yang, H.; Chen, G.; Wang, D.; Hang, J.; Li, Q.; Wang, Q. Influences of street aspect ratios and realistic solar heating on convective heat transfer and ventilation in full-scale 2D street canyons. J. Affect. Disord. 2021, 204, 108125. [Google Scholar] [CrossRef]
- Nazarian, N.; Kleissl, J. Realistic solar heating in urban areas: Air exchange and street-canyon ventilation. J. Affect. Disord. 2016, 95, 75–93. [Google Scholar] [CrossRef]
- Buccolieri, R.; Carlo, O.S.; Rivas, E.; Santiago, J.L. Urban Obstacles Influence on Street Canyon Ventilation: A Brief Review. Environ. Sci. Proc. 2021, 8, 11. [Google Scholar] [CrossRef]
- Xu, F.; Gao, Z.; Zhang, J. Effects of roadside morphologies and moving vehicles on street canyon ventilation. J. Affect. Disord. 2022, 218, 109138. [Google Scholar] [CrossRef]
- Sin, C.H.; Cui, P.-Y.; Luo, Y.; Jon, K.S.; Huang, Y.-D. CFD modeling on the canyon ventilation and pollutant exposure in asymmetric street canyons with continuity/discontinuity balconies. Atmos. Pollut. Res. 2023, 14, 101641. [Google Scholar] [CrossRef]
- Sukri, M.; Ali, M. Computational Investigations and Grid Refinement Study of Wind Flow Characteristics within Two-Dimensional Street Canyon Using Large-Eddy Simulation. 2016. Available online: https://www.researchgate.net/publication/309634464 (accessed on 23 June 2023).
- Ansys Fluent. Fluid Simulation Software. (Version 19.0). Available online: https://www.ansys.com/products/fluids/ansys-fluent (accessed on 26 April 2021).
- Li, X.-X.; Liu, C.-H.; Leung, D.Y. Development of a model for the determination of air exchange rates for street canyons. Atmos. Environ. 2005, 39, 7285–7296. [Google Scholar] [CrossRef]
- ANSYS FLUENT 12.0 User’s Guide, (n.d.). Available online: https://www.afs.enea.it/project/neptunius/docs/fluent/html/ug/main_pre.htm (accessed on 23 October 2023).
- Snyder, W.H. Guideline for Fluid Modeling of Atmospheric Diffusion; US Environmental Protection: Washington, DC, USA, 1997.
- Ding, P.; Fan, D.; Feng, Y.; Liu, S.; Zhou, X. The structure of cross-ventilation flow in an isolated cylindrical building: Numerical study. Energy Built Environ. 2024. [Google Scholar] [CrossRef]
- Soulhac, L.; Salizzoni, P.; Mejean, P.; Perkins, R. Parametric laws to model urban pollutant dispersion with a street network approach. Atmos. Environ. 2012, 67, 229–241. [Google Scholar] [CrossRef]
- Fellini, S.; Marro, M.; Del Ponte, A.V.; Barulli, M.; Soulhac, L.; Ridolfi, L.; Salizzoni, P. High resolution wind-tunnel investigation about the effect of street trees on pollutant concentration and street canyon ventilation. J. Affect. Disord. 2022, 226, 109763. [Google Scholar] [CrossRef]
- Xie, X.; Liu, C.-H.; Leung, D.Y.; Leung, M.K. Characteristics of air exchange in a street canyon with ground heating. Atmos. Environ. 2006, 40, 6396–6409. [Google Scholar] [CrossRef]
- Ai, Z.; Mak, C. CFD simulation of flow in a long street canyon under a perpendicular wind direction: Evaluation of three computational settings. J. Affect. Disord. 2017, 114, 293–306. [Google Scholar] [CrossRef]
- Blocken, B.J.E. Computational Fluid Dynamics for urban physics: Importance, scales, possibilities, limitations and ten tips and tricks towards accurate and reliable simulations. Build. Environ. 2015, 91, 219–245. [Google Scholar] [CrossRef]
- Cai, X.-M. Effects of Wall Heating on Flow Characteristics in a Street Canyon. Boundary-Layer Meteorol. 2012, 142, 443–467. [Google Scholar] [CrossRef]
- Abu-Zidan, Y.; Mendis, P.; Gunawardena, T. Optimising the computational domain size in CFD simulations of tall buildings. Heliyon 2021, 7, e06723. [Google Scholar] [CrossRef]
- Oke, T.R. Initial Guidance to Obtain Representative Meteorological Observations at Urban Sites. 2006. Available online: https://www.researchgate.net/publication/265347633 (accessed on 20 May 2023).
- Cheng, W.; Liu, C.-H.; Leung, D.Y. Computational formulation for the evaluation of street canyon ventilation and pollutant removal performance. Atmos. Environ. 2008, 42, 9041–9051. [Google Scholar] [CrossRef]
- Baik, J.-J.; Kim, J.-J. On the escape of pollutants from urban street canyons. Atmos. Environ. 2002, 36, 527–536. [Google Scholar] [CrossRef]
- Medina, D.C.; Delgado, M.G.; Amores, T.R.P.; Toulou, A.; Ramos, J.S.; Domínguez, S. Climatic Control of Urban Spaces Using Natural Cooling Techniques to Achieve Outdoor Thermal Comfort. Sustainability 2022, 14, 14173. [Google Scholar] [CrossRef]
- Amores, T.P.; Palma, R.M.; Montero-Gutiérrez, M.; Delgado, M.G.; Ramos, J.S.; Domínguez, S. Recovery of open spaces through thermal control: A case study in Seville. Sci. Talks 2023, 7, 100248. [Google Scholar] [CrossRef]
AR | Vref [m/s] | Re | |
---|---|---|---|
AR characterization | 0.75–4 | 1 | 6.7·105 (typical value of Re for a three-floor building) |
Reynolds number characterization | 0.75 | 0.15–4 | |
1.5 | 3.4 × 105–2.8 × 106 | ||
3 |
25 H (ref) | 10 H | 9 H | 8 H | 7 H | 6 H | 5 H | 4 H | 3 H | |
---|---|---|---|---|---|---|---|---|---|
ACHad (×10−2) | 1.09 | 1.19 | 1.21 | 1.22 | 1.25 | 1.27 | 1.30 | 1.34 | 1.39 |
Element Size (Face Meshing “Outer Zone”) | Element Size (Face Meshing “Inner Zone”) | ACH (kg/s) | |
---|---|---|---|
Very coarse grid | H/10 | H/(25 × AR) | 0.1274 |
Coarse grid | H/13.33 | H/(50 ×AR) | 0.1298 |
Fine grid | H/20 | H/(100 ×AR) | 0.1335 |
Very fine grid | H/40 | H/(200 ×AR) | 0.1346 |
AR | ACH (×10−1 kg/s) | ACHeq (×10−1 kg/s) | ACHad (×10−2) | ACHad,eq (×10−2) | Ren/h (h−1) | Ren/heq (h−1) |
---|---|---|---|---|---|---|
0.75 | 1.876 | 0.961 | 1.15 | 0.59 | 4.14 | 2.12 |
0.85 | 1.639 | 0.833 | 1.14 | 0.58 | 4.09 | 2.08 |
1 | 1.184 | 0.637 | 0.97 | 0.52 | 3.42 | 1.87 |
1.25 | 0.682 | 0.444 | 0.72 | 0.45 | 2.51 | 1.63 |
1.5 | 0.412 | 0.280 | 0.50 | 0.34 | 1.83 | 1.23 |
1.75 | 0.277 | 0.211 | 0.40 | 0.30 | 1.43 | 1.08 |
2 | 0.238 | 0.162 | 0.39 | 0.27 | 1.4 | 0.95 |
2.5 | 0.185 | 0.136 | 0.39 | 0.28 | 1.39 | 1.01 |
3 | 0.154 | 0.110 | 0.38 | 0.27 | 1.36 | 0.97 |
3.5 | 0.132 | 0.094 | 0.38 | 0.27 | 1.36 | 0.97 |
4 | 0.116 | 0.087 | 0.38 | 0.28 | 1.36 | 1.01 |
0.15 | 0.5 | 0.75 | 1 | 2 | 3 | 4 | ||
---|---|---|---|---|---|---|---|---|
0.75 | ACH (×10−1 kg/s) | 0.26 | 0.90 | 1.37 | 1.91 | 3.82 | 5.80 | 7.85 |
ACHad (×10−2) | 1.02 | 1.10 | 1.12 | 1.17 | 1.17 | 1.18 | 1.20 | |
Ren/h (h−1) | 0.56 | 1.98 | 3.02 | 4.21 | 8.41 | 12.79 | 17.30 | |
1.5 | ACH (×10−1 kg/s) | 0.06 | 0.20 | 0.30 | 0.41 | 0.86 | 1.31 | 1.70 |
ACHad (×10−2) | 0.47 | 0.50 | 0.50 | 0.50 | 0.52 | 0.53 | 0.54 | |
Ren/h (h−1) | 0.26 | 0.89 | 1.32 | 1.81 | 3.79 | 5.77 | 7.49 | |
3 | ACH (×10−2 kg/s) | 0.24 | 0.81 | 1.15 | 1.54 | 3.06 | 4.67 | 6.03 |
ACHad (×10−2) | 0.41 | 0.38 | 0.38 | 0.38 | 0.37 | 0.38 | 0.37 | |
Ren/h (h−1) | 0.20 | 0.67 | 1.02 | 1.36 | 2.69 | 4.11 | 5.31 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ruda Sarria, F.; Guerrero Delgado, M.; Sánchez Ramos, J.; Palomo Amores, T.; Molina Félix, J.L.; Álvarez Domínguez, S. Assessing Urban Ventilation in Common Street Morphologies for Climate-Responsive Design toward Effective Outdoor Space Regeneration. Sustainability 2024, 16, 6861. https://doi.org/10.3390/su16166861
Ruda Sarria F, Guerrero Delgado M, Sánchez Ramos J, Palomo Amores T, Molina Félix JL, Álvarez Domínguez S. Assessing Urban Ventilation in Common Street Morphologies for Climate-Responsive Design toward Effective Outdoor Space Regeneration. Sustainability. 2024; 16(16):6861. https://doi.org/10.3390/su16166861
Chicago/Turabian StyleRuda Sarria, Francisco, MCarmen Guerrero Delgado, José Sánchez Ramos, Teresa Palomo Amores, José Luis Molina Félix, and Servando Álvarez Domínguez. 2024. "Assessing Urban Ventilation in Common Street Morphologies for Climate-Responsive Design toward Effective Outdoor Space Regeneration" Sustainability 16, no. 16: 6861. https://doi.org/10.3390/su16166861
APA StyleRuda Sarria, F., Guerrero Delgado, M., Sánchez Ramos, J., Palomo Amores, T., Molina Félix, J. L., & Álvarez Domínguez, S. (2024). Assessing Urban Ventilation in Common Street Morphologies for Climate-Responsive Design toward Effective Outdoor Space Regeneration. Sustainability, 16(16), 6861. https://doi.org/10.3390/su16166861