Does Extreme Weather Impact Performance in Capital Markets? Evidence from China
Abstract
:1. Introduction
2. The Literature Review and Hypothesis
2.1. The Related Literature
2.2. Research Hypothesis
3. Research Design
3.1. Data Resources
- Exclusion of companies in the financial and real estate sectors, specifically by removing companies with industry codes starting with “J” and “K” (The core dependent variable in this study is stock returns. Financial and real estate industries, compared with other sectors, are capital-intensive, highly leveraged, and subject to government regulation. Consequently, their stock prices are influenced by additional specific factors. Therefore, data from these industries were excluded from the analysis. This exclusion method is widely used in numerous studies related to the stock market [49,50]).
- Exclusion of companies with the designation “ST” or “ST*”, ensuring that all sample companies maintained good and normal financial conditions.
- Removal of suspicious, erroneous, and missing weather data, specifically data with weather quality control codes of 1, 2, and 8, and data where all meteorological elements were recorded as 32,766.
- Matching the location of the meteorological station identification number (“QuZhanHao”) with the cities where the listed companies were based and excluding samples where the geographical location did not align with the name of city (This study follows the approach consistent with the previous literature [51,52]).
3.2. Processing of Variables
3.3. Model Setup
3.4. Descriptive Statistics
4. Impact of Extreme Weather on Stock Returns of Listed Companies
5. Mechanism Analysis
5.1. Investor Sentiment
5.2. Corporate Performance
6. Heterogeneity Analysis
7. Robustness Check
8. Discussion
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Variables | Market-Adjusted Stock Return | ||
---|---|---|---|
(1) | (2) | (3) | |
FF3 | FF4 | FF5 | |
Proportion of extreme hot days | −0.0000 | 0.0001 | −0.0000 |
(0.005) | (0.005) | (0.005) | |
Proportion of extreme humid days | −0.0125 ** | −0.0123 ** | −0.0121 ** |
(0.005) | (0.005) | (0.005) | |
Constant | 0.0006 | 0.0014 * | 0.0015 * |
(0.001) | (0.001) | (0.001) | |
Controls | YES | YES | YES |
Firm FE | YES | YES | YES |
Year * Month FE | YES | YES | YES |
Observations | 98,236 | 98,236 | 98,236 |
R-squared | 0.026 | 0.026 | 0.027 |
References
- Dowdy, A.J.; Catto, J.L. Extreme weather caused by concurrent cyclone, front and thunderstorm occurrences. Sci. Rep. 2017, 7, 40359. [Google Scholar] [CrossRef] [PubMed]
- Zscheischler, J.; Westra, S.; Van Den Hurk, B.J.; Seneviratne, S.I.; Ward, P.J.; Pitman, A.; AghaKouchak, A.; Bresch, D.N.; Leonard, M.; Wahl, T.; et al. Future climate risk from compound events. Nat. Clim. Chang. 2018, 8, 469–477. [Google Scholar] [CrossRef]
- Kang, S.H.; Jiang, Z.; Lee, Y.; Yoon, S.M. Weather effects on the returns and volatility of the Shanghai stock market. Phys. A Stat. Mech. Appl. 2010, 389, 91–99. [Google Scholar] [CrossRef]
- Wang, Y.H.; Shih, K.H.; Jang, J.W. Relationship among weather effects, investors’ moods and stock market risk: An analysis of bull and bear markets in Taiwan, Japan and Hong Kong. Panoeconomicus 2018, 65, 239–253. [Google Scholar] [CrossRef]
- He, J.; Ma, X. Extreme temperatures and firm-level stock returns. Int. J. Environ. Res. Public Health 2021, 18, 2004. [Google Scholar] [CrossRef]
- Howarth, E.; Hoffman, M.S. A multidimensional approach to the relationship between mood and weather. Br. J. Psychol. 1984, 75, 15–23. [Google Scholar] [CrossRef]
- Baylis, P.; Obradovich, N.; Kryvasheyeu, Y.; Chen, H.; Coviello, L.; Moro, E.; Cebrian, M.; Fowler, J.H. Weather impacts expressed sentiment. PLoS ONE 2018, 13, e0195750. [Google Scholar] [CrossRef]
- Bojić, L.; Mitrović, D.M.; Pantelić, N. Humidity and air temperature predict post count on Twitter in 10 countries: Weather changes & LIWC psychological categories. Ekon. Preduzeća 2023, 71, 213–229. [Google Scholar] [CrossRef]
- Zhu, H.; Hu, M.; Hu, S.; Wang, H.; Guan, J. Effects of hot-humid exposure on human cognitive performance under sustained multi-tasks. Energy Build. 2023, 279, 112704. [Google Scholar] [CrossRef]
- Wang, P.; Yang, Y.; Tang, J.; Leung, L.R.; Liao, H. Intensified humid heat events under global warming. Geophys. Res. Lett. 2021, 48, e2020GL091462. [Google Scholar] [CrossRef]
- Li, D.; Yuan, J.; Kopp, R.E. Escalating global exposure to compound heat-humidity extremes with warming. Environ. Res. Lett. 2020, 15, 064003. [Google Scholar] [CrossRef]
- Kjellstrom, T.; Briggs, D.; Freyberg, C.; Lemke, B.; Otto, M.; Hyatt, O. Heat, human performance, and occupational health: A key issue for the assessment of global climate change impacts. Annu. Rev. Public Health 2016, 37, 97–112. [Google Scholar] [CrossRef]
- Raymond, C.; Matthews, T.; Horton, R.M. The emergence of heat and humidity too severe for human tolerance. Sci. Adv. 2020, 6, eaaw1838. [Google Scholar] [CrossRef] [PubMed]
- Saunders, E.M. Stock prices and Wall Street weather. Am. Econ. Rev. 1993, 83, 1337–1345. [Google Scholar]
- Loughran, T.; Schultz, P. Weather, stock returns, and the impact of localized trading behavior. J. Financ. Quant. Anal. 2004, 39, 343–364. [Google Scholar] [CrossRef]
- Hong, H.; Li, F.W.; Xu, J. Climate risks and market efficiency. J. Econom. 2019, 208, 265–281. [Google Scholar] [CrossRef]
- Huynh, T.D.; Nguyen, T.H.; Truong, C. Climate risk: The price of drought. J. Corp. Financ. 2020, 65, 101750. [Google Scholar] [CrossRef]
- Ai, L.; Gao, L.S. Firm-level risk of climate change: Evidence from climate disasters. Glob. Financ. J. 2023, 55, 100805. [Google Scholar] [CrossRef]
- Kruttli, M.S.; Roth Tran, B.; Watugala, S. Pricing Poseidon: Extreme Weather Uncertainty and Firm Return Dynamics. J. Financ. 2023. forthcoming. [Google Scholar] [CrossRef]
- Zhang, Y.; He, M.; Liao, C.; Wang, Y. Climate risk exposure and the cross-section of Chinese stock returns. Financ. Res. Lett. 2023, 55, 103987. [Google Scholar] [CrossRef]
- Gong, X.; Song, Y.; Fu, C.; Li, H. Climate risk and stock performance of fossil fuel companies: An international analysis. J. Int. Financ. Mark. Inst. Money 2023, 89, 101884. [Google Scholar] [CrossRef]
- Li, H.; Bouri, E.; Gupta, R.; Fang, L. Return volatility, correlation, and hedging of green and brown stocks: Is there a role for climate risk factors? J. Clean. Prod. 2023, 414, 137594. [Google Scholar] [CrossRef]
- Peillex, J.; El Ouadghiri, I.; Gomes, M.; Jaballah, J. Extreme heat and stock market activity. Ecol. Econ. 2021, 179, 106810. [Google Scholar] [CrossRef]
- Zscheischler, J.; Martius, O.; Westra, S.; Bevacqua, E.; Raymond, C.; Horton, R.M.; van den Hurk, B.; AghaKouchak, A.; Jézéquel, A.; Mahecha, M.D.; et al. A typology of compound weather and climate events. Nat. Rev. Earth Environ. 2020, 1, 333–347. [Google Scholar] [CrossRef]
- Catto, J.L.; Dowdy, A. Understanding compound hazards from a weather system perspective. Weather Clim. Extrem. 2021, 32, 100313. [Google Scholar] [CrossRef]
- AghaKouchak, A.; Chiang, F.; Huning, L.S.; Love, C.A.; Mallakpour, I.; Mazdiyasni, O.; Moftakhari, H.; Papalexiou, S.M.; Ragno, E.; Sadegh, M. Climate extremes and compound hazards in a warming world. Annu. Rev. Earth Planet. Sci. 2020, 48, 519–548. [Google Scholar] [CrossRef]
- Choi, D.; Gao, Z.; Jiang, W. Attention to global warming. Rev. Financ. Stud. 2020, 33, 1112–1145. [Google Scholar] [CrossRef]
- Pankratz, N.; Bauer, R.; Derwall, J. Climate change, firm performance, and investor surprises. Manag. Sci. 2023, 69, 7352–7398. [Google Scholar] [CrossRef]
- Statman, M.; Thorley, S.; Vorkink, K. Investor overconfidence and trading volume. Rev. Financ. Stud. 2006, 19, 1531–1565. [Google Scholar] [CrossRef]
- Cao, M.; Wei, J. Stock market returns: A note on temperature anomaly. J. Bank Financ. 2005, 29, 1559–1573. [Google Scholar] [CrossRef]
- Wang, H.T.; Qi, S.Z.; Li, K. Impact of risk-taking on enterprise value under extreme temperature: From the perspectives of external and internal governance. J. Asian Econ. 2023, 84, 101556. [Google Scholar] [CrossRef]
- Somanathan, E.; Somanathan, R.; Sudarshan, A.; Tewari, M. The impact of temperature on productivity and labor supply: Evidence from Indian manufacturing. J. Polit. Econ. 2021, 129, 1797–1827. [Google Scholar] [CrossRef]
- Zhang, P.; Deschenes, O.; Meng, K.; Zhang, J. Temperature effects on productivity and factor reallocation: Evidence from a half million Chinese manufacturing plants. J. Environ. Econ. Manag. 2018, 88, 1–17. [Google Scholar] [CrossRef]
- Addoum, J.M.; Ng, D.T.; Ortiz-Bobea, A. Temperature shocks and establishment sales. Rev. Financ. Econ. 2020, 33, 1331–1366. [Google Scholar] [CrossRef]
- Van Tilburg, W.A.; Sedikides, C.; Wildschut, T. Adverse weather evokes nostalgia. Personal. Soc. Psychol. Bull. 2018, 44, 984–995. [Google Scholar] [CrossRef] [PubMed]
- Goetzmann, W.N.; Kim, D.; Kumar, A.; Wang, Q. Weather-induced mood, institutional investors, and stock returns. Rev. Financ. Stud. 2015, 28, 73–111. [Google Scholar] [CrossRef]
- Barberis, N.; Greenwood, R.; Jin, L.; Shleifer, A. Extrapolation and bubbles. J. Financ. Econ. 2018, 129, 203–227. [Google Scholar] [CrossRef]
- Hirshleifer, D.; Jiang, D.; DiGiovanni, Y.M. Mood beta and seasonalities in stock returns. J. Financ. Econ. 2020, 137, 272–295. [Google Scholar] [CrossRef]
- Bassi, A.; Colacito, R.; Fulghieri, P. O sole mio: An experimental analysis of weather and risk attitudes in financial decisions. Rev. Financ. Stud. 2013, 26, 1824–1852. [Google Scholar] [CrossRef]
- Cortés, K.; Duchin, R.; Sosyura, D. Clouded judgment: The role of sentiment in credit origination. J. Financ. Econ. 2016, 121, 392–413. [Google Scholar] [CrossRef]
- French, K.R.; Poterba, J. Investor diversification and international equity markets. Am. Econ. Rev. 1991, v81, 222–226. [Google Scholar]
- Coval, J.D.; Moskowitz, T.J. Home bias at home: Local equity preference in domestic portfolios. J. Financ. 1999, 54, 2045–2073. [Google Scholar] [CrossRef]
- Bade, M.; Walther, M. Local preferences and the allocation of attention in equity-based crowdfunding. Rev. Manag. Sci. 2021, 15, 2501–2533. [Google Scholar] [CrossRef]
- Cao, H.H.; Han, B.; Hirshleifer, D.; Zhang, H.H. Fear of the unknown: Familiarity and economic decisions. Rev. Financ. 2011, 15, 173–206. [Google Scholar] [CrossRef]
- Boyle, P.; Garlappi, L.; Uppal, R.; Wang, T. Keynes meets Markowitz: The trade-off between familiarity and diversification. Manag. Sci. 2012, 58, 253–272. [Google Scholar] [CrossRef]
- Baek, S.; Mohanty, S.K.; Glambosky, M. COVID-19 and stock market volatility: An industry level analysis. Financ. Res. Lett. 2020, 37, 101748. [Google Scholar] [CrossRef]
- Ding, W.; Levine, R.; Lin, C.; Xie, W. Corporate immunity to the COVID-19 pandemic. J. Financ. Econ. 2021, 141, 802–830. [Google Scholar] [CrossRef]
- Pagano, M.; Wagner, C.; Zechner, J. Disaster resilience and asset prices. J. Financ. Econ. 2023, 150, 103712. [Google Scholar] [CrossRef]
- Chang, X.; Fu, K.; Low, A.; Zhang, W. Non-executive employee stock options and corporate innovation. J. Financ. Econ. 2015, 115, 168–188. [Google Scholar] [CrossRef]
- Xu, Y.; Xuan, Y.; Zheng, G. Internet searching and stock price crash risk: Evidence from a quasi-natural experiment. J. Financ. Econ. 2021, 141, 255–275. [Google Scholar] [CrossRef]
- Wu, Q.; Hao, Y.; Lu, J. Air pollution, stock returns, and trading activities in China. Pac.-Basin Financ. J. 2018, 51, 342–365. [Google Scholar] [CrossRef]
- Wu, Q.; Lu, J. Air pollution, individual investors, and stock pricing in China. Int. Rev. Econ. Financ. 2020, 67, 267–287. [Google Scholar] [CrossRef]
- Keim, D.B. Size-Related Anomalies and Stock Return Seasonality. J. Financ. Econ. 1983, 12, 13–32. [Google Scholar] [CrossRef]
- Hirshleifer, D.; Shumway, T. Good day sunshine: Stock returns and the weather. J. Financ. 2003, 58, 1009–1032. [Google Scholar] [CrossRef]
- Goetzmann, W.N.; Zhu, N. Rain or shine: Where is the weather effect? Eur. Financ. Manag. 2005, 11, 559–578. [Google Scholar] [CrossRef]
- Yoon, S.-M.; Kang, S.H. Weather effects on returns: Evidence from the Korean stock market. Phys. A Stat. Mech. Appl. 2009, 388, 682–690. [Google Scholar] [CrossRef]
- Balvers, R.; Du, D.; Zhao, X. Temperature shocks and the cost of equity capital: Implications for climate change perceptions. J. Bank. Financ. 2017, 77, 18–34. [Google Scholar] [CrossRef]
- Denissen, J.J.; Butalid, L.; Penke, L.; Van Aken, M.A. The effects of weather on daily mood: A multilevel approach. Emotion 2008, 8, 662. [Google Scholar] [CrossRef] [PubMed]
- Klimstra, T.A.; Frijns, T.; Keijsers, L.; Denissen, J.J.; Raaijmakers, Q.A.; Van Aken, M.A.; Koot, H.M.; Van Lier, P.A.; Meeus, W.H. Come rain or come shine: Individual differences in how weather affects mood. Emotion 2011, 11, 1495. [Google Scholar] [CrossRef]
- Cunningham, M.R. Weather, mood, and helping behavior: Quasi experiments with the sunshine samaritan. J. Personal. Soc. Psychol. 1979, 37, 1947. [Google Scholar] [CrossRef]
- Anderson, C.A.; Anderson, K.B.; Deuser, W.E. Examining an affective aggression framework weapon and temperature effects on aggressive thoughts, affect, and attitudes. Personal. Soc. Psychol. Bull. 1996, 22, 366–376. [Google Scholar] [CrossRef]
- Wang, C.; Bai, Y.X.; Li, X.W.; Lin, L.T. Effects of extreme temperatures on public sentiment in 49 Chinese cities. Sci. Rep. 2024, 14, 9954. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Xu, N.; Yu, H. Pollution and performance: Do investors make worse trades on hazy days? Manag. Sci. 2020, 66, 4455–4476. [Google Scholar] [CrossRef]
- Hannak, A.; Anderson, E.; Barrett, L.F.; Lehmann, S.; Mislove, A.; Riedewald, M. Tweetin’in the rain: Exploring societal-scale effects of weather on mood. Proc. Int. AAAI Conf. Web Soc. Media 2012, 6, 479–482. [Google Scholar] [CrossRef]
- Lopatovska, I.; Arapakis, I. Theories, methods and current research on emotions in library and information science, information retrieval and human–computer interaction. Inf. Process. Manag. 2011, 47, 575–592. [Google Scholar] [CrossRef]
- Moshfeghi, Y. Role of Emotion in Information Retrieval; University of Glasgow: Glasgow, Scotland, UK, 2012. [Google Scholar]
- Dodge, K.A. Emotion and social information processing. Dev. Emot. Regul. Dysregul. 1991, 1, 159–181. [Google Scholar] [CrossRef]
- Afifi, W.A.; Morse, C.R. Expanding the role of emotion in the theory of motivated information management. In Uncertainty, Information Management, and Disclosure Decisions: Theories and Applications; Afifi, T.D., Afifi, W.A., Eds.; Routledge/Taylor & Francis Group: Abingdon, UK, 2009; pp. 87–105. [Google Scholar]
- Aroean, L.; Michaelidou, N. Are innovative consumers emotional and prestigiously sensitive to price? J. Mark. Manag. 2014, 30, 245–267. [Google Scholar] [CrossRef]
- VanBergen, N.; Lurie, N.H.; Chen, Z. More Rational or More Emotional Than Others? Lay Beliefs About Decision-Making Strategies. J. Consum. Psychol. 2022, 32, 274–292. [Google Scholar] [CrossRef]
- Capra, C.M. Mood-driven behavior in strategic interactions. Am. Econ. Rev. 2004, 94, 367–372. [Google Scholar] [CrossRef]
- Brahmana, R.K.; Hooy, C.W.; Ahmad, Z. Does tropical weather condition affect investor behaviour? Case of Indonesian stock market. Glob. Bus. Econ. Rev. 2015, 17, 188–202. [Google Scholar] [CrossRef]
- Dehaan, E.; Madsen, J.; Piotroski, J.D. Do weather-induced moods affect the processing of earnings news? J. Account. Res. 2017, 55, 509–550. [Google Scholar] [CrossRef]
- Loewenstein, G.F.; Weber, E.U.; Hsee, C.K.; Welch, N. Risk as feelings. Psychol. Bull. 2001, 127, 267. [Google Scholar] [CrossRef]
- Kramer, L.A.; Weber, J.M. This is your portfolio on winter: Seasonal affective disorder and risk aversion in financial decision making. Soc. Psychol. Pers. Sci. 2012, 3, 193–199. [Google Scholar] [CrossRef]
- Strong, N.; Xu, X. Understanding the equity home bias: Evidence from survey data. Rev. Econ. Stat. 2003, 85, 307–312. [Google Scholar] [CrossRef]
- Pool, V.K.; Stoffman, N.; Yonker, S.E. No place like home: Familiarity in mutual fund manager portfolio choice. Rev. Financ. Stud. 2012, 25, 2563–2599. [Google Scholar] [CrossRef]
- Ivković, Z.; Weisbenner, S. Local does as local is: Information content of the geography of individual investors’ common stock investments. J. Financ. 2005, 60, 267–306. [Google Scholar] [CrossRef]
- Malloy, C.J. The geography of equity analysis. J. Financ. 2005, 60, 719–755. [Google Scholar] [CrossRef]
- Bae, K.H.; Stulz, R.M.; Tan, H. Do local analysts know more? A cross-country study of the performance of local analysts and foreign analysts. J. Financ. Econ. 2008, 88, 581–606. [Google Scholar] [CrossRef]
- Graham, J.R.; Harvey, C.R.; Huang, H. Investor competence, trading frequency, and home bias. Manag. Sci. 2009, 55, 1094–1106. [Google Scholar] [CrossRef]
- Ardalan, K. Equity home bias: A review essay. J. Econ. Surv. 2019, 33, 949–967. [Google Scholar] [CrossRef]
- Huberman, G. Familiarity breeds investment. Rev. Financ. Stud. 2001, 14, 659–680. [Google Scholar] [CrossRef]
- Van Nieuwerburgh, S.; Veldkamp, L. Information immobility and the home bias puzzle. J. Financ. 2009, 64, 1187–1215. [Google Scholar] [CrossRef]
- Zhang, Y.; Jiang, Y.; Guo, Y. The effects of haze pollution on stock performances: Evidence from China. Appl. Econ. 2017, 49, 2226–2237. [Google Scholar] [CrossRef]
- Baker, M.; Wurgler, J. Investor sentiment and the cross-section of stock returns. J. Financ. 2006, 61, 1645–1680. [Google Scholar] [CrossRef]
- Baker, M.; Wurgler, J. Investor sentiment in the stock market. J. Econ. Perspect. 2007, 21, 129–151. [Google Scholar] [CrossRef]
- Baker, M.; Wurgler, J.; Yuan, Y. Global, local, and contagious investor sentiment. J. Financ. Econ. 2012, 104, 272–287. [Google Scholar] [CrossRef]
- Simonsohn, U. Weather to go to college. Econ. J. 2010, 120, 270–280. [Google Scholar] [CrossRef]
- Kumar, A.; Lee, C.M. Retail investor sentiment and return comovements. J. Financ. 2006, 61, 2451–2486. [Google Scholar] [CrossRef]
- Aissia, D.B. IPO first-day returns: Skewness preference, investor sentiment and uncertainty underlying factors. Rev. Financ. Econ. 2014, 23, 148–154. [Google Scholar] [CrossRef]
- Fama, E.F.; French, K.R. Common risk factors in the returns on stocks and bonds. J. Financ. Econ. 1993, 33, 3–56. [Google Scholar] [CrossRef]
- Carhart, M.M. On persistence in mutual fund performance. J. Financ. 1997, 52, 57–82. [Google Scholar] [CrossRef]
- Novy-Marx, R. The other side of value: The gross profitability premium. J. Financ. Econ. 2013, 108, 1–28. [Google Scholar] [CrossRef]
- Feddersen, J.; Metcalfe, R.; Wooden, M. Subjective wellbeing: Why weather matters. J. R. Stat. Soc. Ser. A Stat. Soc. 2016, 179, 203–228. [Google Scholar] [CrossRef]
- Makridis, C.A.; Schloetzer, J.D. Extreme local temperatures lower expressed sentiment about US economic conditions with implications for the stock returns of local firms. J. Behav. Exp. Financ. 2023, 37, 100710. [Google Scholar] [CrossRef]
- Ding, N.; Berry, H.L.; Bennett, C.M. The importance of humidity in the relationship between heat and population mental health: Evidence from Australia. PLoS ONE 2016, 11, e0164190. [Google Scholar] [CrossRef]
- Buchanan, K.; Carr, S.C. Humidity, anxiety, and test performance: Maintaining equity in tropical climates. South Pac. J. Psychol. 1999, 11, 34–43. [Google Scholar] [CrossRef]
- Tian, X.; Fang, Z.; Liu, W. Decreased humidity improves cognitive performance at extreme high indoor temperature. Indoor Air 2021, 31, 608–627. [Google Scholar] [CrossRef]
- Murray, K.B.; Di Muro, F.; Finn, A.; Leszczyc, P.P. The effect of weather on consumer spending. J. Retail. Consum. Serv. 2010, 17, 512–520. [Google Scholar] [CrossRef]
- Lucas, R.E.; Lawless, N.M. Does life seem better on a sunny day? Examining the association between daily weather conditions and life satisfaction judgments. J. Personal. Soc. Psychol. 2013, 104, 872–884. [Google Scholar] [CrossRef] [PubMed]
- Rotton, J.; Frey, J. Air pollution, weather, and violent crimes: Concomitant time-series analysis of archival data. J. Personal. Soc. Psychol. 1985, 49, 1207. [Google Scholar] [CrossRef]
- Goldstein, K.M. Weather, mood, and internal-external control. Percept. Mot. Skills 1972, 35, 786. [Google Scholar] [CrossRef] [PubMed]
- Persinger, M. Lag responses in mood reports to changes in the weather matrix. Int. J. Biometeorol. 1975, 19, 108–114. [Google Scholar] [CrossRef] [PubMed]
Variable Definitions | Variable Names |
---|---|
Monthly stock return (%) | |
pctTi,t | Proportion of extreme hot days (proportion of extreme hot days is the number of extreme hot days over number of days per month) |
Proportion of extreme humid days (proportion of extreme humid days is the number of extreme humid days over number of days per month) | |
DTi,t | De-seasonalized average monthly temperature (°C) |
De-seasonalized average monthly sunshine hours (h) | |
De-seasonalized average monthly relative humidity (%) | |
De-seasonalized average monthly wind speed (m/s) |
Variables | Mean | Sd | Min | Max | P10 | P90 |
---|---|---|---|---|---|---|
Proportion of extreme hot days | 0.140 | 0.115 | 0 | 0.839 | 0 | 0.300 |
Proportion of extreme humid days | 0.143 | 0.130 | 0 | 0.968 | 0 | 0.323 |
Monthly temperature (°C) | 17.335 | 9.633 | −20.087 | 32.142 | 4.117 | 28.303 |
Monthly sunshine hours (h) | 5.339 | 1.916 | 0.132 | 12.367 | 2.800 | 7.910 |
Monthly relative humidity (%) | 69.906 | 13.283 | 18.645 | 97.033 | 49.226 | 83.533 |
Monthly wind speed (m/s) | 2.214 | 0.503 | 0.506 | 6.458 | 1.650 | 2.806 |
Variables | Monthly Stock Return | |||
---|---|---|---|---|
(1) | (2) | (3) | (4) | |
Proportion of extreme hot days | −0.0986 *** | −0.0996 *** | −0.0934 *** | −0.0688 *** |
(0.005) | (0.006) | (0.006) | (0.006) | |
Proportion of extreme humid days | −0.1136 *** | −0.1174 *** | −0.0974 *** | −0.0960 *** |
(0.006) | (0.006) | (0.006) | (0.006) | |
Constant | 0.0210 *** | 0.0201 *** | 0.0169 *** | 0.0158 *** |
(0.001) | (0.001) | (0.001) | (0.001) | |
Controls | YES | YES | YES | YES |
Firm FE | YES | YES | YES | |
Year FE | YES | YES | ||
Quarter FE | YES | |||
Observations | 100,864 | 100,864 | 100,864 | 100,864 |
R-squared | 0.022 | 0.033 | 0.076 | 0.088 |
Variables | Corporate Performance | ||
---|---|---|---|
Log of Firm’s Gross Revenue | Log of Firm’s Net Profit | Log of Firm’s Productivity | |
Proportion of extreme hot days | 0.0332 | −0.2512 * | −0.0183 |
(0.076) | (0.147) | (0.082) | |
Proportion of extreme humid days | 0.0161 | −0.1036 | −0.0251 |
(0.058) | (0.122) | (0.061) | |
Constant | 1.7810 *** | 2.8609 *** | −0.5857 *** |
(0.157) | (0.061) | (0.053) | |
Controls | YES | YES | YES |
Firm, year, quart FE | YES | YES | YES |
Observations | 32,234 | 24,781 | 30,726 |
R-squared | 0.995 | 0.809 | 0.943 |
Variables | Monthly Stock Return | Corporate Performance | ||
---|---|---|---|---|
Log of Firm’s Gross Revenue | Log of Firm’s Net Profit | Log of Firm’s Productivity | ||
Proportion of extreme hot days | −0.0902 *** | −0.1130 | −0.1159 | 0.0167 |
(0.006) | (0.100) | (0.157) | (0.091) | |
Proportion of extreme humid days | −0.0740 *** | 0.0772 | 0.0367 | 0.0025 |
(0.006) | (0.100) | (0.133) | (0.064) | |
Constant | 0.0164 *** | 5.7524 *** | 2.7676 *** | −0.5557 *** |
(0.001) | (0.052) | (0.074) | (0.065) | |
Controls | YES | YESP | YES | YES |
Firm, year, quarter FE | YES | YES | YES | YES |
Observations | 74,180 | 19,349 | 18,130 | 22,531 |
R-squared | 0.092 | 0.922 | 0.801 | 0.943 |
Variables | Monthly Stock Return | |||||
---|---|---|---|---|---|---|
Asset Size | Profitability | Risk Level | ||||
Small Asset | Large Asset | Low Profitability | High Profitability | High Risk | Low Risk | |
Proportion of extreme hot days | −0.0786 *** | −0.0245 ** | −0.0560 *** | −0.0519 *** | −0.0792 *** | −0.0318 *** |
(0.013) | (0.010) | (0.013) | (0.010) | (0.011) | (0.009) | |
Proportion of extreme humid days | −0.1067 *** | −0.0930 *** | −0.1046 *** | −0.0723 *** | −0.1196 *** | −0.0531 *** |
(0.012) | (0.011) | (0.013) | (0.011) | (0.011) | (0.008) | |
Constant | 0.0126 *** | 0.0138 *** | 0.0152 *** | 0.0129 *** | 0.0208 *** | 0.0051 *** |
(0.002) | (0.002) | (0.002) | (0.002) | (0.002) | (0.001) | |
Controls | YES | YES | YES | YES | YES | YES |
Firm, year, quarter FE | YES | YES | YES | YES | YES | YES |
Observations | 25,018 | 33,260 | 27,674 | 26,448 | 44,615 | 25,066 |
R-squared | 0.0958 | 0.0548 | 0.0649 | 0.0813 | 0.0861 | 0.0702 |
Variables | Monthly Stock Return | |
---|---|---|
Weak Companies | Strong Companies | |
Proportion of extreme hot days | −0.0738 ** | −0.0371 * |
(0.036) | (0.019) | |
Proportion of extreme humid days | −0.1566 *** | −0.0420 ** |
(0.032) | (0.021) | |
Constant | 0.0209 *** | 0.0155 *** |
(0.006) | (0.004) | |
Controls | YES | YES |
Firm, year, quarter FE | YES | YES |
Observations | 3538 | 3817 |
R-squared | 0.114 | 0.091 |
Variables | Monthly Stock Return | Adjusted Stock Return | ||
---|---|---|---|---|
(1) | (2) | (3) | (4) | |
Proportion of extreme hot days | −0.0694 *** | −0.0702 *** | −0.0751 *** | −0.0064 |
(0.006) | (0.006) | (0.006) | (0.005) | |
Proportion of extreme humid days | −0.0941 *** | −0.0946 *** | −0.0969 *** | −0.0154 *** |
(0.005) | (0.005) | (0.005) | (0.005) | |
Constant | 0.0147 *** | 0.0207 *** | 0.1587 *** | 0.0045 *** |
(0.001) | (0.002) | (0.004) | (0.001) | |
Controls for average weather | YES | YES | YES | YES |
Firm FE | YES | YES | YES | YES |
Year, quarter FE | YES | YES | YES | |
Controls for firm features | YES | YES | ||
Controls for province | YES | YES | ||
Year*Month FE | YES | |||
Observations | 98,236 | 98,236 | 98,236 | 98,236 |
R-squared | 0.093 | 0.093 | 0.118 | 0.217 |
Variables | Monthly Stock Return | ||
---|---|---|---|
Weather-Sensitive Industry | Weather-Insensitive Industry | Delete Announcement Dates | |
Proportion of extreme hot days | −0.0719 *** | −0.0593 *** | −0.0920 *** |
(0.007) | (0.017) | (0.006) | |
Proportion of extreme humid days | −0.0884 *** | −0.1395 *** | −0.0671 *** |
(0.006) | (0.014) | (0.006) | |
Constant | 0.0149 *** | 0.0204 *** | 0.0153 *** |
(0.001) | (0.002) | (0.001) | |
Controls | YES | YES | YES |
Firm, year, quarter FE | YES | YES | YES |
Observations | 82,401 | 18,463 | 100,864 |
R-squared | 0.084 | 0.116 | 0.088 |
Variables | Monthly Stock Return | |||
---|---|---|---|---|
(1) | (2) | (3) | (4) | |
Proportion of extreme hot days | −0.0615 *** | −0.0661 *** | −0.0775 *** | −0.0431 *** |
(0.007) | (0.007) | (0.008) | (0.008) | |
Proportion of extreme humid days | −0.0714 *** | −0.0785 *** | −0.0792 *** | −0.0661 *** |
(0.007) | (0.008) | (0.008) | (0.007) | |
Proportion of extreme hot * humid days | −0.3227 *** | −0.2946 *** | −0.1400 *** | −0.2275 *** |
(0.030) | (0.030) | (0.030) | (0.030) | |
Constant | 0.0151 *** | 0.0148 *** | 0.0144 *** | 0.0118 *** |
(0.001) | (0.001) | (0.001) | (0.001) | |
Controls | YES | YES | YES | YES |
Firm FE | YES | YES | YES | |
Year FE | YES | YES | ||
Quarter FE | YES | |||
Observations | 100,864 | 100,864 | 100,864 | 100,864 |
R-squared | 0.022 | 0.033 | 0.076 | 0.088 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, X.; Luo, Y.; Yan, Q. Does Extreme Weather Impact Performance in Capital Markets? Evidence from China. Sustainability 2024, 16, 6802. https://doi.org/10.3390/su16166802
Chen X, Luo Y, Yan Q. Does Extreme Weather Impact Performance in Capital Markets? Evidence from China. Sustainability. 2024; 16(16):6802. https://doi.org/10.3390/su16166802
Chicago/Turabian StyleChen, Xinqi, Yilei Luo, and Qing Yan. 2024. "Does Extreme Weather Impact Performance in Capital Markets? Evidence from China" Sustainability 16, no. 16: 6802. https://doi.org/10.3390/su16166802
APA StyleChen, X., Luo, Y., & Yan, Q. (2024). Does Extreme Weather Impact Performance in Capital Markets? Evidence from China. Sustainability, 16(16), 6802. https://doi.org/10.3390/su16166802