Adapting Seasonal Rice Cultivation Strategies for Food Security in Response to Climate Change Impacts
Abstract
:1. Introduction
2. Literature Review
3. Material and Method
3.1. “Economy-Climate” Model
3.2. Data
4. Results and Discussion
4.1. The Impact of Climate Change on the Rice Yield
4.1.1. The Impact of Precipitation on the Rice Yield
4.1.2. The Effect of Temperature on the Output of Rice
4.1.3. The Effect of Sunshine Duration on the Rice Yield
4.1.4. The Impact of Other Variables on the Rice Yield
4.2. The Differential Impact of Climate Change on the Yield of Different Types of Rice
4.2.1. The Difference of Precipitation on the Yield of Different Types of Rice
4.2.2. The Difference of Temperature on the Yield of Different Types of Rice
4.2.3. The Duration of Sunshine Has Different Effects on the Yield of Different Types of Rice
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhou, S.; Zhou, W.; Lin, G.; Qiao, H. The Impact of Future Climate Change on China’s Food Security. J. Nanjing Agric. Univ. (Soc. Sci. Ed.) 2013, 13, 56–65. [Google Scholar]
- Beillouin, D.; Schauberger, B.; Bastos, A.; Ciais, P.; Makowski, D. Impact of extreme weather conditions on European crop production in 2018. Philos. Trans. R. Soc. B 2020, 375, 20190510. [Google Scholar] [CrossRef]
- Luo, W.; Wang, D.; Xu, Z.; Liao, G.; Chen, D.; Huang, X.; Wang, Y.; Yang, S.; Zhao, L.; Huang, H. Effects of cadmium pollution on the safety of rice and fish in a rice-fish coculture system. Environ. Int. 2020, 143, 105898. [Google Scholar] [CrossRef]
- Li, J.; Li, J.; Li, W.; Zhou, Z.; Wang, X. China’s Rice Yield Increase Potential and Realization Path during the “14th Five-Year Plan” Period. Agric. Econ. 2021, 7, 25–37. [Google Scholar]
- Masuda, K. Optimization model for mitigating global warming at the farm scale: An application to Japanese rice farms. Sustainability 2016, 8, 593. [Google Scholar] [CrossRef]
- Chen, T.; Liu, C.; Zhang, F.; Han, H.; Wang, Z.; Yi, B.; Tang, L.; Meng, J.; Chi, D.; Wilson, L.T. Acid-modified biochar increases grain yield and reduces reactive gaseous N losses and N-related global warming potential in alternate wetting and drying paddy production system. J. Clean. Prod. 2022, 377, 134451. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhang, D.; Lu, W.; Khan, M.U.; Xu, H.; Yi, W.; Lei, H.; Huo, E.; Qian, M.; Zhao, Y. Production of high-density polyethylene biocomposites from rice husk biochar: Effects of varying pyrolysis temperature. Sci. Total Environ. 2020, 738, 139910. [Google Scholar] [CrossRef]
- Sapkota, T.B.; Shankar, V.; Rai, M.; Jat, M.L.; Stirling, C.M.; Singh, L.K.; Jat, H.S.; Grewal, M.S. Reducing global warming potential through sustainable intensification of basmati rice-wheat systems in India. Sustainability 2017, 9, 1044. [Google Scholar] [CrossRef]
- Fagnant, C.; Gori, A.; Sebastian, A.; Bedient, P.B.; Ensor, K.B. Characterizing spatiotemporal trends in extreme precipitation in Southeast Texas. Nat. Hazards 2020, 104, 1597–1621. [Google Scholar] [CrossRef]
- Huang, Y.; Zhang, W.; Zheng, X.; Li, J.; Yu, Y. Modeling methane emission from rice paddies with various agricultural practices. J. Geophys. Res. Atmos. 2004, 109–112. [Google Scholar] [CrossRef]
- Xiong, W.; Conway, D.; Lin, E.; Holman, I. Potential impacts of climate change and climate variability on China’s rice yield and production. Clim. Res. 2009, 40, 23–35. [Google Scholar]
- Peng, S.; Huang, J.; Sheehy, J.E.; Laza, R.C.; Visperas, R.M.; Zhong, X.; Centeno, G.S.; Khush, G.S.; Cassman, K.G. Rice yields decline with higher night temperature from global warming. Proc. Natl. Acad. Sci. USA 2004, 101, 9971–9975. [Google Scholar] [CrossRef]
- Wei, T.; Cherry, T.L.; Glomrød, S.; Zhang, T. Climate change impacts on crop yield: Evidence from China. Sci. Total Environ. 2014, 499, 133–140. [Google Scholar] [CrossRef]
- Yang, W.; Peng, S.; Laza, R.C.; Visperas, R.M.; Dionisio-Sese, M.L. Yield gap analysis between dry and wet season rice crop grown under high-yielding management conditions. Agron. J. 2008, 100, 1390–1395. [Google Scholar] [CrossRef]
- Pickson, R.B.; He, G.; Boateng, E. Impacts of climate change on rice production: Evidence from 30 Chinese provinces. Environ. Dev. Sustain. 2021, 24, 3907–3925. [Google Scholar]
- Yin, C.; Li, G.; Gao, X. An Empirical Analysis of Climatic Factors Impact on Rice Yield—Based on the Hierarchical Model at Household Level. J. Nat. Resour. 2017, 32, 1433–1444. [Google Scholar]
- Jiang, Y.; Zhu, X.; Zhou, H.; Wang, J. The Impact of Climate Change on Changes in Rice Production Efficiency in Jiangsu Province. J. Agrotech. Econ. 2015, 23, 109–116. [Google Scholar]
- Li, Y.; Zhou, H. Research on the Impact of Climate Change on the Production Efficiency of Japonica Rice. J. Anhui Agric. Sci. 2014, 42, 4350–4351+4370. [Google Scholar]
- Ankrah, D.; Okyere, C.; Mensah, J.; Okata, E. Effect of climate variability adaptation strategies on maize yield in the Cape Coast Municipality, Ghana. Cogent Food Agric. 2023, 9, 2247166. [Google Scholar] [CrossRef]
- Fu, L.; Zhu, H.; Zhou, S. Characteristics of climate change and its contribution on rice yield in Jiangxi—Based on the “Climate-Economy” model. Resour. Environ. Yangtze Basin 2016, 25, 590–598. [Google Scholar]
- Zhu, X.; Wang, J.; Zhou, H. Analysis of the contribution rate of climate change to rice yield in Jiangsu Province. J. Agrotech. Econ. 2013, 4, 53–58. [Google Scholar]
- Chen, C.; Li, W.; Zhu, X.; Liu, J.; Li, G.; Xu, K.; Jiang, Y.; Ding, Y. Adaptation of the Jianghuai Rice Wheat Double Cropping System to Climate Warming. Acta Agron. Sin. 2021, 47, 2250–2257. [Google Scholar] [CrossRef]
- Zhou, S.; Zhu, H. The economic impact of climate change on rice yield in southern China and its adaptation strategies. China Popul. Resour. Environ. 2010, 20, 152–157. [Google Scholar]
- Xu, X.; Sun, M.; Fang, Y.; He, X.; Xue, F.; Fu, W.; Mao, M. The Impact and Response of Climate Change on Rice Production in Anhui Province. J. Agro-Environ. Sci. 2011, 30, 1755–1763. [Google Scholar]
- Vatsa, P.; Ma, W.; Zheng, H.; Li, J. Climate-smart agricultural practices for promoting sustainable agrifood production: Yield impacts and implications for food security. Food Policy 2023, 121, 102551. [Google Scholar]
- Chen, S.; Xu, J.; Zhang, H. The Impact of Climate Change on China’s Grain Production: An Empirical Analysis Based on County Panel Data. Chin. Rural Econ. 2016, 5, 2–15. [Google Scholar]
- Hu, X.; Chen, M.; Liu, D.; Li, D.; Jin, L.; Liu, S.; Cui, Y.; Dong, B.; Khan, S.; Luo, Y. Reference evapotranspiration change in Heilongjiang Province, China from 1951 to 2018: The role of climate change and rice area expansion. Agric. Water Manag. 2021, 253, 106912. [Google Scholar] [CrossRef]
- Wang, Y.; Yao, X.; Zhou, M. Rural labor outflow, regional differences, and food production. J. Manag. World 2013, 11, 67–76. [Google Scholar]
- Jayne, T.S.; Jones, S. Food marketing and pricing policy in Eastern and Southern Africa: A survey. World Dev. 1997, 25, 1505–1527. [Google Scholar] [CrossRef]
- Lichtenberg, E.; Ding, C. Assessing farmland protection policy in China. Land Use Policy 2008, 25, 59–68. [Google Scholar] [CrossRef]
- Zheng, S.; Lambert, D.; Wang, S.; Wang, Z. Effects of agricultural subsidy policies on comparative advantage and production protection in China: An application with a policy analysis matrix model. Chin. Econ. 2013, 46, 20–37. [Google Scholar] [CrossRef]
- Islam, M.S.; Deng, H.; Dong, Y.; Zhu, J.; Gao, M.; Song, Z. Improving arsenic and cadmium contaminated paddy soil health and rice quality with plant-animal-based modified biochar: A mechanistic study. J. Clean. Prod. 2024, 448, 141659. [Google Scholar] [CrossRef]
- Huang, M.; Zhang, W.; Jiang, L.; Zou, Y. Impact of temperature changes on early-rice productivity in a subtropical environment of China. Field Crops Res. 2013, 146, 10–15. [Google Scholar] [CrossRef]
- Wang, H.; Yang, T.; Chen, J.; Bell, S.M.; Wu, S.; Jiang, Y.; Sun, Y.; Zeng, Y.; Zeng, Y.; Pan, X. Effects of free-air temperature increase on grain yield and greenhouse gas emissions in a double rice cropping system. Field Crops Res. 2022, 281, 108489. [Google Scholar] [CrossRef]
ten thousand tons | 533 | 983.6577 | 836.2865 | 0.5 | 2819.3 | |
ten thousand tons | 246 | 4769.653 | 1789.178 | 0 | 7647.059 | |
ten thousand tons | 533 | 6507.731 | 1450.082 | 746.269 | 9578.332 | |
ten thousand tons | 246 | 5013.31 | 1722.229 | 0 | 8571.429 | |
millimetre | 533 | 73.43 | 33.99 | 19.505 | 179.546 | |
celsius | 533 | 11.745 | 5.018 | 0.978 | 18.503 | |
hour | 533 | 54,955.93 | 51,825.11 | 18,973.44 | 1,080,000 | |
million population | 533 | 184.636 | 196.712 | 0.796 | 790.861 | |
ten thousand tons | 533 | 36.76 | 34.542 | 0.011 | 146.071 | |
ten thousand kilowatts | 533 | 461.218 | 556.362 | 0.52 | 3185.814 | |
thousand hectares | 533 | 528.767 | 479.967 | 1.82 | 1612.699 | |
-- | 533 | 1.939 | 1.69 | 0.441 | 11.598 | |
-- | 533 | 0.512 | 0.5 | 0 | 1 | |
-- | 533 | 0.336 | 0.482 | 0 | 1 |
0.1033 *** (0.0309) | 0.5450 * (0.2787) | 1.4206 *** (0.2464) | |
−0.4315 *** (0.0181) | −0.0830 (0.1063) | 0.4392 *** (0.0907) | |
0.0080 (0.0258) | 2.9632 ** (1.3437) | 3.6532 *** (1.0311) | |
2 | −0.0630 ** (0.0319) | −0.1749 *** (0.0288) | |
2 | −0.0958 *** (0.0322) | −0.0993 *** (0.0260) | |
2 | −0.1395 ** (0.0633) | −0.1709 *** (0.0485) | |
0.4120 *** (0.0220) | 0.4617 *** (0.0337) | −0.0892 *** (0.0245) | |
0.3882 *** (0.0209) | 0.2433 *** (0.0240) | 0.1801 *** (0.0188) | |
−0.0106 (0.0258) | 0.1496 *** (0.0284) | 0.0954 *** (0.0245) | |
0.2416 *** (0.0270) | 0.2074 *** (0.0404) | −0.1382 *** (0.0297) | |
0.0236 *** (0.0054) | 0.0730 *** (0.0113) | 0.0653 *** (0.0083) | |
−0.0087 (0.0250) | −0.0495 * (0.0295) | −0.0243 (0.0288) | |
0.1233 *** 0.0246) | 0.0647 ** (0.0304) | −0.0127 (0.0289) | |
2.4251 *** (0.3626) | −14.7162 ** (6.9348) | −14.0220 *** (5.3237) | |
533 | 533 | 533 | |
0.990 | 0.996 | 0.998 |
⚫ | |||
⚫ | ⚫ | ||
⚫ | ⚫ | ||
⚫ | ⚫ | ||
⚫ | ⚫ | ||
⚫ | |||
⚫ | |||
⚫ | |||
⚫ | |||
⚫ | |||
⚫ | |||
⚫ | |||
⚫ | ⚫ |
⚫ | |||
⚫ | ⚫ | ||
⚫ |
⚫ | ⚫ | ||
⚫ | ⚫ | ||
⚫ | ⚫ | ||
⚫ | ⚫ | ||
⚫ | ⚫ | ||
⚫ | ⚫ | ||
⚫ | ⚫ | ||
⚫ | ⚫ | ||
⚫ | ⚫ | ||
⚫ | ⚫ | ||
⚫ | ⚫ | ||
⚫ | ⚫ | ||
⚫ | ⚫ |
(5) | (6) | |||||
---|---|---|---|---|---|---|
1.5679 *** (0.4358) | 19.0538 ** (8.8423) | −1.185 *** (0.0986) | 12.0716 *** (0.7848) | 1.6721 *** (0.3891) | 6.5468 (8.1385) | |
12.2034 *** (1.2117) | −198.741 *** (25.1109) | −0.431 *** (0.0577) | 1.4631 *** (0.2149) | 13.7604 *** (1.0403) | −211.71 *** (24.0332) | |
0.0931 (0.4510) | 145.2960 *** (18.5201) | −0.0677 (0.0825) | −32.041 *** (2.6005) | −0.0706 (0.4022) | 128.92 *** (17.0529) | |
2 | −1.9218 ** (0.9503) | −1.5065 *** (0.0905) | −0.5867 (0.8752) | |||
2 | 37.6559 *** (4.6547) | −0.5418 *** (0.0623) | 40.5043 *** (4.4476) | |||
2 | −6.9549 *** (0.8806) | 1.4830 *** (0.1215) | −6.2059 *** (0.8117) | |||
1.8560 *** (0.4033) | 1.2226 *** (0.3244) | 0.5539 *** (0.0702) | 0.5036 *** (0.0547) | 2.3998 *** (0.3447) | 1.8419 *** (0.2821) | |
−0.5799 * (0.3201) | −0.2485 (0.2534) | 0.7596 *** (0.0669) | 0.3571 *** (0.0547) | −0.4335 (0.2924) | −0.1491 (0.2350) | |
0.0265 (0.3259) | −0.0815 (0.2838) | −0.0001 (0.0825) | 0.2891 *** (0.0626) | 1.0836 *** (0.2797) | 1.0982 *** (0.2475) | |
−1.7568 *** (0.5996) | −1.3394 ** (0.5346) | −0.301 *** (0.0861) | −0.1629 ** (0.0662) | −3.3207 *** (0.4694) | −3.1181 *** (0.4382) | |
−0.3351 (0.6375) | −0.9560 * (0.5617) | −0.053 *** (0.0172) | −0.0257 (0.0186) | 0.4880 (0.5791) | −0.2716 (0.5199) | |
−0.2927 (0.3291) | −0.0396 (0.2732) | 0.0700 (0.0800) | 0.1703 *** (0.0588) | −1.4196 *** (0.2821) | −1.1512 *** (0.2408) | |
0.5811 * (0.3114) | 0.4615 * (0.2531) | 0.2332 *** (0.0786) | 0.0278 (0.0583) | 0.0159 (0.2752) | −0.2387 (0.2260) | |
−32.775 *** (6.6165) | −533.77 *** (91.4127) | 9.6283 *** (1.1585) | 150.5518 *** (13.7659) | −36.216 *** (5.8733) | −400.95 *** (84.3389) | |
219 | 219 | 533 | 533 | 233 | 233 | |
0.720 | 0.829 | 0.865 | 0.929 | 0.792 | 0.869 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, C.; Mao, X.; Zheng, M.; Han, M. Adapting Seasonal Rice Cultivation Strategies for Food Security in Response to Climate Change Impacts. Sustainability 2024, 16, 6748. https://doi.org/10.3390/su16166748
Li C, Mao X, Zheng M, Han M. Adapting Seasonal Rice Cultivation Strategies for Food Security in Response to Climate Change Impacts. Sustainability. 2024; 16(16):6748. https://doi.org/10.3390/su16166748
Chicago/Turabian StyleLi, Cheng, Xiaojie Mao, Mingxing Zheng, and Mingyang Han. 2024. "Adapting Seasonal Rice Cultivation Strategies for Food Security in Response to Climate Change Impacts" Sustainability 16, no. 16: 6748. https://doi.org/10.3390/su16166748
APA StyleLi, C., Mao, X., Zheng, M., & Han, M. (2024). Adapting Seasonal Rice Cultivation Strategies for Food Security in Response to Climate Change Impacts. Sustainability, 16(16), 6748. https://doi.org/10.3390/su16166748