Coupling Coordination of Multi-Dimensional Urbanization and Ecological Security in Karst Landscapes: A Case Study of the Yunnan–Guizhou Region, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources
2.3. Research Methodology
2.3.1. The Evaluation Index System for MDU and ECS
2.3.2. The Entropy Weight–TOPSIS Model
2.3.3. Coupling Coordination Degree Model
2.3.4. The Panel Tobit Regression Model
3. Results
3.1. Results of the MDU Subsystem
3.2. Results of the ECS Subsystem
3.3. Results of the CCD
3.4. Analysis of Driving Factors
4. Discussion
4.1. The Spatiotemporal Evolution of MDU and ECS
4.2. CCD and Factors Driving MDU and ECS
4.3. The Limitations of This Study
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, S.-L.; Liu, C.-Q.; Chen, J.-A.; Wang, S.-J. Karst ecosystem and environment: Characteristics, evolution processes, and sustainable development. Agric. Ecosyst. Environ. 2021, 306, 107173. [Google Scholar] [CrossRef]
- Zheng, Z.P.; Qi, S.Z. Potential flood hazard due to urban expansion in the karst mountainous region of North China. Reg. Environ. Change 2011, 11, 439–440. [Google Scholar] [CrossRef]
- Wang, H.J.; He, Q.Q.; Liu, X.J.; Zhuang, Y.H.; Hong, S. Global urbanization research from 1991 to 2009: A systematic research review. Landsc. Urban Plan. 2012, 104, 299–309. [Google Scholar] [CrossRef]
- Shi, Y.J.; Zhu, Q.; Xu, L.H.; Lu, Z.W.; Wu, Y.Q.; Wang, X.B.; Fei, Y.; Deng, J.Y. Independent or Influential? Spatial-Temporal Features of Coordination Level between Urbanization Quality and Urbanization Scale in China and Its Driving Mechanism. Int. J. Environ. Res. Public Health 2020, 17, 1587. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.Z.; Jiao, M. City size, industrial structure and urbanization quality-A case study of the Yangtze River Delta urban agglomeration in China. Land Use Policy 2021, 111, 105735. [Google Scholar] [CrossRef]
- Auerbach, A.M.; LeBas, A.; Post, A.E.; Weitz-Shapiro, R. State, Society, and Informality in Cities of the Global South. Stud. Comp. Int. Dev. 2018, 53, 261–280. [Google Scholar] [CrossRef]
- Dai, L.; Wang, Z.J. Construction and optimization strategy of ecological security pattern based on ecosystem services and landscape connectivity: A case study of Guizhou Province, China. Environ. Sci. Pollut. Res. 2023, 30, 45123–45139. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Zhang, W.; Long, J.; Chen, M.; Nie, J.; Liu, P. Regional water resources security assessment and optimization path analysis in karst areas based on emergy ecological footprint. Appl. Water Sci. 2023, 13, 142. [Google Scholar] [CrossRef]
- Qi, S.-Z.; Zhang, X.-X. Urbanization induced environmental hazards from breakage hills in the karst geological region of Jinan City, China. Nat. Hazards 2011, 56, 571–574. [Google Scholar] [CrossRef]
- Keshtkar, M.; Mobarghaee, N.; Sayahnia, R.; Asadolahi, Z. Landscape ecological security response to urban growth in Southern Zagros biome, Iran. Ecol. Indic. 2023, 154, 110577. [Google Scholar] [CrossRef]
- Ghosh, S.; Chatterjee, N.D.; Dinda, S. Urban ecological security assessment and forecasting using integrated DEMATEL-ANP and CA-Markov models: A case study on Kolkata Metropolitan Area, India. Sustain. Cities Soc. 2021, 68, 102773. [Google Scholar] [CrossRef]
- Zeng, P.; Wei, X.; Duan, Z.C. Coupling and coordination analysis in urban agglomerations of China: Urbanization and ecological security perspectives. J. Clean. Prod. 2022, 365, 132730. [Google Scholar] [CrossRef]
- Hamer, A.J.; McDonnell, M.J. Amphibian ecology and conservation in the urbanising world: A review. Biol. Conserv. 2008, 141, 2432–2449. [Google Scholar] [CrossRef]
- Qiu, M.; Yang, Z.L.; Zuo, Q.T.; Wu, Q.S.; Jiang, L.; Zhang, Z.Z.; Zhang, J.W. Evaluation on the relevance of regional urbanization and ecological security in the nine provinces along the Yellow River, China. Ecol. Indic. 2021, 132, 108346. [Google Scholar] [CrossRef]
- Wang, J.; Zhou, W.; Pickett, S.T.A.; Yu, W.; Li, W. A multiscale analysis of urbanization effects on ecosystem services supply in an urban megaregion. Sci. Total Environ. 2019, 662, 824–833. [Google Scholar] [CrossRef] [PubMed]
- Wu, F.Q.; Chen, Y.J.; Yang, X.L. Research on the impact of financial agglomeration on the coordinated development of urban ecological green: Based on the empirical comparison of four metropolitan areas in the Yangtze River Delta of China. Environ. Sci. Pollut. Res. 2023, 30, 37875–37893. [Google Scholar] [CrossRef]
- Sultana, N.; Rahman, M.M.; Khanam, R. Environmental kuznets curve and causal links between environmental degradation and selected socioeconomic indicators in Bangladesh. Environ. Dev. Sustain. 2022, 24, 5426–5450. [Google Scholar] [CrossRef] [PubMed]
- Ma, L.; Yang, B.; Feng, Y.; Ju, L. Evaluation of provincial forest ecological security and analysis of the driving factors in China via the GWR model. Sci. Rep. 2024, 14, 14299. [Google Scholar] [CrossRef] [PubMed]
- Akubia, J.E.K.; Ahmed, A.; Bruns, A. Assessing How Land-Cover Change Associated with Urbanisation Affects Ecological Sustainability in the Greater Accra Metropolitan Area, Ghana. Land 2020, 9, 182. [Google Scholar] [CrossRef]
- Zhang, Z.X.; Li, Y. Coupling coordination and spatiotemporal dynamic evolution between urbanization and geological hazards?A case study from China. Sci. Total Environ. 2020, 728, 138825. [Google Scholar] [CrossRef]
- Fang, C.; Lin, X. The eco-environmental guarantee for China’s urbanization process. J. Geogr. Sci. 2009, 19, 95–106. [Google Scholar] [CrossRef]
- Huang, J.; Na, Y.; Guo, Y. Spatiotemporal characteristics and driving mechanism of the coupling coordination degree of urbanization and ecological environment in Kazakhstan. J. Geogr. Sci. 2020, 30, 1802–1824. [Google Scholar] [CrossRef]
- Zhou, D.; Lin, Z.L.; Ma, S.M.; Qi, J.L.; Yan, T.T. Assessing an ecological security network for a rapid urbanization region in Eastern China. Land Degrad. Dev. 2021, 32, 2642–2660. [Google Scholar] [CrossRef]
- Moarrab, Y.; Salehi, E.; Amiri, M.J.; Hovidi, H. Spatial-temporal assessment and modeling of ecological security based on land-use/cover changes (case study: Lavasanat watershed). Int. J. Environ. Sci. Technol. 2022, 19, 3991–4006. [Google Scholar] [CrossRef]
- Chai, J.; Wang, Z.Q.; Yu, C. Analysis for the Interaction Relationship between Urbanization and Ecological Security: A Case Study in Wuhan City Circle of China. Int. J. Environ. Res. Public Health 2021, 18, 13187. [Google Scholar] [CrossRef] [PubMed]
- Tang, H.J.; Hou, K.; Wu, S.Q.; Liu, J.W.; Ma, L.X.; Li, X.X. Interpretation of the coupling mechanism of ecological security and urbanization based on a Computation-Verification-Coupling framework: Quantitative analysis of sustainable development. Ecotoxicol. Environ. Saf. 2023, 263, 115294. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.W.; Zhang, P.Y.; Jiang, X.L.; Lo, K. Measuring sustainable urbanization in China: A case study of the coastal Liaoning area. Sustain. Sci. 2013, 8, 585–594. [Google Scholar] [CrossRef]
- Schewenius, M.; McPhearson, T.; Elmqvist, T. Opportunities for Increasing Resilience and Sustainability of Urban Social-Ecological Systems: Insights from the URBES and the Cities and Biodiversity Outlook Projects. Ambio 2014, 43, 434–444. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Li, R.; Jing, J. Soil erosion gradient and quantitative attribution in southwest China based on karst development degree. Ecol. Indic. 2022, 144, 109496. [Google Scholar] [CrossRef]
- Guo, F.; Jiang, G.H.; Yuan, D.X.; Polk, J.S. Evolution of major environmental geological problems in karst areas of Southwestern China. Environ. Earth Sci. 2013, 69, 2427–2435. [Google Scholar] [CrossRef]
- Wang, S.; Ma, H.; Zhao, Y. Exploring the relationship between urbanization and the eco-environment—A case study of Beijing–Tianjin–Hebei region. Ecol. Indic. 2014, 45, 171–183. [Google Scholar] [CrossRef]
- Xiao, S.; Duo, L.; Guo, X.; Zou, Z.; Li, Y.; Zhao, D. Research on the coupling coordination and driving role of urbanization and ecological resilience in the middle and lower reaches of the Yangtze River. PeerJ 2023, 11, e15869. [Google Scholar] [CrossRef]
- Zhang, Q.; Li, Y.; Kong, Q.; Huang, H. Coupling coordination analysis and key factors between urbanization and water resources in ecologically fragile areas: A case study of the Yellow River Basin, China. Environ. Sci. Pollut. Res. 2024, 31, 10818–10837. [Google Scholar] [CrossRef] [PubMed]
- Huang, Q.; Peng, B.; Elahi, E.; Wan, A. Evolution and Driving Mechanism of Ecological Security Pattern: A Case Study of Yangtze River Urban Agglomeration. Integr. Environ. Assess. Manag. 2021, 17, 573–583. [Google Scholar] [CrossRef] [PubMed]
- Shih, M. Land and people: Governing social conflicts in China’s state-led urbanisation. Int. Dev. Plan. Rev. 2019, 41, 293–310. [Google Scholar] [CrossRef]
- Zhang, Y.J.; Su, Z.G.; Li, G.; Zhuo, Y.F.; Xu, Z.G. Spatial-Temporal Evolution of Sustainable Urbanization Development: A Perspective of the Coupling Coordination Development Based on Population, Industry, and Built-Up Land Spatial Agglomeration. Sustainability 2018, 10, 1766. [Google Scholar] [CrossRef]
- Hu, B.L.; Chen, C.L. New Urbanisation under Globalisation and the Social Implications in China. Asia Pac. Policy Stud. 2015, 2, 34–43. [Google Scholar] [CrossRef]
- D’Ettorre, U.S.; Liso, I.S.; Parise, M. Desertification in karst areas: A review. Earth-Sci. Rev. 2024, 253, 104786. [Google Scholar] [CrossRef]
- Peng, L.; Zhou, S.; Chen, T.T. Mapping Forest Restoration Probability and Driving Archetypes Using a Bayesian Belief Network and SOM: Towards Karst Ecological Restoration in Guizhou, China. Remote Sens. 2022, 14, 780. [Google Scholar] [CrossRef]
- Wang, S.; Hua, G.; Yang, L. Coordinated development of economic growth and ecological efficiency in Jiangsu, China. Environ. Sci. Pollut. Res. 2020, 27, 36664–36676. [Google Scholar] [CrossRef]
- Zhou, B.; Zhong, L.; Chen, T.; Zhang, A. Spatio-temporal Pattern and Obstacle Factors of Ecological Security of Tourism Destination: A Case of Zhejiang Province. Sci. Geogr. Sin. 2015, 35, 599–607. [Google Scholar]
- Li, R.R.; Ding, Z.Y.; An, Y. Examination and Forecast of Relationship among Tourism, Environment, and Economy: A Case Study in Shandong Province, China. Int. J. Environ. Res. Public Health 2022, 19, 2581. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.A.; Tang, L.; Mi, Z.F.; Liu, S.; Li, L.; Zheng, J.L. Carbon emissions performance in logistics at the city level. J. Clean. Prod. 2019, 231, 1258–1266. [Google Scholar] [CrossRef]
- Addai, K.; Serener, B.; Kirikkaleli, D. Empirical analysis of the relationship among urbanization, economic growth and ecological footprint: Evidence from Eastern Europe. Environ. Sci. Pollut. Res. 2022, 29, 27749–27760. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Q.W.; Su, W.C.; Zhang, F.T.; Zhou, Z.Q. Evaluation of Water Resources Security in the Karst Region from the “Man-Land-Water” Perspective: A Case Study of Guizhou Province. Water 2019, 11, 224. [Google Scholar] [CrossRef]
- Pan, S.; He, Z.; Gu, X.; Xu, M.; Chen, L.; Yang, S.; Tan, H. Agricultural drought-driven mechanism of coupled climate and human activities in the karst basin of southern China. Sci. Rep. 2024, 14, 12072. [Google Scholar] [CrossRef] [PubMed]
- Rita Souza Fonseca, M.; Elias Soares Uagoda, R.; Marinho Leite Chaves, H. Runoff, soil loss, and water balance in a restored Karst area of the Brazilian Savanna. CATENA 2023, 222, 106878. [Google Scholar] [CrossRef]
- Qi, S.Z.; Guo, J.M.; Jia, R.; Sheng, W.F. Land use change induced ecological risk in the urbanized karst region of North China: A case study of Jinan city. Environ. Earth Sci. 2020, 79, 280. [Google Scholar] [CrossRef]
- Xiao, R.; Yu, X.Y.; Xiang, T.; Zhang, Z.H.; Wang, X.; Wu, J.G. Exploring the coordination between physical space expansion and social space growth of China’s urban agglomerations based on hierarchical analysis. Land Use Policy 2021, 109, 105700. [Google Scholar] [CrossRef]
- Tian, Y.; Wang, L. The Effect of Urban-Suburban Interaction on Urbanization and Suburban Ecological Security: A Case Study of Suburban Wuhan, Central China. Sustainability 2020, 12, 1600. [Google Scholar] [CrossRef]
- Lang, Y.; Song, W. Quantifying and mapping the responses of selected ecosystem services to projected land use changes. Ecol. Indic. 2019, 102, 186–198. [Google Scholar] [CrossRef]
Subsystem | Primary Indicator | Secondary Indicator | Unit | Weight | Type |
---|---|---|---|---|---|
MDU Indicator System | Demographic urbanization | Urbanization rate of permanent residents | % | 0.057 | Positive |
Proportion of secondary-industry personnel | % | 0.086 | Positive | ||
Proportion of tertiary-industry personnel | % | 0.068 | Positive | ||
Population density | square kilometer per person | 0.071 | Positive | ||
Spatial urbanization | Per capita road area | square meters per person | 0.044 | Positive | |
Proportion of construction-land area | % | 0.180 | Positive | ||
Per capita park and green-space area | m2 | 0.064 | Positive | ||
Economic urbanization | Per capita GDP | USD | 0.066 | Positive | |
Proportion of added value of the secondary industry | % | 0.025 | Positive | ||
Proportion of added value of the tertiary industry | % | 0.018 | Positive | ||
Per capita disposable income of urban residents’ households | USD | 0.078 | Positive | ||
Social urbanization | Number of beds per thousand urban residents | —— | 0.059 | Positive | |
Number of health technical personnel per thousand people | —— | 0.077 | Positive | ||
Number of mobile phones per one hundred urban households | —— | 0.03 | Positive | ||
Urban unemployment rate | % | 0.036 | Negative | ||
Per capita education expenditure | USD | 0.041 | Positive | ||
Indicator System | Human activities | Sulfur dioxide emissions per square kilometer | μm/m3 | 0.034 | Negative |
Urban centralized domestic-sewage-treatment rate | % | 0.037 | Positive | ||
Rate of harmless treatment of urban and rural domestic waste | % | 0.027 | Positive | ||
Green-space ratio in built-up areas | % | 0.054 | Positive | ||
Annual average concentration of PM2.5 | μm/m3 | 0.077 | Negative | ||
Environmental change | Forest-coverage rate | % | 0.069 | Positive | |
Proportion of days with excellent ambient air quality | % | 0.041 | Positive | ||
Annual average precipitation | mm | 0.083 | Positive | ||
Proportion of afforested land area | % | 0.33 | Positive | ||
Rainfall erosivity | MJ·mm·ha−1·h−1 | 0.026 | Negative | ||
Soil erodibility | t·hm2·h/(hm2·MJ mm) | 0.15 | Negative | ||
Terrain ruggedness | —— | 0.072 | Negative |
Coupling Coordination Degree | Classification Results |
---|---|
High coordination | 0.65 ≤ D ≤ 1.000 |
Moderate coordination | 0.55 ≤ D < 0.65 |
Low coordination | 0.45 ≤ D < 0.55 |
Mild dissonance | 0.35 ≤ D < 0.45 |
Moderate dissonance | D < 0.35 |
Variable Types | Variable Name | Symbol | Specific Indicators |
---|---|---|---|
Dependent variable | CCD | CCD | CCD |
Independent variable | Demographic urbanization | UPA | Urbanization rate of permanent residents |
Spatial urbanization | USE | Proportion of construction land area | |
Economic urbanization | UET | Proportion of added value of the secondary industry, Proportion of added value of the tertiary industry | |
Social urbanization | USW | Number of beds per thousand urban residents, Urban unemployment rate | |
Human activities | DHA | Annual average concentration of PM2.5 | |
Environmental change | DEC | Forest coverage rate, Proportion of afforested land area, Annual average precipitation, Rainfall erosivity, Soil erodibility, Terrain ruggedness |
Year | Max | Min | Avg | CV |
---|---|---|---|---|
2017 | 0.827 | 0.141 | 0.512 | 0.363 |
2018 | 0.995 | 0.168 | 0.461 | 0.427 |
2019 | 0.995 | 0.117 | 0.488 | 0.378 |
2020 | 0.995 | 0.184 | 0.488 | 0.377 |
2021 | 0.987 | 0.166 | 0.535 | 0.318 |
2022 | 0.972 | 0.195 | 0.579 | 0.308 |
Variable | Coefficient | Std. Error | Z-Statistic | p-Value |
---|---|---|---|---|
Urbanization rate of permanent residents | 1.134 | 0.359 | 3.161 | 0.098 * |
Annual average concentration of PM2.5 | −0.508 | 0.235 | −2.164 | 0.002 *** |
Annual average precipitation | 1.208 | 0.615 | 1.965 | 0.030 ** |
Proportion of afforested land area | 0.205 | 0.065 | 3.175 | 0.049 ** |
Rainfall erosivity | −0.443 | 0.176 | −2.518 | 0.002 *** |
Soil erodibility | −1.993 | 0.924 | −2.156 | 0.012 ** |
Terrain ruggedness | −0.248 | 0.149 | −1.666 | 0.031 ** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, D.; Wang, S.; Mei, S. Coupling Coordination of Multi-Dimensional Urbanization and Ecological Security in Karst Landscapes: A Case Study of the Yunnan–Guizhou Region, China. Sustainability 2024, 16, 6629. https://doi.org/10.3390/su16156629
Song D, Wang S, Mei S. Coupling Coordination of Multi-Dimensional Urbanization and Ecological Security in Karst Landscapes: A Case Study of the Yunnan–Guizhou Region, China. Sustainability. 2024; 16(15):6629. https://doi.org/10.3390/su16156629
Chicago/Turabian StyleSong, Dinglin, Sicheng Wang, and Shilong Mei. 2024. "Coupling Coordination of Multi-Dimensional Urbanization and Ecological Security in Karst Landscapes: A Case Study of the Yunnan–Guizhou Region, China" Sustainability 16, no. 15: 6629. https://doi.org/10.3390/su16156629
APA StyleSong, D., Wang, S., & Mei, S. (2024). Coupling Coordination of Multi-Dimensional Urbanization and Ecological Security in Karst Landscapes: A Case Study of the Yunnan–Guizhou Region, China. Sustainability, 16(15), 6629. https://doi.org/10.3390/su16156629