A Hybrid Deep Learning Model to Estimate the Future Electricity Demand of Sustainable Cities
Abstract
:1. Introduction
2. Materials and Methods
2.1. Convolutional Neural Network
2.2. Long Short-Term Memory
2.3. The Hybrid Deep Learning Model
3. Proposed Hybrid Deep Learning Model
3.1. Data Collection and Proposed Hybrid Deep Learning Model Structure
3.2. The Results of the Proposed Hybrid Deep Learning Model
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Enerdata. World Energy & Climate Statistics Yearbook. 2023. Available online: https://yearbook.enerdata.net/electricity/electricity-domestic-consumption-data.html (accessed on 6 March 2024).
- International Energy Agency. Electricity Report—Analysis and Forecast to 2026. 2024. Available online: https://www.iea.org/reports/electricity-2024 (accessed on 6 March 2024).
- Turkish Electricity Transmission Corporation. 10 Yıllık Talep Tahminleri Raporu. 2023. Available online: https://www.teias.gov.tr/ilgili-raporlar (accessed on 6 March 2024).
- Somu, N.; Raman, G.; Ramamritham, K. A deep learning framework for building energy consumption forecast. Renew. Sustain. Energy Rev. 2021, 137, 110591. [Google Scholar] [CrossRef]
- Kim, T.Y.; Cho, S.B. Particle Swarm Optimization-based CNN-LSTM Networks for Forecasting Energy Consumption. In Proceedings of the IEEE Congress on Evolutionary Computation (CEC), Wellington, New Zealand, 10–13 June 2019; pp. 1510–1516. [Google Scholar] [CrossRef]
- Ahmad, T.; Chen, H. Nonlinear autoregressive and random forest approaches to forecasting electricity load for utility energy management systems. Sustain. Cities Soc. 2019, 45, 460–473. [Google Scholar] [CrossRef]
- Al-Hamadi, H.M.; Soliman, S.A. Long-term/mid-term electric load forecasting based on short-term correlation and annual growth. Electr. Power Syst. Res. 2005, 74, 353–361. [Google Scholar] [CrossRef]
- Apadula, F.; Bassini, A.; Elli, A.; Scapin, S. Relationships between meteorological variables and monthly electricity demand. Appl. Energy 2012, 98, 346–356. [Google Scholar] [CrossRef]
- Javanmard, M.E.; Ghaderi, S.F. Energy demand forecasting in seven sectors by an optimization model based on machine learning algorithms. Sustain. Cities Soc. 2023, 95, 104623. [Google Scholar] [CrossRef]
- Ayoub, N.; Musharavati, F.; Pokharel, S.; Gabbar, H.A. ANN Model for Energy Demand and Supply Forecasting in a Hybrid Energy Supply System. In Proceedings of the 6th IEEE International Conference on Smart Energy Grid Engineering, Oshawa, ON, Canada, 12–15 August 2018; pp. 25–30. [Google Scholar]
- Garcıa-Ascanio, C.; Mate, C. Electric power demand forecasting using interval time series: A comparison between VAR and iMLP. Energy Policy 2010, 38, 715–725. [Google Scholar] [CrossRef]
- Yuan, J.; Farnham, C.; Azuma, C.; Emura, K. Predictive artificial neural network models to forecast the seasonal hourly electricity consumption for a University Campus. Sustain. Cities Soc. 2018, 42, 82–92. [Google Scholar] [CrossRef]
- He, W. Load Forecasting via Deep Neural Networks. Procedia Comput. Sci. 2017, 122, 308–314. [Google Scholar] [CrossRef]
- Rafi, S.H.; Masood, N.A.; Deeba, S.R.; Hossain, E. A Short-Term Load Forecasting Method Using Integrated CNN and LSTM Network. IEEE Access 2021, 9, 32436–32448. [Google Scholar] [CrossRef]
- Ren, C.; Jia, L.; Wang, Z. A CNN-LSTM Hybrid Model Based Short-term Power Load Forecasting. In Proceedings of the Power System and Green Energy Conference (PSGEC), Shanghai, China, 20–22 August 2021; pp. 182–186. [Google Scholar] [CrossRef]
- Yazici, I.; Beyca, O.F.; Delen, D. Deep-learning-based short-term electricity load forecasting: A real case Application. Eng. Appl. Artif. Intell. 2022, 109, 104645. [Google Scholar] [CrossRef]
- Pegalajar, M.C.; Ruiz, L.G.B.; Cuéllar, M.P.; Rueda, R. Analysis and enhanced prediction of the Spanish Electricity Network through Big Data and Machine Learning Techniques. Int. J. Approx. Reason. 2021, 133, 48–59. [Google Scholar] [CrossRef]
- Ahmadian, A.S. Numerical Modeling and Simulation. In Numerical Models for Submerged Breakwaters; Ahmadian, A.S., Ed.; Elsevier: Amsterdam, The Netherlands, 2016; pp. 109–126. [Google Scholar] [CrossRef]
- Fu, Y.; Downey, A.R.J.; Yuan, L.; Zhang, T.; Pratt, A.; Balogun, Y. Machine learning algorithms for defect detection in metal laser-based additive manufacturing: A review. J. Manuf. Process. 2022, 75, 693–710. [Google Scholar] [CrossRef]
- Li, Z.; Liu, F.; Yang, W.; Peng, S.; Zhou, J. A Survey of Convolutional Neural Networks: Analysis, Applications, and Prospects. IEEE Trans. Neural Netw. Learn. Syst. 2022, 33, 6999–7019. [Google Scholar] [CrossRef] [PubMed]
- Graves, A. Long Short-Term Memory. In Supervised Sequence Labelling with Recurrent Neural Networks; Graves, A., Ed.; Springer: Berlin/Heidelberg, Germany, 2012; pp. 37–45. [Google Scholar] [CrossRef]
- Ahmad, A.S.; Hassan, M.Y.; Abdullah, M.P.; Rahman, H.A.; Hussin, F.; Abdullah, H.; Saidur, R. A review on applications of ANN and SVM for building electrical energy consumption forecasting. Renew. Sustain. Energy Rev. 2014, 33, 102–109. [Google Scholar] [CrossRef]
- Huang, J.; Srinivasan, D.; Zhang, D. Electricity Demand Forecasting Using HWT model with Fourfold Seasonality. In Proceedings of the International Conference on Control, Artificial Intelligence, Robotics & Optimization, Prague, Czech Republic, 20–22 May 2017; pp. 254–258. [Google Scholar] [CrossRef]
- Fan, G.; Peng, L.; Hong, W. Short term load forecasting based on phase space reconstruction algorithm and bi-square kernel regression model. Appl. Energy 2018, 224, 13–33. [Google Scholar] [CrossRef]
- Elamin, N.; Fukushige, M. Modeling and forecasting hourly electricity demand by SARIMAX with interactions. Energy 2018, 165, 257–268. [Google Scholar] [CrossRef]
- Çevik, H.H.; Harmancı, H.; Çunkaç, M. Forecasting Hourly Electricity Demand Using a Hybrid Method. In Proceedings of the International Conference on Consumer Electronics and Devices, London, UK, 14–17 July 2017; pp. 8–12. [Google Scholar] [CrossRef]
- Behm, C.; Nolting, L.; Praktiknjo, A. How to model European electricity load profiles using artificial neural networks. Appl. Energy 2020, 277, 115564. [Google Scholar] [CrossRef]
- Liu, J.; Li, C. The Short-Term Power Load Forecasting Based on Sperm Whale Algorithm and Wavelet Least Square Support Vector Machine with DWT-IR for Feature Selection. Sustainability 2017, 9, 1188. [Google Scholar] [CrossRef]
- Shaikh, H.A.; Rahman, M.A.; Zubair, A. Electric Load Forecasting with Hourly Precision Using Long Short-Term Memory Networks. In Proceedings of the International Conference on Electrical, Computer and Communication Engineering (ECCE), Cox’sBazar, Bangladesh, 7–9 February 2019. [Google Scholar] [CrossRef]
- Mujeeb, S.; Javaid, N.; Ilahi, M.; Wadud, Z.; Ishmanov, F.; Afzal, M.K. Deep Long Short-Term Memory: A New Price and Load Forecasting Scheme for Big Data in Smart Cities. Sustainability 2019, 11, 987. [Google Scholar] [CrossRef]
- Mounir, N.; Ouadi, H.; Jrhilifa, I. Short-term electric load forecasting using an EMD-BI-LSTM approach for smart grid energy management system. Energy Build. 2023, 288, 113022. [Google Scholar] [CrossRef]
- Le, T.; Vo, M.T.; Vo, B.; Hwang, E.; Rho, S.; Baik, S.W. Improving Electric Energy Consumption Prediction Using CNN and Bi-LSTM. Appl. Sci. 2019, 9, 4237. [Google Scholar] [CrossRef]
- Kim, T.Y.; Cho, S.B. Predicting residential energy consumption using CNN-LSTM neural networks. Energy 2019, 182, 72–81. [Google Scholar] [CrossRef]
- Li, Y.; Tong, Z.; Tong, S.; Westerdahl, D. A data-driven interval forecasting model for building energy prediction using attention-based LSTM and fuzzy information granulation. Sustain. Cities Soc. 2022, 76, 103481. [Google Scholar] [CrossRef]
- Athiwaratkun, B.; Kang, K. Feature Representation in Convolutional Neural Networks. arXiv 2015, arXiv:1507.02313. [Google Scholar]
- Kizilkan, Z.; Sivri, M.; Yazici, İ.; Beyca, O. Neural Networks and Deep Learning. In Business Analytics for Professionals; Ustundag, A., Cevikcan, E., Beyca, O.F., Eds.; Springer: Cham, Switzerland, 2022; pp. 127–151. [Google Scholar] [CrossRef]
- Niu, J.; Liu, C.; Zhang, L.; Liao, Y. Remaining Useful Life Prediction of Machining Tools by 1D-CNN LSTM Network. In Proceedings of the IEEE Symposium Series on Computational Intelligence (SSCI), Xiamen, China, 6–9 December 2019; pp. 1056–1063. [Google Scholar] [CrossRef]
- Lee, K.B.; Cheon, S.; Kim, C.O. A Convolutional Neural Network for Fault Classification and Diagnosis in Semiconductor Manufacturing Processes. IEEE Trans. Semicond. Manuf. 2017, 30, 135–142. [Google Scholar] [CrossRef]
- Fan, C.; Wang, J.; Gang, W.; Li, S. Assessment of deep recurrent neural network based strategies for short-term building energy predictions. Appl. Energy 2019, 236, 700–710. [Google Scholar] [CrossRef]
- Li, T.; Hua, M.; Wu, X. A Hybrid CNN-LSTM Model for Forecasting Particulate Matter (PM2.5). IEEE Access 2020, 8, 26933–26940. [Google Scholar] [CrossRef]
- Kiranyaz, S.; Avci, O.; Abdeljaber, O.; Ince, T.; Gabbouj, M.; Inman, D.J. 1D convolutional neural networks and applications: A survey. Mech. Syst. Signal Process. 2021, 151, 107398. [Google Scholar] [CrossRef]
- Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [Google Scholar] [CrossRef] [PubMed]
- Gers, F.A.; Schmidhuber, J. Recurrent nets that time and count. In Proceedings of the IEEE-INNS-ENNS International Joint Conference on Neural Networks, Como, Italy, 27 July 2000; pp. 189–194. [Google Scholar] [CrossRef]
- Qian, X.; Klabjan, D. The Impact of the Mini-batch Size on the Variance of Gradients in Stochastic Gradient Descent. arXiv 2020, arXiv:2004.13146. [Google Scholar] [CrossRef]
- Zeiler, M.D. ADADELTA: An Adaptive Learning Rate Method. arXiv 2012, arXiv:1212.5701. [Google Scholar] [CrossRef]
- Shah, D.; Campbell, W.; Zulkernine, F.H. A Comparative Study of LSTM and DNN for Stock Market Forecasting. In Proceedings of the IEEE International Conference on Big Data, Seattle, WA, USA, 10–13 December 2018. [Google Scholar] [CrossRef]
- Utama, C.; Troitzsch, S.; Thakur, J. Demand-side flexibility and demand-side bidding for flexible loads in air-conditioned buildings. Appl. Energy 2021, 285, 116418. [Google Scholar] [CrossRef]
Authors | Techniques | Dataset | Forecast Term | Metrics |
---|---|---|---|---|
Al-Hamadi and Soliman [7] | LR | Hourly load data in Canada for the years 1994 and 1995 | Long Medium | MAE |
Garcia-Ascanio and Mate [11] | MLP, VARM | Hourly electricity consumption in Spain in the years 2000–2007 | Short Medium | RMSE |
Apadula et al. [8] | MLR | Monthly electricity demand and weather variables in the years 1994–2009 | Medium | MAPE |
Çevik and Harmancı [26] | ANN-PSO | Hourly load consumption data for four years | Short | MAPE |
He [13] | LR, SVM, DNN, CNN, RNN | Hourly load and weather data of a city in North China from February 2000 to December 2012 | Short | MAPE MAE |
Liu and Li [28] | SVM, SWA | Power load data from 21 March 2015 to 30 April 2016 | Short | MAPE RMSE |
Huang et al. [23] | HWT Exponential Smoothing | Half-hourly electricity consumption from 2009 to 2013 | Short | MAPE |
Yuan et al. [12] | ANN-LMA | Hourly electricity consumption and weather data from April 2015 to March 2016 | Medium | RMSE |
Ayoub et al. [10] | ANN | Hourly electrical energy demand data in the year 2012 | Short | MAPE |
Elamin and Fukushige [25] | SARIMAX | Hourly electricity generation data from January 2012 to December 2015 | Medium | MAE MAPE RMSE |
Fan et al. [24] | PSR, BSK | Hourly and half-hourly electrical load data | Short | MAE MAPE RMSE |
Shaikh et al. [29] | LSTM | Hourly electrical energy demand in the years 2011–2017 | Short | MAE MAPE RMSE |
Le et al. [32] | CNN with Bi-LSTM | Minutely, hourly, daily, and weekly electrical energy consumption from a house in France between December 2006 and November 2010 | Short Medium Long | RMSE MAPE MAE MSE |
Mujeeb et al. [30] | LSTM | Hourly consumption of New York City from January 2006 to October 2018 | Short | MAE RMSE |
Ahmad and Chen [6] | NARM, LMSR, Random Forest | The energy consumption and weather data between January 2009 and December 2009 | Long Medium | MAPE MSE |
Kim and Cho [33] | CNN-LSTM, LR, Random Forest, Decision Tree, MLP | Per-minute actual power consumption from a household in France | Short Medium | RMSE MAPE MAE MSE |
Behm et al. [27] | ANN | Annual peak load and weather data for Germany from 2006 to 2015 | Long | MAPE |
Rafi et al. [14] | LSTM, RBFNN, XGBoost, CNN- LSTM | Half-hourly electrical load data between January 2014 and December 2019 | Short | RMSE MAE MAPE |
Ren et al. [15] | LSTM, CNN, ARIMA, Backpropagation, CNN-LSTM | Electrical load data of a power station in Shanghai between June 2015 and May 2017 | Short | MAPE RMSE |
Pegalajar et al. [17] | LR, Regression Trees, GBR, Random Forest, MLP, LSTM, GRU- NN, JNN | Hourly data of the Spanish Electricity Network from 2007 to 2019 | Medium | RMSE MAE MAPE |
Yazici et al. [16] | CNN-LSTM | Hourly electrical load and temperature data for Istanbul between 2015 and 2017 | Short | MAPE MSE |
Javanmard and Ghaderi [9] | AR, ARIMA, SARIMA, SARIMAX, ANN, LSTM | Electrical load data from energy consuming sectors in Iran from 1990 to 2018 | Long | MAPE |
Mounir et al. [31] | EMD and Bi-LSTM | Electricity consumption and weather data with a frequency of 15 min | Short | MAPE |
Features | Interval Values | |
---|---|---|
Time Information | Day | 1–31 |
Month | 1–12 | |
Year | 2017–2021 | |
Hour | 0–23 | |
Weather Information | Average Temperature (°C) | −11.10–41.90 |
Maximum Temperature (°C) | −10.10–42.40 | |
Minimum Temperature (°C) | −11.50–40.80 | |
Pressure (hPA) | 884.20–921.40 | |
Humidity (%) | 5.00–98.00 | |
Average Wind Speed (m/s) | 0.00–20.70 | |
Sunshine Duration (h) | 0.00–1.00 | |
0.00–93.21 | ||
0.00–1076.10 | ||
Output | Electrical Energy Consumption (MWh) | 160.66–504.87 |
Layers | Parameters | Test Data Performance Metric | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Experiment No. | Conv. | LSTM | Dropout | Mini- Batch | Epoch | Learning Rate | RMSE | MAPE | MAE | ||||
1 | 64 | 64 | 64 | 32 | 0.5 | 0.25 | 256 | 50 | 0.001 | 25.9194 | 6.5996 | 20.6078 | 0.8469 |
2 | 32 | 32 | 32 | 32 | 0.5 | 0.5 | 256 | 50 | 0.001 | 26.7037 | 6.7795 | 21.3307 | 0.8407 |
3 | 64 | 64 | 32 | 32 | 0.5 | 0.5 | 256 | 50 | 0.001 | 27.5926 | 6.8647 | 21.7124 | 0.8339 |
4 | 64 | 32 | 32 | 32 | 0.5 | 0.5 | 64 | 50 | 0.001 | 32.4325 | 8.4376 | 26.0691 | 0.8310 |
5 | 64 | 32 | 32 | 32 | 0.5 | 0.5 | 128 | 50 | 0.001 | 28.3442 | 6.9322 | 22.3412 | 0.8346 |
6 | 64 | 64 | 32 | 32 | 0.5 | 0.25 | 256 | 50 | 0.001 | 30.5157 | 7.8770 | 24.1257 | 0.8326 |
7 | 64 | 64 | 64 | 32 | 0.5 | 0.25 | 512 | 100 | 0.001 | 34.1908 | 9.3693 | 28.4063 | 0.8354 |
8 | 128 | 64 | 64 | 32 | 0.5 | 0.5 | 256 | 50 | 0.001 | 26.2336 | 6.5318 | 20.7622 | 0.8394 |
9 | 128 | 64 | 128 | 64 | 0.5 | 0.25 | 256 | 50 | 0.001 | 25.7991 | 6.0300 | 20.2242 | 0.8573 |
10 | 64 | 32 | 128 | 64 | 0.5 | 0.25 | 256 | 50 | 0.001 | 24.9487 | 6.0530 | 19.3179 | 0.8599 |
Layers | Parameters | Test Data Performance Metric | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Experiment No. | LSTM | Dropout | Mini- Batch | Epoch | Learning Rate | RMSE | MAPE | MAE | |||
1 | 64 | 64 | 0.5 | 0.5 | 512 | 50 | 0.01 | 37.5857 | 9.5683 | 30.6163 | 0.7246 |
2 | 128 | 64 | 0.5 | 0.25 | 512 | 50 | 0.001 | 30.0789 | 7.1416 | 27.9232 | 0.7903 |
3 | 64 | 32 | 0.25 | 0.5 | 512 | 50 | 0.001 | 37.9796 | 9.5477 | 30.7457 | 0.7311 |
4 | 64 | 64 | 0.25 | 0.5 | 256 | 50 | 0.001 | 32.9382 | 8.1022 | 26.3317 | 0.7542 |
5 | 64 | 64 | 0.5 | 0.5 | 256 | 50 | 0.001 | 35.2584 | 8.8097 | 28.4341 | 0.7430 |
6 | 64 | 64 | 0.5 | 0.5 | 256 | 100 | 0.001 | 31.4422 | 7.8545 | 25.3603 | 0.8067 |
7 | 64 | 64 | 0.5 | 0.5 | 256 | 100 | 0.01 | 33.5237 | 8.5787 | 27.5804 | 0.7477 |
8 | 64 | 64 | 0.5 | 0.5 | 256 | 50 | 0.01 | 48.4582 | 13.9333 | 42.1571 | 0.8010 |
9 | 128 | 64 | 0.5 | 0.5 | 512 | 50 | 0.001 | 32.9797 | 8.3288 | 26.6089 | 0.8016 |
10 | 128 | 64 | 0.5 | 0.25 | 256 | 100 | 0.001 | 30.3830 | 7.2977 | 23.4877 | 0.8086 |
Test Data Performance Metric | Unseen Data Performance Metric | |||||||
---|---|---|---|---|---|---|---|---|
MODEL | RMSE | MAPE | MAE | RMSE | MAPE | MAE | ||
LSTM | 30.3830 | 7.2977 | 23.4877 | 0.8086 | 23.4702 | 5.5871 | 18.4558 | 0.8721 |
CNN-LSTM | 24.9487 | 6.0530 | 19.3179 | 0.8599 | 15.2754 | 3.3526 | 11.6659 | 0.9244 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yıldız Doğan, G.; Aksoy, A.; Öztürk, N. A Hybrid Deep Learning Model to Estimate the Future Electricity Demand of Sustainable Cities. Sustainability 2024, 16, 6503. https://doi.org/10.3390/su16156503
Yıldız Doğan G, Aksoy A, Öztürk N. A Hybrid Deep Learning Model to Estimate the Future Electricity Demand of Sustainable Cities. Sustainability. 2024; 16(15):6503. https://doi.org/10.3390/su16156503
Chicago/Turabian StyleYıldız Doğan, Gülay, Aslı Aksoy, and Nursel Öztürk. 2024. "A Hybrid Deep Learning Model to Estimate the Future Electricity Demand of Sustainable Cities" Sustainability 16, no. 15: 6503. https://doi.org/10.3390/su16156503
APA StyleYıldız Doğan, G., Aksoy, A., & Öztürk, N. (2024). A Hybrid Deep Learning Model to Estimate the Future Electricity Demand of Sustainable Cities. Sustainability, 16(15), 6503. https://doi.org/10.3390/su16156503