An OVR-FWP-RF Machine Learning Algorithm for Identification of Abandoned Farmland in Hilly Areas Using Multispectral Remote Sensing Data
Abstract
:1. Introduction
2. Materials and Methods
2.1. Summary of the Research Area and Data Sources
2.1.1. Summary of the Research Area
2.1.2. Data Source
2.2. Feature Extraction
2.2.1. Spectral Feature Factor
2.2.2. Vegetation Index Feature Factor
2.2.3. Texture Feature Factor
2.3. Machine Learning Model Construction
2.3.1. Random Forest Algorithm
2.3.2. Feature-Weighted Preference for OneVsRest-RF
2.3.3. XGBoost Algorithm
2.4. Accuracy Evaluation
3. Result Analysis
3.1. Feature Importance Ranking and Feature Selection
3.2. Feature Importance Ranking and Feature Selection
3.3. Machine Learning Classification Results and Evaluation
3.4. Classification Information Extraction Results and Evaluation
4. Discussion
5. Conclusions
- (1)
- By adopting the OneVsRest classifier and ranking the importance of the initial features for each land cover type, it is found that for the identification of abandoned land, among the spectral features, vegetation features, and texture features, there are 10 feature factors with an importance of over 5%. Among them, there are 2 spectral feature factors, namely Blue and Red Band; 4 vegetation feature factors, namely NDRE_1, GNDVI, NDVI, and EVI; and 4 texture features, namely Variance, Entropy, Dissimilarity, and Contrast. Therefore, the identification of abandoned land is primarily influenced by vegetation features and texture features.
- (2)
- The classification accuracy of the OVR-FWP-RF algorithm is higher than that of the RF and XGBoost algorithms, and the overall classification accuracy of all three machine learning algorithms is higher than 90%, with Kappa Coefficient values exceeding 0.85. Therefore, the utilization of machine learning methods and airborne multispectral data for land use classification in hilly areas achieves high classification accuracy.
- (3)
- In the abandoned land identification results using the OVR-FWP-RF algorithm, the producer’s accuracy is 3.22% and 0.71% higher than that of RF and XGBoost respectively, while the user’s accuracy is 5.27% and 6.68% higher respectively. By employing the One-Vs-Rest classifier framework and feature weighting method, the OVR-FWP-RF algorithm is able to enhance the available features of a random forest while reducing interference caused by feature redundancy. This improves classifier performance and land cover extraction accuracy, providing a new approach for the identification of abandoned land and other land cover classification tasks in hilly areas.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Huang, Y.; Li, F.; Xie, H. A Scientometrics Review on Farmland Abandonment Research. Land 2020, 9, 263. [Google Scholar] [CrossRef]
- Chen, R.; Ye, C.; Cai, Y.; Xing, X.; Chen, Q. The impact of rural out-migration on land use transition in China: Past, present and trend. Land Use Policy 2014, 40, 101–110. [Google Scholar] [CrossRef]
- Li, L.; Pan, Y.; Zheng, R.; Liu, X. Understanding the spatiotemporal patterns of seasonal, annual, and consecutive farmland abandonment in China with time-series Modis images during the period 2005–2019. Land Degrad. Dev. 2022, 33, 1608–1625. [Google Scholar] [CrossRef]
- Liu, B.; Song, W.; Sun, Q. Status, Trend, and Prospect of Global Farmland Abandonment Research: A Bibliometric Analysis. Int. J. Environ. Res. Public Health 2022, 19, 16007. [Google Scholar] [CrossRef] [PubMed]
- Baumann, M.; Kuemmerle, T.; Elbakidze, M.; Ozdogan, M.; Radeloff, V.C.; Keuler, N.S.; Prishchepov, A.V.; Kruhlov, I.; Hostert, P. Patterns and drivers of post-socialist farmland abandonment in Western Ukraine. Land Use Policy 2011, 28, 552–562. [Google Scholar] [CrossRef]
- Kuemmerle, T.; Müller, D.; Griffiths, P.; Rusu, M. Land use change in Southern Romania after the collapse of socialism. Reg. Environ. Chang. 2009, 9, 1–12. [Google Scholar] [CrossRef]
- Wang, L.J.; Zhang, G.M.; Wang, Z.Y.; Liu, J.G.; Shang, J.L.; Liang, L. Bibliometric Analysis of Remote Sensing Research Trend in Crop Growth Monitoring: A Case Study in China. Remote Sens. 2019, 11, 809. [Google Scholar] [CrossRef]
- Deng, J.Q.; Guo, Y.W.; Chen, X.Y.; Liu, L.; Liu, W.Y. Abandoned Farmland Extraction and Feature Analysis Based on Multi-Sensor Fused Normalized Difference Vegetation Index Time Series-A Case Study in Western Mianchi County. Appl. Sci. 2024, 14, 2102. [Google Scholar] [CrossRef]
- Bangira, T.; Alfieri, S.M.; Menenti, M.; van Niekerk, A. Comparing Thresholding with Machine Learning Classifiers for Mapping Complex Water. Remote Sens. 2019, 11, 1351. [Google Scholar] [CrossRef]
- Wu, H.; Lin, A.Q.; Xing, X.D.; Song, D.X.; Li, Y. Identifying core driving factors of urban land use change from global land cover products and POI data using the random forest method. Int. J. Appl. Earth Obs. Geoinf. 2021, 103, 13. [Google Scholar] [CrossRef]
- Rodriguez-Galiano, V.F.; Ghimire, B.; Rogan, J.; Chica-Olmo, M.; Rigol-Sanchez, J.P. An assessment of the effectiveness of a random forest classifier for land-cover classification. ISPRS-J. Photogramm. Remote Sens. 2012, 67, 93–104. [Google Scholar] [CrossRef]
- Ge, G.; Shi, Z.; Zhu, Y.; Yang, X.; Hao, Y. Land use/cover classification in an arid desert-oasis mosaic landscape of China using remote sensed imagery: Performance assessment of four machine learning algorithms—ScienceDirect. Glob. Ecol. Conserv. 2020, 22, e00971. [Google Scholar] [CrossRef]
- Dong, J.; Ren, G.B.; Hu, Y.B.; Feng, J.Z.; Ma, Y. Construction and classification of coral reef geomorphological unit system based on high-resolution remote sensing: Taking 8-band Worldview-2 image as an example. J. Trop. Oceanogr. 2020, 39, 116–129. [Google Scholar]
- Carlson, T.; Ripley, D.A.J. On the Relation between NDVI, Fractional Vegetation Cover, and Leaf Area Index. Remote Sens. Environ. Interdiscip. J. 1997, 62, 241–252. [Google Scholar] [CrossRef]
- Schuster, C.; Forster, M.; Kleinschmit, B. Testing the red edge channel for improving land-use classifications based on high-resolution multi-spectral satellite data. Int. J. Remote Sens. 2012, 33, 5583–5599. [Google Scholar] [CrossRef]
- Ustuner, M.; Sanli, F.B.; Abdikan, S.; Esetlili, M.; Kurucu, Y. Crop Type Classification Using Vegetation Indices of RapidEye Imagery. ISPRS Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2014, XL-7, 195–198. [Google Scholar] [CrossRef]
- Navarro, G.; Caballero, I.; Silva, G.; Parra, P.C.; Vázquez, Á.; Caldeira, R. Evaluation of forest fire on Madeira Island using Sentinel-2A MSI imagery. Int. J. Appl. Earth Obs. Geoinf. 2017, 58, 97–106. [Google Scholar] [CrossRef]
- Haralick, R.M.; Shanmugam, K.; Dinstein, I. Textural Features for Image Classification. Stud. Media Commun. 1973, SMC-3, 610–621. [Google Scholar] [CrossRef]
- Jiang, Q.; Yan, X. Parallel PCA–KPCA for nonlinear process monitoring. Control. Eng. Pract. 2018, 80, 17–25. [Google Scholar] [CrossRef]
- Deng, S.B.; Chen, Q.J.; Du, H.J.; Xu, E.H. ENVI Remote Sensing Image Processing Method, 2nd ed.; Higher Education Press: Beijing, China, 2014. [Google Scholar]
- Belgiu, M.; Dragut, L. Random forest in remote sensing: A review of applications and future directions. Isprs. J. Photogramm. 2016, 114, 24–31. [Google Scholar] [CrossRef]
- Xia, J.S.; Yokoya, N.; Iwasaki, A. Classification of large-sized hyperspectral imagery using fast machine learning algorithms. J. Appl. Remote Sens. 2017, 11, 15. [Google Scholar] [CrossRef]
- Zhang, Y.Q.; Cao, G.; Li, X.S.; Wang, B.S. Cascaded Random Forest for Hyperspectral Image Classification. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 2018, 11, 1082–1094. [Google Scholar] [CrossRef]
- Alhassan, V.; Henry, C.; Ramanna, S.; Storie, C. A deep learning framework for land-use/land-cover mapping and analysis using multispectral satellite imagery. Neural Comput. Appl. 2020, 32, 8529–8544. [Google Scholar] [CrossRef]
- Yang, L.B.; Wang, L.M.; Huang, J.F.; Mansaray, L.R.; Mijiti, R. Monitoring policy-driven crop area adjustments in northeast China using Landsat-8 imagery. Int. J. Appl. Earth Obs. Geoinf. 2019, 82, 18. [Google Scholar] [CrossRef]
- Sahin, E.K. Assessing the predictive capability of ensemble tree methods for landslide susceptibility mapping using XGBoost, gradient boosting machine, and random forest. SN Appl. Sci. 2020, 2, 1308. [Google Scholar] [CrossRef]
- Zhang, D.Y.; Fang, S.M.; She, B.; Zhang, H.H.; Jin, N.; Xia, H.M.; Yang, Y.Y.; Ding, Y. Winter Wheat Mapping Based on Sentinel-2 Data in Heterogeneous Planting Conditions. Remote Sens. 2019, 11, 2647. [Google Scholar] [CrossRef]
- Wang, L.; Dong, T.; Zhang, G.; Niu, Z. LAI Retrieval Using PROSAIL Model and Optimal Angle Combination of Multi-Angular Data in Wheat. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2013, 6, 1730–1736. [Google Scholar] [CrossRef]
- Guo, J.; Zhu, L.; Jin, B. Crop classification based on data fusion of Sentinel-1 and Sentinel-2. Trans. Chin. Soc. Agric. Mach 2018, 49, 192–198. [Google Scholar]
- Zhang, X.L.; Feng, X.Z.; Xiao, P.F.; He, G.J.; Zhu, L.J. Segmentation quality evaluation using region-based precision and recall measures for remote sensing images. ISPRS J. Photogramm. Remote Sens. 2015, 102, 73–84. [Google Scholar] [CrossRef]
- Sorboni, N.G.; Wang, J.F.; Najafi, M.R. Fusion of Google Street View, LiDAR, and Orthophoto Classifications Using Ranking Classes Based on F1 Score for Building Land-Use Type Detection. Remote Sens. 2024, 16, 2011. [Google Scholar] [CrossRef]
- Huang, J.W.; Li, Z.Y.; Chen, E.X.; Zhao, L.; Mo, B.P. Classification of Plantation Types Using Wide-Swath Multispectral Data from GF-6 Satellite. J. Remote Sens. 2021, 25, 539–548. [Google Scholar]
- Xu, J.; Chen, C.; Zhou, S.; Hu, W.; Zhang, W. Land use classification in mine-agriculture compound area based on multi-feature random forest: A case study of Peixian. Front. Sustain. Food Syst. 2024, 7, 1335292. [Google Scholar] [CrossRef]
- Wang, H.Y.; Wang, X.F.; Gao, L.; Li, Q.Z.; Zhao, L.C.; Du, X.; Zhang, Y. Research on Remote Sensing Extraction Method of Abandoned Farmland Based on Seasonal Variation Characteristics. Remote Sens. Technol. Appl. 2020, 35, 596–605. [Google Scholar]
- Zhang, G.T.; Wang, H.Y.; Wang, C.; Wu, X.K. Land Use Classification Based on Fusion of Airborne LiDAR and Hyperspectral Images. Laser J. 2023, 44, 133–136. [Google Scholar] [CrossRef]
- Li, X.K.; Liu, K.; Tian, J. Variability, predictability, and uncertainty in global aerosols inferred from gap-filled satellite observations and an econometric modeling approach. Remote Sens. Environ. 2021, 261, 112501. [Google Scholar] [CrossRef]
- Yao, X.; Wang, X.; Zhang, Y.; Quan, W. Summary of feature selection algorithms. Control. Decis. 2012, 27, 161–313. [Google Scholar]
- Puletti, N.; Chianucci, F.; Castaldi, C. Use of Sentinel-2 for forest classification in Mediterranean environments. Ann. Silvic. Res. 2017, 42, 32–38. [Google Scholar]
- Georganos, S.; Grippa, T.; Gadiaga, A.; Vanhuysse, S.; Kalogirou, S.; Lennert, M.; Linard, C. An Application of Geographical Random Forests for Population Estimation in Dakar, Senegal Using Very-High-Resolution Satellite Imagery. In Joint Urban Remote Sensing Event; IEEE: Vannes, France, 2019. [Google Scholar] [CrossRef]
Band Name | Central Wavelength (in nm) | Band Name | Central Wavelength (in nm) |
---|---|---|---|
Blue | 450 | Red edge1 | 720 |
Green | 555 | Red edge2 | 750 |
Red | 660 | NIR | 840 |
Feature Category | Feature Factors | Feature Category | Feature Factors |
---|---|---|---|
Spectral Feature | Blue | Vegetation Index | NDVI |
Red | NDRE_1 | ||
Green | NDRE_2 | ||
Red edge1 | GNDVI | ||
Red edge2 | EVI | ||
NIR | RVI | ||
Texture Feature | Mean | Texture Feature | Dissimilarity |
Variance | Second moment | ||
Homogeneity | Correlation | ||
Contrast | Entropy |
Vegetation Index | Formulas |
---|---|
Normalized Difference Vegetation Index | |
Normalized Difference Red-edge Index | |
Green Band Normalized Difference Vegetation Index | |
Ratio Vegetation Index | |
Enhanced Vegetation Index |
PC | Eigenvalue | Percent |
---|---|---|
1 | 3,647,376,287.97 | 94.65% |
2 | 201,161,928.06 | 99.87% |
3 | 2,726,339.96 | 99.94% |
4 | 1,388,727.05 | 99.98% |
5 | 625,448.10 | 100.00% |
6 | 191,634.94 | 100.00% |
Type | OVR-FWP-RF | RF | XGBoost |
---|---|---|---|
Runtime | 58.60″ | 60.52″ | 50.57″ |
CPU utilization | 0.10% | 2.20% | 6.60% |
RSS utilization | 2.50 MB | 2.57 MB | 12.62 MB |
Evaluation Type | OVR-FWP-RF | RF | XGBoost |
---|---|---|---|
Overall Accuracy | 92.66% | 90.55% | 90.75% |
Kappa Coefficient | 0.9064 | 0.8796 | 0.8824 |
Precision | 0.9247 | 0.9047 | 0.9081 |
Recall | 0.9259 | 0.9062 | 0.9053 |
F1 | 0.9253 | 0.9055 | 0.9067 |
Class | Evaluation Types | OVR-FWP-RF | RF | XGBoost |
---|---|---|---|---|
Water | PA | 96.46% | 96.20% | 96.58% |
UA | 97.44% | 97.69% | 94.67% | |
F1 | 0.9695 | 0.9694 | 0.9561 | |
Construction Land | PA | 97.12% | 96.28% | 95.78% |
UA | 95.56% | 94.24% | 95.45% | |
F1 | 0.9633 | 0.9525 | 0.9561 | |
Woodland | PA | 92.13% | 87.99% | 87.48% |
UA | 94.43% | 92.80% | 94.76% | |
F1 | 0.9326 | 0.9033 | 0.9097 | |
Non-abandoned Farmland | PA | 87.35% | 85.13% | 85.66% |
UA | 89.01% | 87.17% | 87.97% | |
F1 | 0.8817 | 0.8614 | 0.8680 | |
Abandoned Farmland | PA | 89.30% | 86.80% | 88.59% |
UA | 86.52% | 81.25% | 79.84% | |
F1 | 0.8789 | 0.8393 | 0.8399 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, L.; Li, Q.; Wang, Y.; Zeng, K.; Wang, H. An OVR-FWP-RF Machine Learning Algorithm for Identification of Abandoned Farmland in Hilly Areas Using Multispectral Remote Sensing Data. Sustainability 2024, 16, 6443. https://doi.org/10.3390/su16156443
Wang L, Li Q, Wang Y, Zeng K, Wang H. An OVR-FWP-RF Machine Learning Algorithm for Identification of Abandoned Farmland in Hilly Areas Using Multispectral Remote Sensing Data. Sustainability. 2024; 16(15):6443. https://doi.org/10.3390/su16156443
Chicago/Turabian StyleWang, Liangsong, Qian Li, Youhan Wang, Kun Zeng, and Haiying Wang. 2024. "An OVR-FWP-RF Machine Learning Algorithm for Identification of Abandoned Farmland in Hilly Areas Using Multispectral Remote Sensing Data" Sustainability 16, no. 15: 6443. https://doi.org/10.3390/su16156443
APA StyleWang, L., Li, Q., Wang, Y., Zeng, K., & Wang, H. (2024). An OVR-FWP-RF Machine Learning Algorithm for Identification of Abandoned Farmland in Hilly Areas Using Multispectral Remote Sensing Data. Sustainability, 16(15), 6443. https://doi.org/10.3390/su16156443