Spatial and Temporal Characteristics of Carbon Emissions from Construction Industry in China from 2010 to 2019
Abstract
1. Introduction
2. Literature Review
3. Materials and Methods
3.1. Study Area
3.2. Data Sources
3.3. Methodology
3.3.1. Carbon Emission-Related Indicators
3.3.2. Autocorrelation Analysis of Carbon Emissions in the Construction Industry
3.3.3. Trends in Carbon Emissions in the Construction Sector Analysis
3.3.4. Differential Analysis of Carbon Emissions in the Construction Industry
3.3.5. Examining the Variables Influencing Carbon Emissions in the Construction Sector
3.3.6. Zero Error Analysis of the LMDI Decomposition Model Based on the IPAT Model
4. Results
4.1. Analysis of the Spatial Evolution of Carbon Emissions in the Construction Industry
4.1.1. Examining How Carbon Emissions in the Construction Sector Have Changed over Time and Space
4.1.2. Examining How Carbon Emission Intensity Has Changed over Time and Space in the Construction Sector
4.1.3. Spatial Autocorrelation Analysis of Carbon Emissions from the Construction Industry
4.2. Examining the Historical Development of Carbon Emissions in the Construction Sector
4.3. Differential Examination of Carbon Emissions in the Construction Sector
4.4. Examining the Variables Influencing Carbon Emissions in the Construction Sector
4.5. Zero Error Analysis of the LMDI Decomposition Model Based on the IPAT Model
5. Discussion
5.1. Trends in Carbon Emissions in the Construction Sector Analysis
5.2. LMDI Modeling Analysis of Construction Industry Carbon Emissions
5.3. Examining the Constraints of the Research
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Soytas, U.; Sari, R.; Ewing, B.T. Energy consumption, income, and carbon emissions in the United States. Ecol. Econ. 2007, 62, 482–489. [Google Scholar] [CrossRef]
- Huang, L.; Krigsvoll, G.; Johansen, F.; Liu, Y.; Zhang, X. Carbon emission of global construction sector. Renew. Sustain. Energy Rev. 2018, 81, 1906–1916. [Google Scholar] [CrossRef]
- Zeng, X.; Duan, M.; Yu, Z.; Li, W.; Li, M.; Liang, X. Data-related challenges and solutions in building China’s national carbon emissions trading scheme. Clim. Policy 2018, 18 (Suppl. S1), 90–105. [Google Scholar] [CrossRef]
- Zhao, R.; Huang, X.; Liu, Y.; Zhong, T.; Ding, M.; Chuai, X. Carbon emission of regional land use and its decomposition analysis: Case study of Nanjing City, China. Chin. Geogr. Sci. 2015, 25, 198–212. [Google Scholar] [CrossRef]
- Chen, L.; Zhao, Y.; Xie, R.; Su, B.; Liu, Y.; Xv, R. Embodied energy intensity of global high energy consumption industries: A case study of the construction industry. Energy 2023, 277, 127628. [Google Scholar] [CrossRef]
- Chang, R.; Soebarto, V.; Zhao, Z.; Zillante, G. Facilitating the transition to sustainable construction: China’s policies. J. Clean. Prod. 2016, 131, 534–544. [Google Scholar] [CrossRef]
- Kim, T.-H.; Jeong, Y.-S. Analysis of Energy-Related Greenhouse Gas Emission in the Korea’s Building Sector: Use National Energy Statistics. Energies 2018, 11, 855. [Google Scholar] [CrossRef]
- Wu, P.; Song, Y.; Zhu, J.; Chang, R. Analyzing the influence factors of the carbon emissions from China’s building and construction industry from 2000 to 2015. J. Clean. Prod. 2019, 221, 552–566. [Google Scholar] [CrossRef]
- Tsang, S.; Kolk, A. The evolution of Chinese policies and governance structures on environment, energy and climate. Environ. Policy Gov. 2010, 20, 180–196. [Google Scholar] [CrossRef]
- Yao, H.; Xu, P.; Wang, Y.; Chen, R. Exploring the low-carbon transition pathway of China’s construction industry under carbon-neutral target: A socio-technical system transition theory perspective. J. Environ. Manag. 2023, 327, 116879. [Google Scholar] [CrossRef] [PubMed]
- Mata, É.; Kalagasidis, A.S.; Johnsson, F. Contributions of building retrofitting in five member states to EU targets for energy savings. Renew. Sustain. Energy Rev. 2018, 93, 759–774. [Google Scholar] [CrossRef]
- Fang, K.; Tang, Y.; Zhang, Q.; Song, J.; Wen, Q.; Sun, H.; Ji, C.; Xu, A. Will China peak its energy-related carbon emissions by 2030? Lessons from 30 Chinese provinces. Appl. Energy 2019, 255, 113852. [Google Scholar] [CrossRef]
- Li, L.; Yang, J. A new method of energy-related carbon dioxide emissions estimation at the provincial-level: A case study of Shandong Province, China. Sci. Total Environ. 2020, 700, 134384. [Google Scholar] [CrossRef] [PubMed]
- Du, Q.; Shao, L.; Zhou, J.; Huang, N.; Bao, T.; Hao, C. Dynamics and scenarios of carbon emissions in China’s construction industry. Sustain. Cities Soc. 2019, 48, 101556. [Google Scholar] [CrossRef]
- Duan, H.; Zhang, S.; Duan, S.; Zhang, W.; Duan, Z.; Wang, S.; Song, J.; Wang, X. Carbon Emissions Peak Prediction and the Reduction Pathway in Buildings during Operation in Jilin Province Based on LEAP. Sustainability 2019, 11, 4540. [Google Scholar] [CrossRef]
- Liu, L.-Y.; Zheng, B.-H.; Bedra, K.B. Quantitative analysis of carbon emissions for new town planning based on the system dynamics approach. Sustain. Cities Soc. 2018, 42, 538–546. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, X.; Song, X. Regional carbon emission evolution mechanism and its prediction approach driven by carbon trading—A case study of Beijing. J. Clean. Prod. 2018, 172, 2793–2810. [Google Scholar] [CrossRef]
- Han, M.Y.; Chen, G.Q.; Shao, L.; Li, J.S.; Alsaedi, A.; Ahmad, B.; Guo, S.; Jiang, M.M.; Ji, X. Embodied energy consumption of building construction engineering: Case study in E-town, Beijing. Energy Build. 2013, 64, 62–72. [Google Scholar] [CrossRef]
- Han, M.Y.; Shao, L.; Li, J.S.; Guo, S.; Meng, J.; Ahmad, B.; Hayat, T.; Alsaadi, F.; Ji, X.; Alsaedi, A.; et al. Emergy-based hybrid evaluation for commercial construction engineering: A case study in BDA. Ecol. Indic. 2014, 47, 179–188. [Google Scholar] [CrossRef]
- Luo, Z.; Yang, L.; Liu, J. Embodied carbon emissions of office building: A case study of China’s 78 office buildings. Build. Environ. 2016, 95, 365–371. [Google Scholar] [CrossRef]
- Luo, Y.; Long, X.; Wu, C.; Zhang, J. Decoupling CO2 emissions from economic growth in agricultural sector across 30 Chinese provinces from 1997 to 2014. J. Clean. Prod. 2017, 159, 220–228. [Google Scholar] [CrossRef]
- Li, R.; Jiang, R. Moving Low-Carbon Construction Industry in Jiangsu Province: Evidence from Decomposition and Decoupling Models. Sustainability 2017, 9, 1013. [Google Scholar] [CrossRef]
- Wang, Y.; Xie, T.; Yang, S. Carbon emission and its decoupling research of transportation in Jiangsu Province. J. Clean. Prod. 2017, 142, 907–914. [Google Scholar] [CrossRef]
- Xu, B.; Lin, B. Does the high–tech industry consistently reduce CO2 emissions? Results from nonparametric additive regression model. Environ. Impact Assess. Rev. 2017, 63, 44–58. [Google Scholar] [CrossRef]
- Yan, J.; Zhao, T.; Lin, T.; Li, Y. Investigating multi-regional cross-industrial linkage based on sustainability assessment and sensitivity analysis: A case of construction industry in China. J. Clean. Prod. 2017, 142, 2911–2924. [Google Scholar] [CrossRef]
- Zheng, S.; He, X.; Liang, X.; Yu, L. Research on the Decoupling Relationship and Driving Factors of Carbon Emissions in the Construction Industry of the East China Core Economic Zone. Buildings 2024, 14, 1476. [Google Scholar] [CrossRef]
- Ang, B.W.; Wang, H. Index decomposition analysis with multidimensional and multilevel energy data. Energy Econ. 2015, 51, 67–76. [Google Scholar] [CrossRef]
- Su, B.; Ang, B.W. Structural decomposition analysis applied to energy and emissions: Some methodological developments. Energy Econ. 2012, 34, 177–188. [Google Scholar] [CrossRef]
- Zhu, C.; Chang, Y.; Li, X.; Shan, M. Factors influencing embodied carbon emissions of China’s building sector: An analysis based on extended STIRPAT modeling. Energy Build. 2022, 255, 111607. [Google Scholar] [CrossRef]
- Harvey, L.D.D. Tackling Urban CO2 Emissions in Toronto. Environ. Sci. Policy Sustain. Dev. 1993, 35, 16–44. [Google Scholar] [CrossRef]
- You, F.; Hu, D.; Zhang, H.; Guo, Z.; Zhao, Y.; Wang, B.; Yuan, Y. Carbon emissions in the life cycle of urban building system in China—A case study of residential buildings. Ecol. Complex. 2011, 8, 201–212. [Google Scholar] [CrossRef]
- Su, X.; Zhang, X. A detailed analysis of the embodied energy and carbon emissions of steel-construction residential buildings in China. Energy Build. 2016, 119, 323–330. [Google Scholar] [CrossRef]
- Li, D.; Huang, G.; Zhu, S.; Chen, L.; Wang, J. How to peak carbon emissions of provincial construction industry? Scenario analysis of Jiangsu Province. Renew. Sustain. Energy Rev. 2021, 144, 110953. [Google Scholar] [CrossRef]
- Weigert, M.; Melnyk, O.; Winkler, L.; Raab, J. Carbon Emissions of Construction Processes on Urban Construction Sites. Sustainability 2022, 14, 12947. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, M.; Teng, F.; Ji, Y. Remote Sensing Monitoring and Analysis of Spatiotemporal Changes in China’s Anthropogenic Carbon Emissions Based on XCO2 Data. Remote Sens. 2023, 15, 3207. [Google Scholar] [CrossRef]
- Shi, Q.; Chen, J.; Shen, L. Driving factors of the changes in the carbon emissions in the Chinese construction industry. J. Clean. Prod. 2017, 166, 615–627. [Google Scholar] [CrossRef]
- Du, Q.; Lu, X.; Li, Y.; Wu, M.; Bai, L.; Yu, M. Carbon Emissions in China’s Construction Industry: Calculations, Factors and Regions. Int. J. Environ. Res. Public Health 2018, 15, 1220. [Google Scholar] [CrossRef] [PubMed]
- Du, Q.; Zhou, J.; Pan, T.; Sun, Q.; Wu, M. Relationship of carbon emissions and economic growth in China’s construction industry. J. Clean. Prod. 2019, 220, 99–109. [Google Scholar] [CrossRef]
- Han, X.; Cao, T.; Sun, T. Analysis on the variation rule and influencing factors of energy consumption carbon emission intensity in China’s urbanization construction. J. Clean. Prod. 2019, 238, 117958. [Google Scholar] [CrossRef]
- Jiang, T.; Li, S.; Yu, Y.; Peng, Y. Energy-related carbon emissions and structural emissions reduction of China’s construction industry: The perspective of input–output analysis. Environ. Sci. Pollut. Res. 2022, 29, 39515–39527. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Hao, S.; Long, X. A study on the measurement and influencing factors of carbon emissions in China’s construction sector. Build. Environ. 2023, 229, 109912. [Google Scholar] [CrossRef]
- Zhang, P.; Hu, J.; Zhao, K.; Chen, H.; Zhao, S.; Li, W. Dynamics and Decoupling Analysis of Carbon Emissions from Construction Industry in China. Buildings 2022, 12, 257. [Google Scholar] [CrossRef]
- Downie, C. Strategies for Survival: The International Energy Agency’s response to a new world. Energy Policy 2020, 141, 111452. [Google Scholar] [CrossRef]
- Greene, L.A. EHPnet: United Nations Framework Convention on Climate Change. Environ. Health Perspect. 2000, 108, A353. [Google Scholar] [CrossRef]
- Wang, M.; Wang, Y.; Teng, F.; Ji, Y. The spatiotemporal evolution and impact mechanism of energy consumption carbon emissions in China from 2010 to 2020 by integrating multisource remote sensing data. J. Environ. Manag. 2023, 346, 119054. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Z.; Li, L.; Liu, J. Industrial structure, technical progress and carbon intensity in China’s provinces. Renew. Sustain. Energy Rev. 2018, 81, 2935–2946. [Google Scholar] [CrossRef]
- Canadell, J.G.; Le Quéré, C.; Raupach, M.R.; Field, C.B.; Buitenhuis, E.T.; Ciais, P.; Conway, T.J.; Gillett, N.P.; Houghton, R.A.; Marland, G. Contributions to accelerating atmospheric CO 2 growth from economic activity, carbon intensity, and efficiency of natural sinks. Proc. Natl. Acad. Sci. USA 2007, 104, 18866–18870. [Google Scholar] [CrossRef] [PubMed]
- Jiang, F.; Chen, B.; Li, P.; Jiang, J.; Zhang, Q.; Wang, J.; Deng, J. Spatio-temporal evolution and influencing factors of synergizing the reduction of pollution and carbon emissions—Utilizing multi-source remote sensing data and GTWR model. Environ. Res. 2023, 229, 115775. [Google Scholar] [CrossRef] [PubMed]
- Zhu, E.; Yao, J.; Zhang, X.; Chen, L. Explore the spatial pattern of carbon emissions in urban functional zones: A case study of Pudong, Shanghai, China. Environ. Sci. Pollut. Res. 2023, 31, 2117–2128. [Google Scholar] [CrossRef] [PubMed]
- Joo, J.; Lee, J.; Park, M. Evaluation of Carbon Emissions According to the Steep Slope Maintenance Project. J. Korean Soc. Hazard Mitig. 2023, 23, 37–42. [Google Scholar] [CrossRef]
- Musah, M.; Kong, Y.; Mensah, I.A.; Antwi, S.K.; Osei, A.A.; Donkor, M. Modelling the connection between energy consumption and carbon emissions in North Africa: Evidence from panel models robust to cross-sectional dependence and slope heterogeneity. Environ. Dev. Sustain. 2021, 23, 15225–15239. [Google Scholar] [CrossRef]
- Jorgenson, A.K.; Clark, B. The Relationship between National-Level Carbon Dioxide Emissions and Population Size: An Assessment of Regional and Temporal Variation, 1960–2005. PLoS ONE 2013, 8, e57107. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Liao, M.; Jiang, J. Research on Agricultural Carbon Emissions and Regional Carbon Emissions Reduction Strategies in China. Sustainability 2020, 12, 2627. [Google Scholar] [CrossRef]
- Liu, M.; Zhang, X.; Zhang, M.; Feng, Y.; Liu, Y.; Wen, J.; Liu, L. Influencing factors of carbon emissions in transportation industry based on CD function and LMDI decomposition model: China as an example. Environ. Impact Assess. Rev. 2021, 90, 106623. [Google Scholar] [CrossRef]
- Quan, C.; Cheng, X.; Yu, S.; Ye, X. Analysis on the influencing factors of carbon emission in China’s logistics industry based on LMDI method. Sci. Total Environ. 2020, 734, 138473. [Google Scholar] [CrossRef] [PubMed]
- Xu, S.-C.; He, Z.-X.; Long, R.-Y. Factors that influence carbon emissions due to energy consumption in China: Decomposition analysis using LMDI. Appl. Energy 2014, 127, 182–193. [Google Scholar] [CrossRef]
- Kim, J.; Lim, H.; Jo, H.-H. Do Aging and Low Fertility Reduce Carbon Emissions in Korea? Evidence from IPAT Augmented EKC Analysis. Int. J. Environ. Res. Public Health 2020, 17, 2972. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Wang, F.; Zhang, X.; Yang, Y.; Su, Y.; Ye, Y.; Zhang, H. Examining the driving factors of energy related carbon emissions using the extended STIRPAT model based on IPAT identity in Xinjiang. Renew. Sustain. Energy Rev. 2017, 67, 51–61. [Google Scholar] [CrossRef]
- Yang, P.; Liang, X.; Drohan, P.J. Using Kaya and LMDI models to analyze carbon emissions from the energy consumption in China. Environ. Sci. Pollut. Res. 2020, 27, 26495–26501. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Zhao, G.; Zhao, Y. An analysis of Chinese provincial carbon dioxide emission efficiencies based on energy consumption structure. Energy Policy 2016, 96, 524–533. [Google Scholar] [CrossRef]
- Wang, Z.; Feng, C. Sources of production inefficiency and productivity growth in China: A global data envelopment analysis. Energy Econ. 2015, 49, 380–389. [Google Scholar] [CrossRef]
- Rose, A.; Casler, S. Input–Output Structural Decomposition Analysis: A Critical Appraisal. Econ. Syst. Res. 1996, 8, 33–62. [Google Scholar] [CrossRef]
- Lu, N.; Feng, S.; Liu, Z.; Wang, W.; Lu, H.; Wang, M. The Determinants of Carbon Emissions in the Chinese Construction Industry: A Spatial Analysis. Sustainability 2020, 12, 1428. [Google Scholar] [CrossRef]
- Fang, Y.; Lu, X.; Li, H. A random forest-based model for the prediction of construction-stage carbon emissions at the early design stage. J. Clean. Prod. 2021, 328, 129657. [Google Scholar] [CrossRef]
- Du, Q.; Wu, J.; Cai, C.; Li, Y.; Zhou, J.; Yan, Y. Carbon mitigation by the construction industry in China: A perspective of efficiency and costs. Environ. Sci. Pollut. Res. 2021, 28, 314–325. [Google Scholar] [CrossRef] [PubMed]
Fuel Type | Conversion Factor for Standard Coal | Carbon Emission Factor |
---|---|---|
Raw coal | 0.7143 | 0.7559 |
Coke | 0.9714 | 0.855 |
Crude Oil | 1.4286 | 0.5857 |
Gasoline | 1.4714 | 0.5538 |
Kerosene | 1.4714 | 0.5714 |
Diesel oil | 1.4571 | 0.5921 |
Fuel Oil | 1.4286 | 0.6185 |
Liquefied petroleum gas | 1.7143 | 0.5042 |
Natural gas | 1.33 | 0.4483 |
Electricity | 0.1129 | 0.68 |
Building Material | Clinker | Steel | Glass | Aluminum |
---|---|---|---|---|
Carbon emission factor/(t·) | 0.815 | 1.789 | 0.966 | 2.60 |
Recovery factor | 0.450 | 0.800 | 0.700 | 0.85 |
Type of Growth | Slow Growth Type | Medium Growth Type | Faster Growth | Rapid Growth |
---|---|---|---|---|
Slope value |
Year | Moran’s Index | Z-Score | p-Value |
---|---|---|---|
2010 | 0.266 | 2.787 | 0.017 |
2011 | 0.185 | 1.909 | 0.040 |
2012 | 0.048 | 1.468 | 0.060 |
2013 | 0.054 | 1.319 | 0.090 |
2014 | 0.040 | 1.066 | 0.127 |
2015 | 0.081 | 1.615 | 0.069 |
2016 | 0.281 | 2.753 | 0.016 |
2017 | 0.260 | 2.562 | 0.016 |
2018 | 0.337 | 3.194 | 0.007 |
2019 | 0.338 | 3.139 | 0.007 |
Particular Year | Energy Structure Intensity Effect | Energy Consumption Intensity Effect | Economic Development Effect | Population Density Effect | Housing Construction Area Effect | Total Effect |
---|---|---|---|---|---|---|
2011 | 41,776.87 | 22,368.35 | 33,492.64 | −31,192.39 | 32,022.86 | −29,822.08 |
2012 | 56,835.03 | 55,803.81 | 78,901.98 | −81,800.02 | 84,014.72 | 82,147.90 |
2013 | 90,298.72 | 73,455.27 | 125,160.74 | 127,746.62 | 131,480.94 | 145,738.52 |
2014 | 18,862.83 | 69,516.75 | 122,153.45 | 131,294.55 | 135,408.46 | 37,887.79 |
2015 | 25,144.90 | 78,159.98 | 141,310.10 | 169,341.57 | 175,115.52 | 94,068.97 |
2016 | 37,774.72 | 75,269.51 | 136,012.07 | 144,931.14 | 151,160.35 | 29,197.04 |
2017 | 30,105.51 | 91,525.90 | 162,014.85 | 154,270.47 | 161,897.14 | 48,010.12 |
2018 | 42,103.99 | 103,230.32 | 178,601.10 | 160,049.29 | 168,362.48 | 41,579.99 |
2019 | 45,055.27 | 108,097.16 | 192,268.03 | 180,648.26 | 189,793.45 | 48,260.79 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, M.; Wang, Y.; Wang, C.; Musakwa, W.; Ji, Y. Spatial and Temporal Characteristics of Carbon Emissions from Construction Industry in China from 2010 to 2019. Sustainability 2024, 16, 5927. https://doi.org/10.3390/su16145927
Song M, Wang Y, Wang C, Musakwa W, Ji Y. Spatial and Temporal Characteristics of Carbon Emissions from Construction Industry in China from 2010 to 2019. Sustainability. 2024; 16(14):5927. https://doi.org/10.3390/su16145927
Chicago/Turabian StyleSong, Mengru, Yanjun Wang, Cheng Wang, Walter Musakwa, and Yiye Ji. 2024. "Spatial and Temporal Characteristics of Carbon Emissions from Construction Industry in China from 2010 to 2019" Sustainability 16, no. 14: 5927. https://doi.org/10.3390/su16145927
APA StyleSong, M., Wang, Y., Wang, C., Musakwa, W., & Ji, Y. (2024). Spatial and Temporal Characteristics of Carbon Emissions from Construction Industry in China from 2010 to 2019. Sustainability, 16(14), 5927. https://doi.org/10.3390/su16145927