Research on Coal Flow Visual Detection and the Energy-Saving Control Method Based on Deep Learning
Abstract
:1. Introduction
2. Model Optimization and Improvement
2.1. Image Preprocessing
2.2. YOLOv8-cls Model Algorithm
2.3. C2f Module Improvement
2.4. Introduction of the SimAm Attention Module
2.5. Algorithmic Visual Analysis
3. Experimental Methods
3.1. Experimental Environment Configuration and Dataset Creation
3.2. Evaluation Metrics
4. Results and Discussion
4.1. Feature Extraction Modules Comparison Experiment
4.2. Attention Module Comparison Experiment
4.3. Ablation Comparison Experiment
4.4. Mainstream Model Comparison Experiment
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, G.; Ye, L. Design and Research of Belt Conveyor Energy-saving Control System Based on Coal Flow Recognition. Coal Mine Mach. 2023, 44, 14–17. [Google Scholar]
- Sun, W.; Wang, H.; Yang, H. Research of energy saving control system with frequency conversion speed regulation for belt conveyor. Ind. Mine Autom. 2013, 39, 98–101. [Google Scholar]
- Ji, J.; Miao, C.; Li, X. Research on the Energy-Saving Control Strategy of a Belt Conveyor with Variable Belt Speed Based on the Material Flow Rate. PLoS ONE 2020, 15, e0227992. [Google Scholar] [CrossRef]
- Li, D.; He, D. Technical status and development trend of belt weigher. Weigh. Instrum. 2012, 41, 1–4+10. [Google Scholar]
- Li, Y. On-Line Monitoring System for Mine Nuclear Belt Weighing. Master’s Thesis, Xi’an University of Science and Technology, Xi’an, China, 2018. [Google Scholar]
- Mihuţ, N.M. Designing a System for Measuring the Flow of Material Transported on Belts Using Ultrasonic Sensors. IOP Conf. Ser. Mater. Sci. Eng. 2015, 95, 012089. [Google Scholar] [CrossRef]
- Wang, Y.; Dai, W.; Zhang, L.; Ma, X. Coal Weight Measurement Method of Belt Conveyor Based on Binocular Stereo Vision. In Proceedings of the 2020 7th International Conference on Information, Cybernetics, and Computational Social Systems (ICCSS), Guangzhou, China, 13–15 November 2020; pp. 486–492. [Google Scholar]
- Wen, L.; Liang, B.; Zhang, L.; Hao, B.; Yang, Z. Research on Coal Volume Detection and Energy-Saving Optimization Intelligent Control Method of Belt Conveyor Based on Laser and Binocular Visual Fusion. IEEE Access 2023, 12, 75238–75248. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, Y.; Zeng, C.; Zhang, W.; Li, J. Edge Detection for Conveyor Belt Based on the Deep Convolutional Network. In Proceedings of the 2018 Chinese Intelligent Systems Conference; Jia, Y., Du, J., Zhang, W., Eds.; Lecture Notes in Electrical Engineering; Springer: Singapore, 2019; Volume 529, pp. 275–283. [Google Scholar]
- Mao, Q.; Li, S.; Hu, X.; Xue, X. Coal Mine Belt Conveyor Foreign Objects Recognition Method of Improved YOLOv5 Algorithm with Defogging and Deblurring. Energies 2022, 15, 9504. [Google Scholar] [CrossRef]
- Zhu, L.; Li, D.; Wu, C.; Wu, S.; Yuan, Y. Belt Deviation Detection for Electronic Belt Scales Based on Data Mining. Trans. Chin. Soc. Agric. Eng. 2017, 33, 102–109. [Google Scholar]
- Yang, R.; Qiao, T.; Pang, Y.; Yang, Y.; Zhang, H.; Yan, G. Infrared Spectrum Analysis Method for Detection and Early Warning of Longitudinal Tear of Mine Conveyor Belt. Measurement 2020, 165, 107856. [Google Scholar] [CrossRef]
- Duda, A. The Impact of Atmospheric Pressure Changes on Methane Emission from Goafs to Coal Mine Workings. Energies 2023, 17, 173. [Google Scholar] [CrossRef]
- Mitra, S.; Chaulya, S.K.; Kumar, D.; Soni, A. An Approach for Implementation of IoT Enables Smart Environmental Monitoring and Strata Monitoring System for Underground Coal Mines. In Proceedings of the 10th Asian Mining Congress 2023; Sinha, A., Sarkar, B.C., Mandal, P.K., Eds.; Springer Proceedings in Earth and Environmental Sciences; Springer Nature: Cham, Switzerland, 2023; pp. 165–179. [Google Scholar]
- Kumar, R.S.; Hariprasadh, R.; Gowthamraj, A.; Harinivash, K. Smart Helmet for Coal Mine Employees: Enhancing Safety and Efficiency. In Proceedings of the 2023 International Conference on Innovative Data Communication Technologies and Application (ICIDCA), Uttarakhand, India, 14–16 March 2023; pp. 916–923. [Google Scholar]
- Karthika, S.; Jayabaskaran, G.; Hariharan, M.; Poonthamizhan, M.; Poongothai, G. Realtime Embedded Smart Jacket System for Coal Miners. In Proceedings of the 2023 9th International Conference on Advanced Computing and Communication Systems (ICACCS), Coimbatore, India, 17–18 March 2023; pp. 1655–1660. [Google Scholar]
- Pizer, S.M.; Amburn, E.P.; Austin, J.D.; Cromartie, R.; Geselowitz, A.; Greer, T.; Zuiderveld, K. Adaptive Histogram Equalization and Its Variations. Comput. Vis. Graph. Image Process. 1987, 39, 355–368. [Google Scholar] [CrossRef]
- Mi, Y.; Chi, M.; Zhang, Q.; Liu, P.; Wang, T. Underwater Image Enhancement Based on Color Correction and Improved CLAHE Multi-Scale Fusion. Radio Eng. 2024, 54, 1470–1480. [Google Scholar]
- Parthasarathy, S.; Sankaran, P. An Automated Multi Scale Retinex with Color Restoration for Image Enhancement. In Proceedings of the 2012 National Conference on Communications (NCC), Kharagpur, India, 3–5 February 2012; pp. 1–5. [Google Scholar]
- Jobson, D.J.; Rahman, Z.; Woodell, G.A. A Multiscale Retinex for Bridging the Gap between Color Images and the Human Observation of Scenes. IEEE Trans. Image Process. 1997, 6, 965–976. [Google Scholar] [CrossRef]
- Jobson, D.J.; Rahman, Z.; Woodell, G.A. Properties and Performance of a Center/Surround Retinex. IEEE Trans. Image Process. 1997, 6, 451–462. [Google Scholar] [CrossRef]
- Ruan, S.; Liu, D.; Bai, B.; Gu, Q. Image Enhancement Method for Underground Coal Mine Based on the Adaptive MSRCP Algorithm. Min. Res. Dev. 2021, 41, 186–192. [Google Scholar]
- Chen, J.; Kao, S.; He, H.; Zhuo, W.; Wen, S.; Lee, C.-H.; Chan, S.-H.G. Run, Don’t Walk: Chasing Higher FLOPS for Faster Neural Networks. arXiv 2023, arXiv:2303.03667. [Google Scholar]
- Woo, S.; Park, J.; Lee, J.Y.; Kweon, I.S. CBAM: Convolutional Block Attention Module. In Proceedings of the Computer Vision—ECCV 2018, Munich, Germany, 8–14 September 2018; Volume 11211, pp. 3–19. [Google Scholar]
- Yang, L.; Zhang, R.-Y.; Li, L.; Xie, X. SimAM: A Simple, Parameter-Free Attention Module for Convolutional Neural Networks. In Proceedings of the International Conferenceon Machine Learning, Virtual, 18–24 July 2021. [Google Scholar]
- Selvaraju, R.R.; Cogswell, M.; Das, A.; Vedantam, R.; Parikh, D.; Batra, D. Grad-CAM: Visual Explanations From Deep Networks via Gradient-Based Localization. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 618–626. [Google Scholar]
- Han, K.; Wang, Y.; Xu, C.; Guo, J.; Xu, C.; Wu, E.; Tian, Q. GhostNets on Heterogeneous Devices via Cheap Operations. Int. J. Comput. Vis. 2022, 130, 1050–1069. [Google Scholar] [CrossRef]
- Wu, F.; Fan, A.; Baevski, A.; Dauphin, Y.N.; Auli, M. Pay Less Attention with Lightweight and Dynamic Convolutions. arXiv 2019, arXiv:1901.10430. [Google Scholar]
- Huang, H.; Chen, Z.; Zou, Y.; Lu, M.; Chen, C. Channel Prior Convolutional Attention for Medical Image Segmentation. arXiv 2023, arXiv:2306.05196. [Google Scholar] [CrossRef] [PubMed]
- Wan, D.; Lu, R.; Shen, S.; Xu, T.; Lang, X.; Ren, Z. Mixed Local Channel Attention for Object Detection. Eng. Appl. Artif. Intell. 2023, 123, 106442. [Google Scholar] [CrossRef]
- Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going Deeper with Convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 1–9. [Google Scholar]
- Szegedy, C.; Ioffe, S.; Vanhoucke, V.; Alemi, A. Inception-v4, Inception-ResNet and the Impact of Residual Connections on Learning. In Proceedings of the AAAI Conference on Artificial Intelligence, San Francisco, CA, USA, 4–9 February 2017; Volume 31. [Google Scholar]
- Chen, J.; Tong, J.; Rui, Y.; Cui, Y.; Pu, Y.; Du, J.; Apel, D.B. Step-Path Failure Mechanism and Stability Analysis of Water-Bearing Rock Slopes Based on Particle Flow Simulation. Theor. Appl. Fract. Mech. 2024, 131, 104370. [Google Scholar] [CrossRef]
Input Image | Evaluation Indicators | HE | AHE | CLAHE | SSR | MSRCP [22] | MSRCR | AMSRCR |
---|---|---|---|---|---|---|---|---|
Image 1 | PSNR | 12.161 | 12.118 | 12.572 | 17.572 | 19.061 | 20.259 | 24.275 |
SSIM | 0.471 | 0.378 | 0.388 | 0.889 | 0.801 | 0.849 | 0.956 | |
RMSE | 10.392 | 10.427 | 10.402 | 10.728 | 9.821 | 9.331 | 9.842 | |
Image 2 | PSNR | 12.701 | 11.212 | 11.237 | 12.527 | 14.106 | 18.546 | 21.576 |
SSIM | 0.821 | 0.474 | 0.474 | 0.778 | 0.738 | 0.892 | 0.851 | |
RMSE | 10.166 | 10.273 | 10.279 | 10.544 | 10.897 | 10.258 | 9.551 |
Name | Configuration |
---|---|
Operating system | Windows11 |
GPU | NVIDIA GeForce RTX 3070 |
Memory size | 64 G |
Programming environment | Python-3.8.18 |
Framework | PyTorch-2.0.0 |
Computing infrastructure | CUDA-11.8 |
Module | Acc | Params/106 | FLOPs/G | FPS/(Frame·s−1) |
---|---|---|---|---|
v8-cls | 0.883 | 5.086 | 12.6 | 30.86 |
C2f-ghost | 0.898 | 2.327 | 4.7 | 33 |
C2f_DynamicConv | 0.895 | 8.089 | 9.8 | 31.74 |
C3-FasterNet | 0.898 | 6.320 | 14 | 33.89 |
C2f-FasterNet | 0.921 | 3.641 | 8.4 | 35.25 |
YOLO-CFS (Ours) | 0.931 | 3.641 | 8.4 | 32.68 |
Attention Module | Acc | Params/106 | FLOPs/G | FPS/(Frame·s−1) |
---|---|---|---|---|
v8-cls | 0.883 | 5.086 | 12.6 | 30.86 |
CPCA | 0.887 | 5.634 | 13.3 | 30.49 |
MLCA | 0.884 | 5.183 | 12.6 | 31.15 |
CBAM | 0.889 | 6.497 | 12.7 | 30.67 |
SimAm | 0.891 | 5.086 | 12.6 | 30.49 |
YOLO-CFS (Ours) | 0.931 | 3.641 | 8.4 | 32.68 |
Module | FasterNet | SimAm L10 | SimAm L9 | SimAm L3 | Acc | Params/106 | FLOPs/G | FPS/ (Frame·s−1) |
---|---|---|---|---|---|---|---|---|
v8-cls | 0.883 | 5.086 | 12.6 | 30.86 | ||||
v8-cls | ✓ 1 | 0.921 | 3.641 | 8.4 | 35.25 | |||
v8-cls | ✓ | ✓ | 0.925 | 3.641 | 8.4 | 31.9 | ||
v8-cls | ✓ | ✓ | 0.924 | 3.641 | 8.4 | 31.64 | ||
v8-cls | ✓ | ✓ | 0.931 | 3.641 | 8.4 | 32.68 | ||
v8-cls | ✓ | 0.891 | 5.086 | 12.6 | 30.49 |
Model | Acc | Params/106 | FLOPs/G | FPS/(Frame·s−1) |
---|---|---|---|---|
v8-cls | 0.883 | 5.086 | 12.6 | 30.86 |
YOLOv5 | 0.886 | 7.013 | 15.8 | 30.67 |
EfficientFormerV2 | 0.9 | 3.599 | 6.9 | 28.9 |
ResNet50 | 0.912 | 27.413 | 69.6 | 28.41 |
Inception-ResNet | 0.915 | 54.313 | 6.5 | 29.51 |
GoogLeNet | 0.888 | 11.984 | 1.5 | 31.47 |
YOLO-CFS (Ours) | 0.931 | 3.641 | 8.4 | 32.68 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, Z.; Sun, Z.; Li, J. Research on Coal Flow Visual Detection and the Energy-Saving Control Method Based on Deep Learning. Sustainability 2024, 16, 5783. https://doi.org/10.3390/su16135783
Xu Z, Sun Z, Li J. Research on Coal Flow Visual Detection and the Energy-Saving Control Method Based on Deep Learning. Sustainability. 2024; 16(13):5783. https://doi.org/10.3390/su16135783
Chicago/Turabian StyleXu, Zhenfang, Zhi Sun, and Jiayao Li. 2024. "Research on Coal Flow Visual Detection and the Energy-Saving Control Method Based on Deep Learning" Sustainability 16, no. 13: 5783. https://doi.org/10.3390/su16135783
APA StyleXu, Z., Sun, Z., & Li, J. (2024). Research on Coal Flow Visual Detection and the Energy-Saving Control Method Based on Deep Learning. Sustainability, 16(13), 5783. https://doi.org/10.3390/su16135783