Comparative Study of Pretreatments on Coconut Fiber for Efficient Isolation of Lignocellulosic Fractions
Abstract
1. Introduction
2. Materials and Methods
2.1. Coconut Residue
2.2. Pretreatments
2.2.1. Soxhlet Extraction
2.2.2. Alkaline Extraction
2.2.3. Autohydrolysis
2.2.4. Organosolv
2.3. Biomass Characterization
2.3.1. Lignin Determination
- M = mass of lignin precipitated in liquor (g).
- V = volume of liquor aliquots used to precipitate lignin (mL).
- A = absorbance.
- DF = dilution factor of liquor.
2.3.2. Chemical and Structural Characterization of Lignocellulosic Components
2.3.3. Fourier Transform Infrared Spectroscopy (FT-IR)
2.3.4. Thermogravimetric Analysis (TGA)
2.3.5. Scanning Electron Microscopy (SEM)
3. Results and Discussion
3.1. Pretreatment Conditions
3.2. Chemical Characterization
3.3. FT-IR Analysis
Crystallinity Analysis of Samples Using FT-IR
3.4. TGA and DTA Analyses
3.5. SEM Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Adeleye, A.T.; Louis, H.; Akakuru, O.U.; Joseph, I.; Enudi, O.C.; Michael, D.P. A Review on the Conversion of Levulinic Acid and Its Esters to Various Useful Chemicals. AIMS Energy 2019, 7, 165–185. [Google Scholar] [CrossRef]
- Premalatha, N.; Saranya, S.R. Global Research Trends in Biomass as Renewable Energy. In Biomass Energy for Sustainable Development; CRC Press: Boca Raton, FL, USA, 2024; pp. 355–374. [Google Scholar]
- Hayes, D.J.M. Biomass Composition and Its Relevance to Biorefining. In The Role of Catalysis for the Sustainable Production of Bio-Fuels and Bio-Chemicals; Elsevier Inc.: Amsterdam, The Netherlands, 2013; pp. 27–65. ISBN 9780444563309. [Google Scholar]
- Shukla, A.; Kumar, D.; Girdhar, M.; Kumar, A.; Goyal, A.; Malik, T.; Mohan, A. Strategies of Pretreatment of Feedstocks for Optimized Bioethanol Production: Distinct and Integrated Approaches. Biotechnol. Biofuels Bioprod. 2023, 16, 44. [Google Scholar] [CrossRef]
- Li, M.F.; Fan, Y.M.; Xu, F.; Sun, R.C.; Zhang, X.L. Cold Sodium Hydroxide/Urea Based Pretreatment of Bamboo for Bioethanol Production: Characterization of the Cellulose Rich Fraction. Ind. Crops Prod. 2010, 32, 551–559. [Google Scholar] [CrossRef]
- Mazumder, S.; Zhang, N. Cellulose–Hemicellulose–Lignin Interaction in the Secondary Cell Wall of Coconut Endocarp. Biomimetics 2023, 8, 188. [Google Scholar] [CrossRef]
- Kuhad, R.C.; Gupta, R.; Khasa, Y.P.; Singh, A.; Zhang, Y.-H.P. Bioethanol Production from Pentose Sugars: Current Status and Future Prospects. Renew. Sustain. Energy Rev. 2011, 15, 4950–4962. [Google Scholar] [CrossRef]
- Taiz, L.; Moller, I.M.; Murphy, A.; Zeiger, E. Plant Physiology and Development, 7th ed.; Oxford University Press: Oxford, UK, 2023. [Google Scholar]
- Barros, D.; Fernandes, É.; Jesus, M.; Barros, L.; Alonso-Esteban, J.I.; Pires, P.; Vaz Velho, M. The Chemical Characterisation of the Maritime Pine Bark Cultivated in Northern Portugal. Plants 2023, 12, 3940. [Google Scholar] [CrossRef]
- FAO, F. and A.O. of the U.N. FAOSTAT—Food and Agriculture Data Database. 2022. Available online: https://www.fao.org/faostat/en/#data/QCL/visualize. (accessed on 8 November 2023).
- Leliana, L.; Setyaningsih, W.; Palma, M.; Supriyadi; Santoso, U. Antioxidant Activity of Aqueous and Ethanolic Extracts of Coconut (Cocos Nucifera) Fruit by-Products. Agronomy 2022, 12, 1102. [Google Scholar] [CrossRef]
- Li, N.; Jiang, H.; Yang, J.; Wang, C.; Wu, L.; Hao, Y.; Liu, Y. Characterization of Phenolic Compounds and Anti-Acetylcholinase Activity of Coconut Shells. Food Biosci. 2021, 42, 101204. [Google Scholar] [CrossRef]
- Burns, D.T.; Johnston, E.L.; Walker, M.J. Authenticity and the Potability of Coconut Water-a Critical Review. J. AOAC Int. 2020, 103, 800–806. [Google Scholar] [CrossRef]
- Kaur, K.; Chhikara, N.; Sharma, P.; Garg, M.K.; Panghal, A. Coconut Meal: Nutraceutical Importance and Food Industry Application. Foods Raw Mater. 2019, 7, 419–427. [Google Scholar] [CrossRef]
- Vieira, F.; Santana, H.E.P.; Jesus, M.; Santos, J.; Pires, P.; Vaz-Velho, M.; Silva, D.P.; Ruzene, D.S. Coconut Waste: Discovering Sustainable Approaches to Advance a Circular Economy. Sustainability 2024, 16, 3066. [Google Scholar] [CrossRef]
- Qureshi, T.; Farooq, M.; Imran, S.; Munir, M.A.; Javed, M.A.; Sohoo, I.; Sultan, M.; Rehman, A.U.; Farhan, M.; Asim, M. Structural and Thermal Investigation of Lignocellulosic Biomass Conversion for Enhancing Sustainable Imperative in Progressive Organic Refinery Paradigm for Waste-to-Energy Applications. Environ. Res. 2024, 246, 118129. [Google Scholar] [CrossRef] [PubMed]
- Arora, A.; Nandal, P.; Singh, J.; Verma, M.L. Nanobiotechnological Advancements in Lignocellulosic Biomass Pretreatment. Mater. Sci. Energy Technol. 2020, 3, 308–318. [Google Scholar] [CrossRef]
- Rezania, S.; Oryani, B.; Cho, J.; Talaiekhozani, A.; Sabbagh, F.; Hashemi, B.; Rupani, P.F.; Mohammadi, A.A. Different Pretreatment Technologies of Lignocellulosic Biomass for Bioethanol Production: An Overview. Energy 2020, 199, 117457. [Google Scholar] [CrossRef]
- Jesus, M.; Romaní, A.; Mata, F.; Domingues, L. Current Options in the Valorisation of Vine Pruning Residue for the Production of Biofuels, Biopolymers, Antioxidants, and Bio-Composites Following the Concept of Biorefinery: A Review. Polymers 2022, 14, 1640. [Google Scholar] [CrossRef] [PubMed]
- Yerizam, M.; Jannah, A.M.; Aprianti, N.; Yandriani, Y.; Rendana, M.; Ernas, A.Q.; Tamba, J.L. Bioethanol Production from Coconut Husk Using DES-NADES Pretreatment and Enzymatic Hydrolysis Method. Comptes Rendus Chim. 2023, 26, 1–10. [Google Scholar] [CrossRef]
- Gundupalli, M.P.; Bano, K.; Panda, T.K.; Sriariyanun, M.; Bhattacharyya, D. Understanding the Effect of Low-Concentrated Protic Ionic Liquids (PILs) on Coconut (Cocos Nucifera) Residues. Biomass Convers. Biorefin. 2024, 14, 3275–3291. [Google Scholar] [CrossRef]
- Mankar, A.R.; Pandey, A.; Pant, K.K. Microwave-Assisted Extraction of Lignin from Coconut Coir Using Deep Eutectic Solvents and Its Valorization to Aromatics. Bioresour. Technol. 2022, 345, 126528. [Google Scholar] [CrossRef] [PubMed]
- Anuchi, S.O.; Campbell, K.L.S.; Hallett, J.P. Effective Pretreatment of Lignin-Rich Coconut Wastes Using a Low-Cost Ionic Liquid. Sci. Rep. 2022, 12, 6108. [Google Scholar] [CrossRef]
- Nitsos, C.K.; Mihailof, C.M.; Matis, K.A.; Lappas, A.A.; Triantafyllidis, K.S. The Role of Catalytic Pretreatment in Biomass Valorization Toward Fuels and Chemicals. In The Role of Catalysis for the Sustainable Production of Bio-Fuels and Bio-Chemicals; Elsevier: Amsterdam, The Netherlands, 2013; pp. 217–260. [Google Scholar]
- Jesus, M.; Mata, F.; Batista, R.A.; Ruzene, D.S.; Albuquerque-Júnior, R.; Cardoso, J.C.; Vaz-Velho, M.; Pires, P.; Padilha, F.F.; Silva, D.P. Corncob as Carbon Source in the Production of Xanthan Gum in Different Strains Xanthomonas sp. Sustainability 2023, 15, 2287. [Google Scholar] [CrossRef]
- Kim, J.S.; Lee, Y.Y.; Kim, T.H. A Review on Alkaline Pretreatment Technology for Bioconversion of Lignocellulosic Biomass. Bioresour. Technol. 2016, 199, 42–48. [Google Scholar] [CrossRef] [PubMed]
- Santos, B.L.P.; Jesus, M.S.; Mata, F.; Prado, A.A.O.S.; Vieira, I.M.M.; Ramos, L.C.; López, J.A.; Vaz-Velho, M.; Ruzene, D.S.; Silva, D.P. Use of Agro-Industrial Waste for Biosurfactant Production: A Comparative Study of Hemicellulosic Liquors from Corncobs and Sunflower Stalks. Sustainability 2023, 15, 6341. [Google Scholar] [CrossRef]
- Zamboni Schiavon, J.; de Oliveira Andrade, J.J. Comparison between Alternative Chemical Treatments on Coir Fibers for Application in Cementitious Materials. J. Mater. Res. Technol. 2023, 25, 4634–4649. [Google Scholar] [CrossRef]
- Jesus, M.S.; Romaní, A.; Genisheva, Z.; Teixeira, J.A.; Domingues, L. Integral Valorization of Vine Pruning Residue by Sequential Autohydrolysis Stages. J. Clean. Prod. 2017, 168, 74–86. [Google Scholar] [CrossRef]
- Gonçalves, F.A.; Ruiz, H.A.; Dos Santos, E.S.; Teixeira, J.A.; De Macedo, G.R. Bioethanol Production from Coconuts and Cactus Pretreated by Autohydrolysis. Ind. Crops Prod. 2015, 77, 1–12. [Google Scholar] [CrossRef]
- Carre, B.; Hebrant, M.; Brosse, N.; Latif, N.H.; Hussin, M.H. Effect of Different Prehydrolysis Processes on Lignin Extractability of Coconut Husk Fibres. J. Phys. Sci. 2019, 30, 207–219. [Google Scholar] [CrossRef]
- Kabakcı, S.B.; Tanış, M.H. Pretreatment of Lignocellulosic Biomass at Atmospheric Conditions by Using Different Organosolv Liquors: A Comparison of Lignins. Biomass Convers. Biorefin. 2021, 11, 2869–2880. [Google Scholar] [CrossRef]
- Wei Kit Chin, D.; Lim, S.; Pang, Y.L.; Lam, M.K. Fundamental Review of Organosolv Pretreatment and Its Challenges in Emerging Consolidated Bioprocessing. Biofuels Bioprod. Biorefining 2020, 14, 808–829. [Google Scholar] [CrossRef]
- Ferreira, J.A.; Taherzadeh, M.J. Improving the Economy of Lignocellulose-Based Biorefineries with Organosolv Pretreatment. Bioresour. Technol. 2020, 299, 122695. [Google Scholar] [CrossRef]
- Avelino, F.; da Silva, K.T.; de Souza Filho, M.S.M.; Mazzetto, S.E.; Lomonaco, D. Microwave-Assisted Organosolv Extraction of Coconut Shell Lignin by Brønsted and Lewis Acids Catalysts. J. Clean. Prod. 2018, 189, 785–796. [Google Scholar] [CrossRef]
- Ratanasumarn, N.; Chitprasert, P. Cosmetic Potential of Lignin Extracts from Alkaline-Treated Sugarcane Bagasse: Optimization of Extraction Conditions Using Response Surface Methodology. Int. J. Biol. Macromol. 2020, 153, 138–145. [Google Scholar] [CrossRef] [PubMed]
- Fatmawati, A.; Agustriyanto, R.; Liasari, Y. Enzymatic Hydrolysis of Alkaline Pretreated Coconut Coir. Bull. Chem. React. Eng. Catal. 2013, 8, 34–39. [Google Scholar] [CrossRef]
- Gonçalves, F.A.; Ruiz, H.A.; dos Santos, E.S.; Teixeira, J.A.; de Macedo, G.R. Valorization, Comparison and Characterization of Coconuts Waste and Cactus in a Biorefinery Context Using NaClO2–C2H4O2 and Sequential NaClO2–C2H4O2/Autohydrolysis Pretreatment. Waste Biomass Valorization 2019, 10, 2249–2262. [Google Scholar] [CrossRef]
- Padilha, C.E.A.; da Costa Nogueira, C.; de Santana Souza, D.F.; de Oliveira, J.A.; dos Santos, E.S. Organosolv Lignin/Fe3O4 Nanoparticles Applied as a β-Glucosidase Immobilization Support and Adsorbent for Textile Dye Removal. Ind. Crops Prod. 2020, 146, 112167. [Google Scholar] [CrossRef]
- Chaudhary, R.; Dhepe, P.L. Depolymerization of Lignin Using a Solid Base Catalyst. Energy Fuels 2019, 33, 4369–4377. [Google Scholar] [CrossRef]
- Kauldhar, B.S.; Sooch, B.S.; Rai, S.K.; Kumar, V.; Yadav, S.K. Recovery of Nanosized Silica and Lignin from Sugarcane Bagasse Waste and Their Engineering in Fabrication of Composite Membrane for Water Purification. Environ. Sci. Pollut. Res. 2021, 28, 7491–7502. [Google Scholar] [CrossRef]
- Ismail, H.S.; Ibrahim, A.H.; Abidin, C.Z.A.; Ridwan, F.M. Recovery of Nano-Lignin from Anaerobic Treated Palm Oil Mill Effluent (AT-POME). In Proceedings of the IOP Conference Series: Earth and Environmental Science, 2nd International Conference on Civil & Environmental Engineering 20th, Langkawi, Malaysia, 21 November 2019; Volume 476. [Google Scholar]
- Tang, P.L.; Hassan, O.; Md-Jahim, J.; Mustapha, W.A.W.; Maskat, M.Y. Fibrous Agricultural Biomass as a Potential Source for Bioconversion to Vanillic Acid. Int. J. Polym. Sci. 2014, 2014. [Google Scholar] [CrossRef]
- Latha, M.; Subramanian, K.S.; Sundara Sharmila, D.J.; Raja, K.; Rajkishore, S.K.; Chitdeshwari, T. Urea-Lignin/Chitosan Nanocomposite as Slow-Release Nanofertilizer. ACS Agric. Sci. Technol. 2023, 3, 463–476. [Google Scholar] [CrossRef]
- Wise, L.E.; Murphy, M.; d’Addieco, A.A. Chlorite Holocellulose, Its Fractionnation and Bearing on Summative Wood Analysis and on Studies on the Hemicelluloses. Tech. Assoc. Pap. 1946, 29, 210–218. [Google Scholar]
- Ferreira, P.F.O.; Pereira, A.L.S.; Rosa, M.F.; de Santiago-Aguiar, R.S. Lignin-Rich Cellulose Nanocrystals from Coir Fiber Treated with Ionic Liquids: Preparation and Evaluation as Pickering Emulsifier. Ind. Crops Prod. 2022, 186. [Google Scholar] [CrossRef]
- Jakka, V.; Goswami, A.; Nallajarla, A.K.; Roy, U.; Srikanth, K.; Sengupta, S. Coconut Coir–Derived Nanocellulose as an Efficient Adsorbent for Removal of Cationic Dye Safranin-O: A Detailed Mechanistic Adsorption Study. Environ. Sci. Pollut. Res. 2023, 1–22. [Google Scholar] [CrossRef] [PubMed]
- Abdul Razak, S.; Hanif Mahadi, A.; Abdullah, R.; Mohd Yasin, H.; Ja, F.; Abdul Rahman, N.; Bahruji, H. Biohydrogen Production from Photodecomposition of Various Cellulosic Biomass Wastes Using Metal-TiO 2 Catalysts. Biomass Convers. Biorefin. 2023, 13, 8701–8712. [Google Scholar] [CrossRef]
- He, X.; Lu, W.; Sun, C.; Khalesi, H.; Mata, A.; Andaleeb, R.; Fang, Y. Cellulose and Cellulose Derivatives: Different Colloidal States and Food-Related Applications. Carbohydr. Polym. 2021, 255, 117334. [Google Scholar] [CrossRef] [PubMed]
- Lawoko, M.; Samec, J.S.M. Kraft Lignin Valorization: Biofuels and Thermoset Materials in Focus. Curr. Opin. Green Sustain. Chem. 2023, 40, 100738. [Google Scholar] [CrossRef]
- Constant, S.; Basset, C.; Dumas, C.; Di Renzo, F.; Robitzer, M.; Barakat, A.; Quignard, F. Reactive Organosolv Lignin Extraction from Wheat Straw: Influence of Lewis Acid Catalysts on Structural and Chemical Properties of Lignins. Ind. Crops Prod. 2015, 65, 180–189. [Google Scholar] [CrossRef]
- Sujatha, M.; Roy, A. Extraction of Lignin from Agro-Waste Coir Fiber by Mild Alkali Treatment: A Statistical Approach for Process Optimization through Response Surface Methodology. Asian J. Chem. 2024, 36, 81–86. [Google Scholar] [CrossRef]
- Ebrahimi, M.; Caparanga, A.R.; Ordono, E.E.; Villaflores, O.B. Evaluation of Organosolv Pretreatment on the Enzymatic Digestibility of Coconut Coir Fibers and Bioethanol Production via Simultaneous Saccharification and Fermentation. Renew Energy 2017, 109, 41–48. [Google Scholar] [CrossRef]
- Gonçalves, F.A.; Ruiz, H.A.; Silvino dos Santos, E.; Teixeira, J.A.; de Macedo, G.R. Bioethanol Production by Saccharomyces Cerevisiae, Pichia Stipitis and Zymomonas Mobilis from Delignified Coconut Fibre Mature and Lignin Extraction According to Biorefinery Concept. Renew Energy 2016, 94, 353–365. [Google Scholar] [CrossRef]
- Özyürek, Ö.; van Heiningen, A. Formic Acid Reinforced Autohydrolysis of Wheat Straw for High Yield Production of Monosugars and Minimal Lignin Precipitation. Ind. Crops Prod. 2018, 112, 320–326. [Google Scholar] [CrossRef]
- Gandolfi, S.; Ottolina, G.; Consonni, R.; Riva, S.; Patel, I. Fractionation of Hemp Hurds by Organosolv Pretreatment and Its Effect on Production of Lignin and Sugars. ChemSusChem 2014, 7, 1991–1999. [Google Scholar] [CrossRef]
- Protásio, T.d.P.; Costa, d.J.S.; Scatolino, V.M.; Lima, M.D.R.; Assis, d.M.R.; Silva, d.M.G.; Bufalino, L.; Junior, A.F.D.; Trugilho, P.F. Revealing the Influence of Chemical Compounds on the Pyrolysis of Lignocellulosic Wastes from the Amazonian Production Chains. Int. J. Environ. Sci. Technol. 2022, 19, 4491–4508. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, F.; Sun, Y. Bacterial Cellulose Production by Acetobacter Xylinum CGMCC 1.2378 Using Coconut Shell Acid Hydrolysate as Carbon Source. Bioresources 2021, 16, 1042–1062. [Google Scholar] [CrossRef]
- Parichanon, P.; Matan, N.; Limbo, S.; D’Incecco, P.; Matan, N. Natural Cellulosic Material Characteristics: A Possibility to Develop Antimicrobial Active Fiber-Based Packaging. Bioresources 2021, 16, 5450–5466. [Google Scholar] [CrossRef]
- Alharbi, M.A.H.; Hirai, S.; Tuan, H.A.; Akioka, S.; Shoji, W. Effects of Chemical Composition, Mild Alkaline Pretreatment and Particle Size on Mechanical, Thermal, and Structural Properties of Binderless Lignocellulosic Biopolymers Prepared by Hot-Pressing Raw Microfibrillated Phoenix Dactylifera and Cocos Nucifera. Polym. Test 2020, 84, 106384. [Google Scholar] [CrossRef]
- Fleck, L.C.; Beckum, W.V.; Ritter, G.J. Composition of Coconut Shells. J. Am. Chem. Soc. 1937, 59, 2279–2280. [Google Scholar] [CrossRef]
- Bezerra, P.K.S.d.B.; Silva, d.O.L.; Oliveira, d.S.D.; Padilha, C.E.d.A.; Santos, d.E.S. Cellulolytic Enzymes Behavior in Delignified Green Coconut Residues and Enzymatic Hydrolysis with Enzyme Recovery. Ind. Crops Prod. 2021, 172. [Google Scholar] [CrossRef]
- Din, N.A.S.; Lim, S.J.; Maskat, M.Y.; Zaini, N.A.M. Bioconversion of Coconut Husk Fibre through Biorefinery Process of Alkaline Pretreatment and Enzymatic Hydrolysis. Biomass Convers. Biorefin. 2021, 11, 815–826. [Google Scholar] [CrossRef]
- De Padilha, C.E.A.; Santiago, L.E.P.; de Guilherme, A.A.; Cavalcante, J.D.N.; Thomas, H.Y.; dos Santos, E.S.; de Melo, D.M.A.; Braga, R.M.; de Souza, D.F.S. Effects of Acid and Organosolv Pretreatments on the Analytical Fast Pyrolysis Products of Green Coconut Fiber. Bioenergy Res. 2023. [Google Scholar] [CrossRef]
- Nascimento, R.J.M.; Bezerra, L.C.A.; Almeida, J.S.; de Oliveira Barros, M.; Silva, L.R.R.; Rosa, M.F.; Mazzeto, S.E.; Lomonaco, D.; Pereira, K.R.A.; Avelino, F. Elucidating the Adsorption Mechanism of Rhodamine B on Mesoporous Coconut Coir-Based Biosorbents through a Non-Linear Modeling and Recycling Approach. Environ. Sci. Pollut. Res. 2022, 79920–79934. [Google Scholar] [CrossRef]
- Nascimento, D.M.; Almeida, J.S.; Dias, A.F.; Figueirêdo, M.C.B.; Morais, J.P.S.; Feitosa, J.P.A.; Rosa, M.D.F. A Novel Green Approach for the Preparation of Cellulose Nanowhiskers from White Coir. Carbohydr. Polym. 2014, 110, 456–463. [Google Scholar] [CrossRef]
- Abraham, E.; Deepa, B.; Pothen, L.A.; Cintil, J.; Thomas, S.; John, M.J.; Anandjiwala, R.; Narine, S.S. Environmental Friendly Method for the Extraction of Coir Fibre and Isolation of Nanofibre. Carbohydr. Polym. 2013, 92, 1477–1483. [Google Scholar] [CrossRef] [PubMed]
- Gapsari, F.; Purnowidodo, A.; Hidayatullah, S.; Suteja, S. Characterization of Timoho Fiber as a Reinforcement in Green Composite. J. Mater. Res. Technol. 2021, 13, 1305–1315. [Google Scholar] [CrossRef]
- Moshi, A.A.M.; Ravindran, D.; Sundara Bharathi, S.R.; Padma, S.R.; Indran, S.; Divya, D. Characterization of Natural Cellulosic Fiber Extracted from Grewia Damine Flowering Plant’s Stem. Int. J. Biol. Macromol. 2020, 164, 1246–1255. [Google Scholar] [CrossRef] [PubMed]
- Obi Reddy, K.; Guduri, B.R.; Rajulu, A.V. Structural Characterization and Tensile Properties of Borassus Fruit Fibers. J. Appl. Polym. Sci. 2009, 114, 603–611. [Google Scholar] [CrossRef]
- De Freitas, R.R.M.; do Carmo, K.P.; de Souza Rodrigues, J.; de Lima, V.H.; Osmari da Silva, J.; Botaro, V.R. Influence of Alkaline Treatment on Sisal Fibre Applied as Reinforcement Agent in Composites of Corn Starch and Cellulose Acetate Matrices. Plast. Rubber Compos. 2021, 50, 9–17. [Google Scholar] [CrossRef]
- Apaydın Varol, E.; Mutlu, Ü. TGA-FTIR Analysis of Biomass Samples Based on the Thermal Decomposition Behavior of Hemicellulose, Cellulose, and Lignin. Energies 2023, 16, 3674. [Google Scholar] [CrossRef]
- Maceda, A.; Soto-Hernández, M.; Peña-Valdivia, C.B.; Trejo, C.; Terrazas, T. Characterization of Lignocellulose of Opuntia (Cactaceae) Species Using FTIR Spectroscopy: Possible Candidates for Renewable Raw Material. Biomass Convers. Biorefin. 2022, 12, 5165–5174. [Google Scholar] [CrossRef]
- Oh, S.Y.; Yoo, I.D.; Shin, Y.; Seo, G. FTIR Analysis of Cellulose Treated with Sodium Hydroxide and Carbon Dioxide. Carbohydr. Res. 2005, 340, 417–428. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.P.; Zhang, Y.; Lang, Y.X.; Yu, M.H. Structural ATR-IR Analysis of Cellulose Fibers Prepared from a NaOH Complex Aqueous Solution. In Proceedings of the IOP Conference Series: Materials Science and Engineering, Guangzhou, China, 23–25 May 2017; Volume 213, p. 012039. [Google Scholar]
- Pandey, K.K.; Theagarajan, K.S. Analysis of Wood Surfaces and Ground Wood by Diffuse Reflectance (DRIFT) and Photoacoustic (PAS) Fourier Transform Infrared Spectroscopic Techniques. Eur. J. Wood Wood Prod. 1997, 55, 383–390. [Google Scholar] [CrossRef]
- Latham, K.G.; Matsakas, L.; Figueira, J.; Kozyatnyk, I.; Rova, U.; Christakopoulos, P.; Jansson, S. Impact of Temperature and Residence Time on the Hydrothermal Carbonization of Organosolv Lignin. J. Anal. Appl. Pyrolysis 2022, 166, 105623. [Google Scholar] [CrossRef]
- Pasang, P.M.; Yunianta; Estiasih, T. Harijono Structure and Morphology of Cellulose from Coconut Coir Fibers. Russ. J. Agric. Socioecon. Sci. 2018, 80, 452–462. [Google Scholar] [CrossRef]
- Cao, C.; Yang, Z.; Han, L.; Jiang, X.; Ji, G. Study on in Situ Analysis of Cellulose, Hemicelluloses and Lignin Distribution Linked to Tissue Structure of Crop Stalk Internodal Transverse Section Based on FTIR Microspectroscopic Imaging. Cellulose 2015, 22, 139–149. [Google Scholar] [CrossRef]
- Zhao, X.; Li, S.; Wu, R.; Liu, D. Organosolv Fractionating Pre-treatment of Lignocellulosic Biomass for Efficient Enzymatic Saccharification: Chemistry, Kinetics, and Substrate Structures. Biofuels Bioprod. Biorefining 2017, 11, 567–590. [Google Scholar] [CrossRef]
- Zugnmaier, P. Cellulose Derivatives. In Crystalline Cellulose and Derivatives; Springer Series in Wood Science; Springer: Berlin/Heidelberg, Germany, 2008; pp. 175–206. [Google Scholar] [CrossRef]
- Wertz, J.-L.; Bédué, O.; Mercier, J.P. Cellulose Science and Technology, 1st ed.; EPFL, Press: Lausanne, Switzerland, 2010. [Google Scholar]
- Carrillo, F.; Colom, X.; Suñol, J.J.; Saurina, J. Structural FTIR Analysis and Thermal Characterisation of Lyocell and Viscose-Type Fibres. Eur. Polym. J. 2004, 40, 2229–2234. [Google Scholar] [CrossRef]
- Nelson, M.L.; O’Connor, R.T. Relation of Certain Infrared Bands to Cellulose Crystallinity and Crystal Lattice Type. Part 11. A New Infrared Ratio for Estimation of Crystallinity in Celluloses I and II. J. Appl. Polym. Sci. 1964, 8, 1325–1341. [Google Scholar] [CrossRef]
- O’connor, R.T.; Dupré, E.F.; Mitcham, D. Applications of Infrared Absorption Spectroscopy to Investigations of Cotton and Modified Cottons:Part I: Physical and Crystalline Modifications and Oxidation. Text. Res. J. 1958, 28, 382–392. [Google Scholar] [CrossRef]
- Kljun, A.; Benians, T.A.S.; Goubet, F.; Meulewaeter, F.; Knox, J.P.; Blackburn, R.S. Comparative Analysis of Crystallinity Changes in Cellulose i Polymers Using ATR-FTIR, X-Ray Diffraction, and Carbohydrate-Binding Module Probes. Biomacromolecules 2011, 12, 4121–4126. [Google Scholar] [CrossRef] [PubMed]
- Nada, A.-A.M.A.; Kamel, S.; El-Sakhaway, M. Thermal Behaviour and Infrared Spectroscopy of Cellulose Carbamates. Polym. Degrad. Stab. 2000, 70, 347–355. [Google Scholar] [CrossRef]
- Spiridon, I.; Teacă, C.-A.; Bodîrlău, R. Structural changes evidenced by FTIR spectroscopy in cellulose materials after pre-treatment with ionic liquid and enzymatic hydrolysis. BioResources 2011, 6, 400–413. [Google Scholar] [CrossRef]
- Široký, J.; Blackburn, R.S.; Bechtold, T.; Taylor, J.; White, P. Attenuated Total Reflectance Fourier-Transform Infrared Spectroscopy Analysis of Crystallinity Changes in Lyocell Following Continuous Treatment with Sodium Hydroxide. Cellulose 2010, 17, 103–115. [Google Scholar] [CrossRef]
- Haykiri-Acma, H.; Yaman, S. Treating Lignocellulosic Biomass with Dilute Solutions at Ambient Temperature: Effects on Cellulose Crystallinity. Biomass Convers. Biorefin 2022. [Google Scholar] [CrossRef]
- Fatmawati, A.; Nurtono, T.; Widjaja, A. Thermogravimetric Kinetic-Based Computation of Raw and Pretreated Coconut Husk Powder Lignocellulosic Composition. Bioresour. Technol. Rep. 2023, 22, 101500. [Google Scholar] [CrossRef]
- Borel, L.D.M.S.; de Lira, T.S.; Ataíde, C.H.; de Souza Barrozo, M.A. Thermochemical Conversion of Coconut Waste: Material Characterization and Identification of Pyrolysis Products. J. Therm. Anal. Calorim. 2021, 143, 637–646. [Google Scholar] [CrossRef]
- Nascimento, P.F.P.; Neto, E.L.B. Steam Explosion: Hydrothermal Pretreatment in the Production of an Adsorbent Material Using Coconut Husk. Bioenergy Res. 2021, 14, 153–162. [Google Scholar] [CrossRef]
- Rueda-Ordóñez, Y.J.; Tannous, K. Isoconversional Kinetic Study of the Thermal Decomposition of Sugarcane Straw for Thermal Conversion Processes. Bioresour. Technol. 2015, 196, 136–144. [Google Scholar] [CrossRef] [PubMed]
- Sakuri, S.; Surojo, E.; Ariawan, D. Thermogravimetry and Interfacial Characterization of Alkaline Treated Cantala Fiber/Microcrystalline Cellulose-Composite. Procedia Struct. Integr. 2020, 27, 85–92. [Google Scholar] [CrossRef]
- Xia, L.; Zhang, C.; Wang, A.; Wang, Y.; Xu, W. Morphologies and Properties of Juncus Effusus Fiber after Alkali Treatment. Cellulose 2020, 27, 1909–1920. [Google Scholar] [CrossRef]
- Singh, S.; Varanasi, P.; Singh, P.; Adams, P.D.; Auer, M.; Simmons, B.A. Understanding the Impact of Ionic Liquid Pretreatment on Cellulose and Lignin via Thermochemical Analysis. Biomass Bioenergy 2013, 54, 276–283. [Google Scholar] [CrossRef]
- Lopes, F.C.R.; Tannous, K.; de Carmazini, E.B. Thermal Behavior and Kinetic Analysis of Torrefied Coconut Fiber Pyrolysis. Thermochim. Acta 2022, 715, 179275. [Google Scholar] [CrossRef]
- Latif, N.H.A.; Brosse, N.; Ziegler-Devin, I.; Chrusiel, L.; Hashim, R.; Hussin, M.H. A Comparison of Alkaline and Organosolv Lignin Extraction Methods from Coconut Husks as an Alternative Material for Green Applications. Bioresources 2022, 17, 469–491. [Google Scholar] [CrossRef]
- Panamgama, L.A.; Peramune, P.R.U.S.K. Coconut Coir Pith Lignin: A Physicochemical and Thermal Characterization. Int. J. Biol. Macromol. 2018, 113, 1149–1157. [Google Scholar] [CrossRef] [PubMed]
- Egüés, I.; Sanchez, C.; Mondragon, I.; Labidi, J. Effect of Alkaline and Autohydrolysis Processes on the Purity of Obtained Hemicelluloses from Corn Stalks. Bioresour. Technol. 2012, 103, 239–248. [Google Scholar] [CrossRef] [PubMed]
- Klunklin, W.; Hinmo, S.; Thipchai, P.; Rachtanapun, P. Effect of Bleaching Processes on Physicochemical and Functional Properties of Cellulose and Carboxymethyl Cellulose from Young and Mature Coconut Coir. Polymers 2023, 15, 3376. [Google Scholar] [CrossRef] [PubMed]
- Yan, L.; Su, S.; Chouw, N. Microstructure, Flexural Properties and Durability of Coir Fibre Reinforced Concrete Beams Externally Strengthened with Flax FRP Composites. Compos. B Eng. 2015, 80, 343–354. [Google Scholar] [CrossRef]
Autohydrolysis | |||||||||
Temperature (°C) | 175 | 185 | 195 | ||||||
Time (min) | 20 | 25 | 30 | 20 | 25 | 30 | 20 | 25 | 30 |
IL (g/L) | 0.75 | 0.81 | 0.90 | 0.62 | 0.85 | 0.83 | 0.68 | 0.73 | 0.70 |
SL (g/L) | 0.51 | 0.70 | 0.80 | 0.75 | 0.82 | 1.02 | 1.13 | 1.13 | 1.12 |
TL (g/L) | 1.26 | 1.52 | 1.70 | 1.37 | 1.67 | 1.84 | 1.80 | 1.86 | 1.82 |
Alkaline extraction | |||||||||
Time (h) | 1 | 2 | |||||||
[NaOH] (M) | 0.25 | 0.50 | 0.75 | 0.25 | 0.50 | 0.75 | |||
IL (g/L) | 1.41 | 2.99 | 3.54 | 1.84 | 5.89 | 6.72 | |||
SL (g/L) | 0.93 | 1.22 | 1.53 | 2.82 | 3.81 | 3.69 | |||
TL (g/L) | 2.35 | 4.20 | 5.06 | 4.66 | 9.71 | 10.41 | |||
Organosolv | |||||||||
Time (h) | 2 | 3 | 4 | ||||||
Catalyst (NaOH) | P | A | P | A | P | A | |||
IL (g/L) | 93.10 | 6.30 | 126.10 | 7.40 | 155.56 | 43.60 | |||
SL (g/L) | 6.84 | 2.52 | 5.91 | 3.75 | 5.42 | 2.09 | |||
TL (g/L) | 99.94 | 8.82 | 132.01 | 11.15 | 160.98 | 45.69 |
Residue in natura | Holocellulose (%) | α-Cellulose (%) | Hemicellulose (%) |
---|---|---|---|
This study | 57.81 ± 0.5 | 40.01 ± 0.5 | 17.81 ± 0.5 |
Protásio et al. [57] | 53.87 | 27.91 | 25.96 |
Liu et al. [58] | 57.13 | - | - |
Parichanon et al. [59] | 68.73 | 37.55 | 31.18 |
Alharbi et al. [60] | - | 46.00 | 16.00 |
Gonçalves et al. [38] | - | 32.18 | 27.81 |
Fleck et al. [61] | 61.00 | 44.98 | 16.02 |
Autohydrolysis | |||
This study 195 °C—20 min | 58.37 ± 0.5 | 47.97 ± 0.5 | 10.40 ± 0.5 |
Gonçalves et al. [38] sequential NaClO2-CH4O2/AH 200 °C—50 min | 77.92 | 71.25 | 6.67 |
Gonçalves et al. [30] 200 °C—30 min | 59.06 | 45.23 | 13.86 |
Alkaline extraction | |||
This study 55 °C—2 h—0.50 M [NaOH] | 58.08 ± 0.5 | 48.65 ± 0.5 | 9.43 ± 0.5 |
Schiavon and Andrade [28] 1 h—5% [NaOH] | - | 40.98 | 8.85 |
Schiavon and Andrade [28] 2 h—5% [NaOH] | - | 42.75 | 8.71 |
Bezerra et al. [62] 121 °C—30 min—0.50 M [NaOH] | - | 38.40 | 14.90 |
Din et al. [63] 121 °C—40 min—1.25 M [NaOH] | - | 40.14 | 12.64 |
Organosolv | |||
This study 185 °C—2 h—ethanol:water:NaOH * | 65.91 ± 0.5 | 55.25 ± 0.5 | 10.66 ± 0.5 |
Padilha et al. [64] 130 °C—2 h—glycerol:water:H2SO4 * | - | 65.99 | 7.29 |
Nascimento et al. [65] 110 °C—20 min—acetic acid | 55.10 | 38.00 | 17.10 |
Nascimento et al. [66] 110 °C—3 h—acetic acid:HCl * | - | 52.00 | 23.00 |
Functional Group | Chemical Structure | |||
---|---|---|---|---|
Autohydrolysis | Alkaline Extraction | Organosolv | ||
3337 | 3336 | 3336 | stretching O-H | cellulose |
2917–2851 | 2983–2920 | 2977–2884 | stretching C-H | cellulose e hemicellulose |
1730 | * | 1729 | COOH; C=O | hemicellulose e lignin |
1608 | 1604 | * | linkage C=C | lignin |
1512 | 1509 | 1509 | aromatic ring vibration | lignin |
1373 | * | 1380 | deformation C-H | cellulose e hemicellulose |
1328 | 1320 | 1320 | vibration O-H | cellulose |
1265 | 1266 | 1268 | carbonyl groups C=O | lignin |
1162 | 1162 | 1162 | vibrations C-O-C | cellulose e hemicellulose |
1035 | 1032 | 1028 | stretching C-O | cellulose e hemicellulose |
893 | 893 | 893 | stretching C-O-C | cellulose |
Pretreatment | Index | ||
---|---|---|---|
HBI | TCI | LOI | |
In natura | 0.8505 | 1.6206 | 0.8249 |
Soxhlet | 0.9055 | 1.7606 | 0.8966 |
Alkaline | 0.8303 | 1.6328 | 0.9372 |
Organosolv | 1.2324 | 1.0076 | 0.8917 |
Autohydrolysis | 0.4509 | 98.4246 | 0.7907 |
Pre-Treatments | 1st Mass Loss (%) | 2nd Mass Loss (%) | 3rd Mass Loss (%) |
---|---|---|---|
27–120 °C | 200–400 °C | >450 °C | |
In natura | 8.90 | 38.90 | 36.02 |
Autohydrolysis | 9.39 | 44.59 | 25.62 |
Alkaline | 14.10 | 40.16 | 28.68 |
Organosolv | 9.10 | 46.56 | 26.69 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vieira, F.; Santana, H.E.P.; Jesus, M.; Mata, F.; Pires, P.; Vaz-Velho, M.; Silva, D.P.; Ruzene, D.S. Comparative Study of Pretreatments on Coconut Fiber for Efficient Isolation of Lignocellulosic Fractions. Sustainability 2024, 16, 4784. https://doi.org/10.3390/su16114784
Vieira F, Santana HEP, Jesus M, Mata F, Pires P, Vaz-Velho M, Silva DP, Ruzene DS. Comparative Study of Pretreatments on Coconut Fiber for Efficient Isolation of Lignocellulosic Fractions. Sustainability. 2024; 16(11):4784. https://doi.org/10.3390/su16114784
Chicago/Turabian StyleVieira, Fabrícia, Hortência E. P. Santana, Meirielly Jesus, Fernando Mata, Preciosa Pires, Manuela Vaz-Velho, Daniel Pereira Silva, and Denise Santos Ruzene. 2024. "Comparative Study of Pretreatments on Coconut Fiber for Efficient Isolation of Lignocellulosic Fractions" Sustainability 16, no. 11: 4784. https://doi.org/10.3390/su16114784
APA StyleVieira, F., Santana, H. E. P., Jesus, M., Mata, F., Pires, P., Vaz-Velho, M., Silva, D. P., & Ruzene, D. S. (2024). Comparative Study of Pretreatments on Coconut Fiber for Efficient Isolation of Lignocellulosic Fractions. Sustainability, 16(11), 4784. https://doi.org/10.3390/su16114784