Investigation of the Mechanical Behaviors of Sustainable Green Reactive Powder Concrete Produced Using Ferrochrome Slag and Waste Fiber
Abstract
1. Introduction
2. Material and Method
Method
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Su, X.; Ren, Z.; Li, P. Review on physical and chemical activation strategies for ultra-high performance concrete (UHPC). Cem. Concr. Compos. 2024, 149, 105519. [Google Scholar] [CrossRef]
- Richard, P.; Cheyrezy, M.H. Composition of reactive powder concrete. Cem. Concr. Res. 1995, 25, 1501–1511. [Google Scholar] [CrossRef]
- Aitcin, P.C. Cement of yesterday and today concrete of tomorrow. Cem. Concr. Res. 2000, 30, 1349–1359. [Google Scholar] [CrossRef]
- Yazıcı, H. The effect of curing conditions on compressive strength of ultra high strength concrete with high volume mineral admixtures. Build. Environ. 2007, 42, 2083–2089. [Google Scholar] [CrossRef]
- Dugat, J.; Roux, N.; Bernier, G. Mechanical properties of reactive powder concretes. Mater. Struct. 1996, 29, 233–240. [Google Scholar] [CrossRef]
- Matte, V.; Moranville, M. Durability of reactive powder composites: Influence of silica fume on the leaching properties of very low water/binder pastes. Cem. Concr. Compos. 1999, 21, 1–9. [Google Scholar] [CrossRef]
- Chan, Y.; Chu, S. Effect of silica fume on steel fiber bond characteristics in reactive powder concrete. Cem. Concr. Res. 2004, 34, 1167–1172. [Google Scholar] [CrossRef]
- Aitcin, P.C. Concrete the most widely used construction materials. ACI SP 1995, 154, 257–266. [Google Scholar]
- Yazıcı, H.; Yardımcı, M.Y.; Aydın, S.; Karabulut, A.S. Mechanical properties of reactive powder concrete containing mineral admixtures under different curing regimes. Constr. Build. Mater. 2009, 23, 1223–1231. [Google Scholar] [CrossRef]
- Richard, P.; Cheyrezy, M.H. Reactive powder concretes with high ductility and 200–800 MPa compressive strength. In Concrete Technology: Past, Present, and Future: Proceedings of the V. Mohan Malhotra Symposium; American Concrete Institute: Farmington Hills, MI, USA, 1994; Volume 144, pp. 507–518. [Google Scholar]
- Teichman, T.; Schmidt, M. Influence of the packing density of fine particles on structure, strength and durability of UHPC. In Ultra High Performance Concrete (UHPC): Proceedings of the International Symposium on Ultra High Performance Concrete, Kassel, Germany, 13–15 September 2004; Kassel University Press: Kassel, Germany, 2004; pp. 312–323. [Google Scholar]
- Zhang, Y.S.; Sun, W.; Liu, S.F.; Jiao, C.J.; Lai, J.Z. Preparation of C200 green reactive powder concrete and its static–dynamic behaviors. Cem. Concr. Compos. 2008, 30, 831–838. [Google Scholar]
- Das, S.K.; Tripathia, A.K.; Kandia, S.K.; Mustakimb, S.M.; Bhoia, B.; Rajputa, P. Ferrochrome slag: A critical review of its properties, environmental issues and sustainable utilization. J. Environ. Manag. 2023, 326, 116674. [Google Scholar] [CrossRef] [PubMed]
- Savadkoohi, M.S.; Reisi, M. Granit atıkların Reaktif Pudra Betonda kullanılması ile çevre koruma temelli sürdürülebilir kalkınma. J. Clean. Prod. 2020, 266, 121973. [Google Scholar] [CrossRef]
- Gül, R.; Geçten, O. Elazığ ferrokrom işletmesi granüle cürufunun hafif beton üretiminde kullanılabilirliğini araştırılması. In Endüstriyel Atıkların İnşaat Sektöründe Kullanılması Sempozyumu Bildiriler Kitabı; TMMOB İnşaat Mühendisleri Odası: Ankara, Turkey, 1993; pp. 291–301. [Google Scholar]
- Bakış, A. Atık çelik lif takviyeli pomza içeren reaktif pudra betonun rijit kaplama imalatında kullanımı çalışması. BEU J. Sci. 2018, 7, 63–71. [Google Scholar]
- Aslan, S.; Öksüzer, N.; Gökçe, H.S. Improvement of mechanical and transport properties of reactive powder concrete using graphene nanoplatelet and waste glass aggregate. Constr. Build. Mater. 2022, 318, 126199. [Google Scholar] [CrossRef]
- Chen, X.F.; Jiao, C.J. Effect of construction wastes on the rheo-physical behavior of photocatalytic mortar. Case Stud. Constr. Mater. 2022, 16, e01049. [Google Scholar] [CrossRef]
- Chen, X.F.; Jiao, C.J. A photocatalytic mortar prepared by tourmaline and TiO2 treated recycled aggregates and its air-purifying performance. Case Stud. Constr. Mater. 2022, 16, e01073. [Google Scholar] [CrossRef]
- Yazıcıoğlu, S.; Gönen, T.; Çobanoğlu, Ö.C. Elazığ ferrokrom cürufunun betonun basınç dayanımı ve çarpma enerjisi üzerine etkisi. Fırat Üniversitesi Fen Ve Mühendislik Bilim. Derg. 2005, 17, 681–686. [Google Scholar]
- Sancak, E.; Çoban, Ö. The effect on reinforcing bar corrosion properties of usage of olivine wastes on concrete. Selcuk Univ. J. Eng. Sci. Tech. 2014, 2, 26–41. [Google Scholar]
- Wu, H.; Liu, X.; Ma, X.; Liu, G. Effects of Multi-Walled Carbon Nanotubes and Recycled Fine Aggregates on the Multi-Generational Cycle Properties of Reactive Powder Concrete. Sustainability 2024, 16, 2084. [Google Scholar] [CrossRef]
- Taşdemir, A. Enjeksiyon Yöntemiyle Üretilen Kristal Yapılı Ferrokrom Cürufu Katkılı Betonların Fiziksel Özelliklerinin Araştırılması. Master’s Thesis, Fırat Üniversitesi Fen Bilimleri Enstitüsü Yapı Eğitimi Anabilim Dalı, Elazığ, Turkey, 2006; pp. 13–124. [Google Scholar]
- Panda, C.R.; Mishra, K.K.; Nayak, B.D.; Rao, D.S.; Nayak, B.B. Release behaviour of chromium from ferrochrome slag. Int. J. Environ. Technol. Manag. 2012, 26, 261–274. [Google Scholar] [CrossRef]
- United States Geological Survey. Chromium Data Sheet. Mineral Commodity Summaries 2022. Available online: https://www.usgs.gov/ (accessed on 10 December 2023).
- Erdoğan, S.T. Öğütülmüş ferrokrom cürufu kullanılarak jeopolimer üretimi. In Proceedings of the 9th National Congress on Concrete, İzmir, Turkey, October 2011; pp. 12–35. Available online: https://users.metu.edu.tr/sinante/8UBK.pdf (accessed on 1 December 2023).
- Jiao, M.; Rong, Z.; Zhang, L. A critical review of the material characteristics, utilizations, limitations and advanced applications of ferrochrome slag. Constr. Build. Mater. 2024, 426, 136180. [Google Scholar] [CrossRef]
- Ipek, M.; Yılmaz, K.; Uysal, M. The effect of pre-setting pressure applied flexural strength and fracture toughness of reactive powder concrete during the setting phase. Constr. Build. Mater. 2012, 26, 459–465. [Google Scholar] [CrossRef]
- Wang, M.L. Constitutive properties of SIFCON. In Proceedings of the Workshop on Fibre Reinforced Cement and Concrete, Sheffield, UK, 28–30 July 1994; pp. 237–255. [Google Scholar]
- Lankard, D.R. Properties, applications: Slurry infiltrated fiber concrete (SIFCON). MRS Online Proc. Libr. 1984, 42, 287–306. [Google Scholar] [CrossRef]
- Lankard, D.R.; Newell, J.K. Preparation of highly reinforced steel fiber reinforced concrete composites. In Fiber Reinforced Concrete–International Symposium; ACI SP-81; American Concrete Institute: Detroit, MI, USA, 1984; pp. 287–306. [Google Scholar]
- Lankard, D.R. Preparation, properties and application of cement-based composites containing 5 to 20 percent steel fibre. In Steel Fibre Concrete, Proceedings US-Sweden Joint Seminar; Shah, S.P., Skarendahl, A., Eds.; Elsevier Applied Science Publishers: Barking, UK, 1985; pp. 199–217. [Google Scholar]
- Tuyan, M.; Yazıcı, H. Pull-out behavior of single steel fiber from SIFCON matrix. Constr. Build. Mater. 2012, 1, 571–577. [Google Scholar] [CrossRef]
- Goldman, A.; Bentur, A. The influence of microfillers on enhancement of concrete strength. Cem. Concr. Res. 1993, 23, 962–972. [Google Scholar] [CrossRef]
- Mahesh, K.; Chetan, D. Comparative Study of Reactive Powder Concrete Containing Steel Fibers and Recron 3S Fibers. J. Eng. Res. Stud. 2010, 1, 83–89. [Google Scholar]
- Kadhum, M.M.; Mankhi, B.S. Behavior of Reactive Powder Concrete Columns with or without Steel Ties. Civ. Environ. Res. 2016, 8, 19–26. [Google Scholar]
- Yang, G.; Wei, J.; Yu, Q.; Huang, H.; Li, F. Investigation of the Match Relation between Steel Fiber and High-Strength Concrete Matrix in Reactive Powder Concrete. Materials 2019, 12, 1751. [Google Scholar] [CrossRef]
- Ni, W.; Cui, X.; Yuan, J.; Sun, W.; Cui, C.; Wu, Y.; Feng, J. The influence of fiber, aggregate and cementitious materials on the mechanical properties of ultra-high content steel fiber reinforced reactive powder concrete. Constr. Build. Mater. 2024, 431, 136530. [Google Scholar] [CrossRef]
- Al-Tikrite, A.; Hadi, M.N.S. Mechanical properties of reactive powder concrete containing ındustrial and waste steel fibres at different ratios under compression. Constr. Build. Mater. 2017, 154, 1024–1034. [Google Scholar] [CrossRef]
- Fares, G.; Alsaif, A.; Alhozaimy, A. Hybridization and cost-performance analysis of waste tire steel fibers ınto high-volume powdered scoria rocks-based ultra-high performance concrete. J. Build. Eng. 2023, 72, 2–18. [Google Scholar] [CrossRef]
- Last Visited on 18–23. 2023. Available online: https://www.goldsteinresearch.com/report/global-tire-recycling-industry-market-trends-analysis (accessed on 5 December 2023).
- Bonneau, O.; Lachemi, M.; Dallaire, E.; Dugat, J.; Aitcin, P.C. Mechanical properties and durability of two industrial reactive powder concretes. ACI Mater. J. 1997, 94, 286–290. [Google Scholar]
- Talebinejad, I.; Bassam, S.A.; Iranmanesh, A.; Shekarchizadeh, M. Optimizing mix proportions of normal weight reactive powder concrete with strengths of 200–350 Mpa. In Ultra High Performance Concrete (UHPC): Proceedings of the International Symposium on Ultra High Performance Concrete, Kassel, Germany, 13–15 September 2004; Kassel University Press: Kassel, Germany, 2004; pp. 133–141. [Google Scholar]
- Larrard, F.; Sedran, T. Optimization of ultra-high-performance concrete by the use of a packing model. Cem. Concr. Res. 1994, 24, 997–1009. [Google Scholar] [CrossRef]
- Mooney, M. The viscosity of concentrated suspension of spherical particles. J. Colloid Sci. 1951, 6, 162–170. [Google Scholar] [CrossRef]
- Furnas, C.C. Grading aggregates—I. Mathematical relations for beds of broken solids of maximum density. Ind. Eng. Chem. ACE 1931, 23, 1052–1058. [Google Scholar] [CrossRef]
- Glavind, M.; Olsen, G.S.; Petersen, C. Packing Calculations and Concrete Mix Design; The Nordic Concrete Federation Teknologisk Institut Beton: Denmark, Finland, 1993; Volume 13, pp. 21–34. [Google Scholar]
- Fuller, W.; Thompson, S.E. The laws of proportioning concrete. Trans. Am. Soc. Civ. Eng. 1907, 1053, 67–143. [Google Scholar] [CrossRef]
- Abdel-Jawad, Y.A.; Abdullah, W.S. Design of maximum density grading. Constr. Build. Mater. 2002, 16, 495–508. [Google Scholar] [CrossRef]
- Ipek, M. The flexural strength and fracture toughness of reactive powder concrete in response to changing fibre size and pre-setting pressure. Fatigue Fract. Eng. Mater. Struct. 2012, 35, 412–424. [Google Scholar] [CrossRef]
- TS 10513; Çelik Teller-Beton Takviyesinde Kullanılan. Turkish Standards Institute: Ankara, Turkey, 1992.
- TS 10514; Beton-Çelik Tel Takviyeli-Çelik Telleri Betona Karıştırma Ve Kontrol Kuralları. Turkish Standards Institute: Ankara, Turkey, 1992.
- TS 10515; Çelik Tel Takviyeli Betonun Eğilme Mukavemeti Deney Metodu. Turkish Standards Institute: Ankara, Turkey, 1992.
- ASTM C 1018; Standard Test Method for Flexural Toughness and First-Crack Strength of Fiber-Reinforced Concrete (Using Beam with Third-Point Loading), Annual Book of ASTM Standards. V 4.02. American Society for Testing and Materials: Philadelphia, PA, USA, 1989; pp. 637–644.
- JSCE Standard SF-4; Method of Test for Flexural Strength and Flexural Toughness of Fiber Reinforced Concrete. Japan Society of Civil Engineers (JSCE) Standard: Tokyo, Japan, 1984; pp. 58–66.
- Fayed, S.; Walid, M. Flexural rigidity and ductility of RC beams reinforced with steel and recycled plastic fibers. Steel Compos. Struct. Int. J. 2021, 41, 317–334. [Google Scholar]
- Fayed, S.; Walid, M. Evaluate the effect of steel, polypropylene and recycled plastic fibers on concrete properties. Adv. Concr. Constr. 2020, 10, 319–332. [Google Scholar]
Chemical Composition (%) | ||
---|---|---|
Component | Cement | Silica Fume |
CaO | 64.47 | 0.50 |
SiO2 | 20.09 | 96 |
C | - | 1.50 |
Al2O3 | 5.01 | 0.70 |
Fe2O3 | 2.73 | 0.25 |
MgO | 1.72 | 0.60 |
K2O | 0.66 | 0.85 |
Cl | 0.01 | 0.10 |
Na2O | 0.21 | 0.25 |
P2O5 | - | 0.10 |
SO3 | 3.03 | 0.50 |
H2O | - | 0.80 |
fever loss | 2.11 | 1.50 |
pH value | - | 5.0–8.0 |
C3S | 60.7 | - |
C2S | 11.8 | - |
C3A | 8.6 | - |
C4AF | 8.3 | - |
Silicate Modulus | 2.6 | - |
Alumina Modulus | 1.8 | - |
Hydraulic Modulus | 2.3 | - |
Total alkaline | 0.58 | - |
Physical Properties | ||
Cement | Silica Fume | |
Blaine specify surface | 5162 cm2/g | 200,000 cm2/g |
Unit volume weight | - | 0.650 g/cm3 |
Specific gravity | 3.14 | 2.26 |
Initial setting time | 154 min. | - |
Final setting time | 191 min. | - |
Volume expansion Genleşmesi | 0.8 mm | - |
Compressive Strength of Cement (MPa) | ||
2 days | 39.8 MPa | - |
7 days | 54.2 MPa | - |
28 days | 61.8 MPa | - |
No | Materials | Water Content % | Water Absorption % | Specific Gravity (gr/cm3) | Unit Volume Weight (gr/cm3) |
---|---|---|---|---|---|
1 | Chromium Slag | 0.04 | 2.9 | 2.98 | 2.036 |
2 | Olivine | 0.12 | 8.64 | 3.23 | 1.875 |
3 | Serpentine | 0.42 | 4.75 | 2.99 | 1.668 |
4 | Ferrochrome slag | 0.02 | 0.31 | 2.98 | 1.574 |
5 | Quartz | 0.008 | 0.5 | 2.70 | 1.341 |
Fiber Type | Length (mm) | Diameter (mm) | Aspect Ratio | Tensile Strength (MPa) | Specific Gravity (gr/cm3) |
---|---|---|---|---|---|
Industrial fiber | 6 | 0.16 | 37.5 | 2250 | 7.81 |
ELT | 10 | 0.1–0.2 | 67 | ~2000 | 7.81 |
Material (kg) | Ref. | CF | OF | SF | OC | SC | |
---|---|---|---|---|---|---|---|
Code | |||||||
Cement | 900 | 900 | 900 | 900 | 900 | 900 | |
Silica Fume | 270 | 270 | 270 | 270 | 270 | 270 | |
K. Powder | 360 | - | - | - | - | - | |
K. sand | 516 | - | - | - | - | - | |
Serpentine | - | - | 105 | - | 105 | ||
Olivine | - | - | 320 | - | 213 | - | |
Chrome slag | - | 524 | - | 853 | 944 | ||
Ferrochrome slag | - | 524 | 746 | 944 | - | - | |
Water | 225 | 216 | 216 | 216 | 216 | 216 | |
Superplasticizer | 27 | 31.5 | 31.5 | 31.5 | 31.5 | 31.5 | |
Comp. Strength (MPa) | 115 | 124 | 132 | 109 | 130 | 121 |
Sample Type | Cement | Silica Fume | Quartz Powder | Quartz Sand | Olivine | Pure Waste | Water | Super-Plasticizer | ELT Fiber | Ind. Fiber | Comp. Strength (MPa) |
---|---|---|---|---|---|---|---|---|---|---|---|
Ref. RPC | 900 | 270 | 360 | 516 | - | - | 225 | 27 | - | - | 115 |
GRPC | 900 | 270 | - | - | 320 | 746 | 216 | 31.50 | - | - | 113 |
GRPC-E1 | 891 | 267.30 | - | - | 316.80 | 738.54 | 213.84 | 31.19 | -- | 78 | 119 |
GRPC-E2 | 882 | 264.60 | - | - | 310.46 | 723.77 | 209.56 | 30.87 | - | 156 | 123 |
GRPC-E3 | 873 | 261.90 | - | - | 301.15 | 702.06 | 203.28 | 30.56 | - | 234 | 125 |
GRPC-E4 | 864 | 259.20 | - | - | 289.10 | 673.97 | 195.15 | 30.26 | - | 312 | 127 |
GRPC-W1 | 891 | 267.30 | - | - | 316.80 | 738.54 | 213.84 | 31.19 | 78 | - | 106 |
GRPC-W2 | 882 | 264.60 | - | - | 310.46 | 723.77 | 209.56 | 30.87 | 156 | - | 120 |
GRPC-W3 | 873 | 261.90 | - | - | 301.15 | 702.06 | 203.28 | 30.56 | 234 | - | 138 |
GRPC-W4 | 864 | 259.20 | - | - | 289.10 | 673.97 | 195.15 | 30.26 | 312 | - | 140 |
Sample Type | First Crack Strength (MPa) | Flexural Strength (MPa) | Fracture Toughness (Nm) | Fracture Energy (Joule/m2) | Equivalent Flexural Str. (Mpa) |
---|---|---|---|---|---|
GRPC | 6.5 | 6.5 | 0.47 | 190.14 | 0.57 |
GRPC-E1 | 4.63 | 11.60 | 3.86 | 1555 | 4.64 |
GRPC-E2 | 8.7 | 12.64 | 4.02 | 1621 | 4.83 |
GRPC-E3 | 13.59 | 14.01 | 5.13 | 2066 | 6.17 |
GRPC-E4 | 17.13 | 18.36 | 6.9 | 2775 | 8.30 |
GRPC-W1 | 10.48 | 11.31 | 3.7 | 1495 | 4.45 |
GRPC-W2 | 13.87 | 14.3 | 4.66 | 1881 | 5.60 |
GRPC-W3 | 18.25 | 18.25 | 7.71 | 3100 | 9.27 |
GRPC-W4 | 18.78 | 20.38 | 8.43 | 3404 | 10.14 |
Fiber Ratio (%) | Cement (kg) | Silica Fume (kg) | Quartz Powder (kg) | Quartz Sand (kg) | Ferrochrome Slag (kg) | Olivine (kg) | Water (kg) | Superplasticizer (kg) | Steel Fiber (kg) | ELT Fiber (kg) | Total Cost (USD) |
---|---|---|---|---|---|---|---|---|---|---|---|
Unit Price (kg/USD) | |||||||||||
0.648 | 0.475 | 0.329 | 0.419 | 0.007 | 0.044 | 0.001 | 2.274 | 2.154 | 0.499 | ||
Ref. RPC | 900 | 270 | 278 | 516 | 0 | 0 | 225 | 27 | - | - | 1108.00 |
GRPC | 900 | 270 | 0 | 0 | 346.25 | 105.53 | 216 | 31.50 | - | - | 802.93 |
GRPC-E1 | 891 | 267.30 | 0 | 0 | 342.79 | 104.47 | 213.84 | 28.17 | 78 | - | 962.92 |
GRPC-E2 | 882 | 264.60 | 0 | 0 | 335.93 | 102.39 | 209.56 | 34.40 | 156 | - | 1122.02 |
GRPC-E3 | 873 | 261.90 | 0 | 0 | 325.85 | 99.31 | 203.28 | 35.20 | 234 | - | 1280.27 |
GRPC-E4 | 864 | 259.20 | 0 | 0 | 312.82 | 95.34 | 195.15 | 31.50 | 312 | - | 1437.74 |
GRPC-W1 | 891 | 267.30 | 0 | 0 | 342.79 | 104.47 | 213.84 | 28.17 | - | 78 | 826.95 |
GRPC-W2 | 882 | 264.60 | 0 | 0 | 335.93 | 102.39 | 209.56 | 34.40 | - | 156 | 872.51 |
GRPC-W3 | 873 | 261.90 | 0 | 0 | 325.85 | 99.31 | 203.28 | 35.20 | - | 234 | 905.55 |
GRPC-W4 | 864 | 259.20 | 0 | 0 | 312.82 | 95.34 | 195.15 | 31.50 | - | 312 | 928.18 |
Type | Compressive Strength (MPa) | Flexural Strength (MPa) | Compressive Strength Unit Cost (USD/MPa) | Flexural Strength Unit Cost (USD/MPa) |
---|---|---|---|---|
GRPC | 113 | 6.49 | 7.106 | 123.718 |
GRPC-E1 | 119 | 9.16 | 8.092 | 105.122 |
GRPC-E2 | 123 | 11.59 | 9.122 | 96.809 |
GRPC-E3 | 125 | 14,01 | 10.242 | 91.448 |
GRPC-E4 | 127 | 18.36 | 11.321 | 78.308 |
GRPC-W1 | 106 | 11.31 | 7.801 | 73.117 |
GRPC-W2 | 120 | 14.29 | 7.271 | 61.057 |
GRPC-W3 | 138 | 18.24 | 6.562 | 49.646 |
GRPC-W4 | 140 | 20.38 | 6.630 | 45.544 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Atlı, I.; Ipek, M. Investigation of the Mechanical Behaviors of Sustainable Green Reactive Powder Concrete Produced Using Ferrochrome Slag and Waste Fiber. Sustainability 2024, 16, 4714. https://doi.org/10.3390/su16114714
Atlı I, Ipek M. Investigation of the Mechanical Behaviors of Sustainable Green Reactive Powder Concrete Produced Using Ferrochrome Slag and Waste Fiber. Sustainability. 2024; 16(11):4714. https://doi.org/10.3390/su16114714
Chicago/Turabian StyleAtlı, Ibrahim, and Metin Ipek. 2024. "Investigation of the Mechanical Behaviors of Sustainable Green Reactive Powder Concrete Produced Using Ferrochrome Slag and Waste Fiber" Sustainability 16, no. 11: 4714. https://doi.org/10.3390/su16114714
APA StyleAtlı, I., & Ipek, M. (2024). Investigation of the Mechanical Behaviors of Sustainable Green Reactive Powder Concrete Produced Using Ferrochrome Slag and Waste Fiber. Sustainability, 16(11), 4714. https://doi.org/10.3390/su16114714