Ecophysiology of Soursop Seedlings Irrigated with Fish Farming Effluent under NPK Doses
Abstract
:1. Introduction
2. Materials and Methods
2.1. Location and Plant Material
2.2. Soil Characteristics and Fertilization
2.3. Irrigation Management
2.4. Growth and Phytomass
2.5. Leaf Nutrient Concentration
2.6. Leaf Gas Exchange and Chlorophyll a Fluorescence
2.7. Statistical Analysis
3. Results
3.1. Growth and Phytomass
3.2. Leaf Nutrient Concentration
3.3. Leaf Gas Exchange and Chlorophyll a Fluorescence
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sánchez, C.F.B.; Lopes, B.E.; Teodoro, P.E.; Garcia, A.D.P.; Peixoto, L.A.; Silva, L.A.; Bhering, L.L. Genetic diversity among soursop genotypes based on fruit production. Biosci. J. 2018, 34, 122–128. [Google Scholar] [CrossRef]
- São José, A.R.; Pires, M.M.; Freitas, A.; Ribeiro, D.P.; Perez, L.A.A. Atualidades e perspectivas das Anonáceas no mundo. Rev. Bras. Frutic. 2014, 36, 86–93. [Google Scholar] [CrossRef]
- Freitas, A.L.G.E.; Vilasboas, F.S.; Pires, M.M.; São José, A.R. Caracterização da Produção e do Mercado da Graviola (Annona muricata L.) no Estado da Bahia. Inform. Econ. 2013, 43, 23–34. Available online: http://www.iea.sp.gov.br/ftpiea/publicacoes/ie/2013/tec3-0613.pdf (accessed on 17 February 2020).
- Moghadamtousi, S.Z.; Fadaeinasab, M.; Nikzad, S.; Mohan, G.; Ali, H.M.; Kadir, H.A. Annona muricata (Annonaceae): A review of its traditional uses, isolated acetogenins and biological activities. Int. J. Mol. Sci. 2015, 16, 15625–15658. [Google Scholar] [CrossRef] [PubMed]
- Leite Neta, M.T.S.; Jesus, M.S.; Silva, J.L.A.; Araujo, H.C.S.; Sandes, R.D.D.; Shanmugam, S.; Narain, N. Effect of spray drying on bioactive and volatile compounds in soursop (Annona muricata) fruit pulp. Food Res. Int. 2019, 124, 70–77. [Google Scholar] [CrossRef] [PubMed]
- Cavalcante, L.F.; Carvalho, S.S.; Lima, E.M.; Feitosa Filho, J.C.; Silva, D.A. Desenvolvimento inicial da gravioleira sob fontes e níveis de salinidade da água. Rev. Bras. Frutic. 2001, 23, 455–459. [Google Scholar] [CrossRef]
- Nobre, R.G.; Fernandes, P.D.; Gheyi, H.R.; Santos, F.J.S.; Bezerra, I.L.; Gurgel, M.T. Germinação e formação de mudas enxertadas de gravioleira sob estresse salino. Pesqui. Agropecu. Bras. 2003, 38, 1365–1371. [Google Scholar] [CrossRef]
- Silva, E.M.; Lima, G.S.; Gheyi, H.R.; Nobre, R.G.; Sá, F.V.S.; Sousa, L.P. Growth and gas exchanges in soursop under irrigation with saline water and nitrogen sources. Rev. Bras. Eng. Agríc. Ambient. 2018, 22, 776–781. [Google Scholar] [CrossRef]
- Dantas, B.F.; Ribeiro, R.C.; Oliveira, G.M.; Silva, F.F.S.; Araújo, G.G.L. Produção biossalina de mudas de espécies florestais nativas da Caatinga. Ciênc. Florest. 2019, 29, 1551–1567. [Google Scholar] [CrossRef]
- Silva, J.S.; Sá, F.V.S.; Dias, N.S.; Ferreira-Neto, M.; Jales, G.D.; Fernandes, P.D. Morphophysiology of mini watermelon in hydroponic cultivation using wastewater brine and substrates. Rev. Bras. Eng. Agríc. Ambient. 2021, 25, 402–408. [Google Scholar] [CrossRef]
- Guidi, L.; Piccolo, E.L.; Landi, M. Chlorophyll fluorescence, photoinhibition and abiotic stress: Does it make any difference the fact to be a C3 or C4 species? Front. Plant Sci. 2019, 10, 174. [Google Scholar] [CrossRef]
- Munns, R.; Day, D.A.; Fricke, W.; Watt, M.; Arsova, B.; Barkla, B.J.; Bose, J.; Byrt, C.S.; Chen, Z.; Foster, K.J.; et al. Energy costs of salt tolerance in crop plants. New Phytol. 2020, 225, 1072–1090. [Google Scholar] [CrossRef] [PubMed]
- Passos, V.M.; Santana, N.O.; Gama, F.C.; Oliveira, J.G.; Azevedo, R.A.; Vitória, A.P. Growth and ion uptake in Annona muricata and A. squamosa subjected to salt stress. Biol. Plant. 2005, 49, 285–288. [Google Scholar] [CrossRef]
- Veloso, L.L.S.A.; Nobre, R.G.; Souza, L.P.; Gheyi, H.R.; Cavalcante, I.T.S.; Araujo, E.B.G.; Silva, W.L. Formation of soursop seedlings irrigated using waters with different salinity levels and nitrogen fertilization. Biosci. J. 2018, 34, 151–160. [Google Scholar] [CrossRef]
- BRASIL Ministério da Agricultura, Pecuária e Abastecimento. Regras Para Análise de Sementes; SDA/ACS: Brasília, Brazil, 2009. Available online: https://www.gov.br/agricultura/pt-br/assuntos/insumos-agropecuarios/arquivos-publicacoes-insumos/2946_regras_analise__sementes.pdf (accessed on 15 February 2020).
- USDA—United States Department of Agriculture. Soil Survey Staff. In Keys to Soil Taxonomy, 12th ed.; NRCS: Lincoln, NE, USA, 2014. [Google Scholar]
- EMBRAPA—Empresa Brasileira de Pesquisa Agropecuária. Sistema Brasileiro de Classificação de Solos, 5th ed.; Embrapa informação Tecnológica: Brasília, Brazil, 2018. [Google Scholar]
- EMBRAPA—Empresa Brasileira de Pesquisa Agropecuária. Manual de Análises Químicas de Solos, Plantas e Fertilizantes, 2nd ed.; Embrapa informação Tecnológica: Brasília, Brazil, 2009. [Google Scholar]
- Novais, R.F.; Neves, J.C.L.; Barros, N.F. Ensaio em ambiente controlado. In Métodos de Pesquisa em Fertilidade do Solo; Oliveira, A.J., Garrido, W.E., Araújo, J.D., Lourenço, S., Eds.; Embrapa-SEA: Brasília, Brazil, 1991; pp. 189–254. [Google Scholar]
- Ayers, R.S.; Westcot, D.W. Water Quality for Agriculture; Irrigation and Drainage Paper 29, Revision 1; FAO: Rome, Italy, 1994. [Google Scholar]
- Sá, F.V.S.; Gheyi, H.R.; Lima, G.S.; Pinheiro, F.W.A.; Paiva, E.P.; Moreira, R.C.L.; Silva, L.A.; Fernandes, P.D. The right combination of N-P-K fertilization may mitigate salt stress in custard apple (Annona squamosa L.). Acta Physiol. Plant. 2021, 43, 59. [Google Scholar] [CrossRef]
- Oxborough, K.; Baker, N.R. An instrument capable of imaging chlorophyll a fluorescence from leaves at very low irradiance and at cellular and subcellular levels of organization. Plant Cell Environ. 1997, 20, 1473–1483. [Google Scholar] [CrossRef]
- Kramer, D.M.; Johnson, G.; Kiirats, O.; Edwads, G.E. New fluorescence parameters for the determination of QA redox state and excitation energy fluxes. Photosynth. Res. 2004, 79, 209–218. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, D.F. Sisvar: A computer analysis system to fixed effects split plot type designs. Rev. Bras. Biom. 2019, 37, 529–535. [Google Scholar] [CrossRef]
- Wan, Q.; Hongbo, S.; Zhaolong, X.; Jia, L.; Dayong, Z.; Yihong, H. Salinity tolerance mechanism of osmotin and osmotin-like proteins: A promising candidate for enhancing plant salt tolerance. Curr. Genom. 2017, 18, 553–556. [Google Scholar] [CrossRef]
- Oliveira, F.A.; Medeiros, J.F.; Oliveira, M.K.T.; Souza, A.A.T.; Ferreira, J.A.; Souza, M.S. Interação entre salinidade e bioestimulante na cultura do feijão caupi. Rev. Bras. Eng. Agríc. Ambient. 2013, 17, 465–471. [Google Scholar] [CrossRef]
- Volkov, V.; Beilby, M.J. Salinity tolerance in plants: Mechanisms and regulation of ion transport. Front. Plant Sci. 2017, 8, 1795. [Google Scholar] [CrossRef]
- Liang, W.; Ma, X.; Wan, P.; Liu, L. Plant salt-tolerance mechanism: A review. Biochem. Biophys. Res. Commun. 2018, 495, 286–291. [Google Scholar] [CrossRef] [PubMed]
- Andrade, F.H.A.; Pereira, W.E.; Morais, R.R.; Silva, A.F.; Barbosa Neto, M.A. Effect of phosphorus application on substrate and use of saline water in sugar-apple seedlings. Pesqui. Agropecu. 2018, 48, 190–199. [Google Scholar] [CrossRef]
- Zelm, V.E.; Zhang, Y.; Testerink, C. Salt tolerance mechanisms of plants. Annu. Rev. Plant Biol. 2020, 71, 403–433. [Google Scholar] [CrossRef] [PubMed]
- Magney, T.S.; Barnes, M.L.; Yang, X. On the covariation of chlorophyll fluorescence and photosynthesis across scales. Geophys. Res. Lett. 2020, 47, e2020GL091098. [Google Scholar] [CrossRef]
- Capitulino, J.D.; Lima, G.S.; Azevedo, C.A.V.; Silva, A.A.R.; Arruda, T.F.L.; Soares, L.A.A.; Fatima, R.T.; Paiva, F.J.S.; Gheyi, H.R.; Souza, A.R. Mineral composition and physiology of soursop under salt stress and application of hydrogen peroxide. Semina. Ciênc. Agrár. 2024, 45, 555–578. [Google Scholar] [CrossRef]
pH | OM | P | K+ | Na+ | Ca2+ | Mg2+ | Al3+ | H + Al | CEC | BS | ESP |
(%) | ----- (mg dm−3) ----- | -------------------- (cmolc dm−3) -------------------- | --- % --- | ||||||||
5.3 | 1.7 | 2.1 | 54.2 | 21.6 | 2.7 | 0.9 | 0.0 | 1.8 | 5.6 | 68 | 2.0 |
ECse dS m−1 | SD kg dm−3 | Sand | Silt | Clay | |||||||
---------------------------- (g kg−1) -------------------------------------------- | |||||||||||
0.1 | 1.6 | 820 | 30 | 150 |
N | Ca | S | B | Cu | Mn | Mo | Zn− | OC |
------------------------------------------------- g L−1 -------------------------------------------------- | % | |||||||
73.50 | 14.70 | 78.63 | 14.17 | 0.74 | 73.50 | 1.47 | 73.50 | 2.45 |
Parameters | Supply Water | Fish Farming Effluent |
---|---|---|
Potential hydrogen (pH) | 7.8 | 8.2 |
Electrical conductivity (dS m−1) | 0.5 | 3.5 |
Nitrogen (mg L−1) | 0.1 | 0.3 |
Phosphorus (mg L−1) | 0.1 | 0.8 |
Potassium (mmolc L−1) | 0.3 | 0.7 |
Sodium (mmolc L−1) | 6.6 | 16.3 |
Calcium (mmolc L−1) | 0.3 | 8.9 |
Magnesium (mmolc L−1) | 1.1 | 12.2 |
Chloride (mmolc L−1) | 2.6 | 22.6 |
Carbonate (mmolc L−1) | 0.2 | 1.2 |
Bicarbonate (mmolc L−1) | 2.8 | 3.4 |
Sodium adsorption ratio (mmolc L−1)0.5 | 7.9 | 5.2 |
Chemical oxygen demand (mg L−1) | - | 10.0 |
Biochemical oxygen demand (mg L−1) | - | 135 |
Suspended solids (mg L−1) | - | 5.6 |
Total solids (mg L−1) | - | 31.3 |
Turbidity (NTU) | 2.85 | 30.9 |
Fertilizer Recommendation of NPK (%) | ECse (dS m−1) | pHse | ||
---|---|---|---|---|
SW | FFE | SW | FFE | |
25 | 1.2 | 5.1 | 7.2 | 6.7 |
50 | 2.5 | 3.8 | 6.8 | 7.1 |
75 | 3.3 | 4.6 | 5.8 | 6.7 |
100 | 4.2 | 5.6 | 6.0 | 6.3 |
125 | 4.8 | 6.1 | 5.2 | 6.3 |
F Test (Pr > Fc) | ||||||
Variation Sources | PH | SD | NL | RL | SDM | RDM |
Block | 0.3604 | 0.2058 | 0.1644 | 0.7476 | 0.4827 | 0.4473 |
Water | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
NPK Doses | 0.0000 | 0.0130 | 0.0003 | 0.0000 | 0.0000 | 0.0002 |
Water × NPK Doses | 0.0002 | 0.0188 | 0.0005 | 0.0001 | 0.0017 | 0.2370 |
Student’s t-test (p < 0.05) | ||||||
Treatments | PH | SD | NL | RL | SDM | RDM |
Supply Water | 27.75 a | 4.13 a | 12.60 a | 21.21 a | 1.67 a | 0.55 a |
Fish Farming Effluent | 19.75 b | 3.56 b | 9.35 b | 17.51 b | 0.76 b | 0.26 b |
F Test (Pr > Fc) | |||||
Variation Sources | N | P | K+ | Na+ | Na+/K+ |
Block | 0.3976 | 0.7942 | 0.5030 | 0.1588 | 0.9998 |
Water | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
NPK Doses | 0.0001 | 0.0062 | 0.0000 | 0.0000 | 0.0000 |
Water × NPK Doses | 0.0102 | 0.0175 | 0.0001 | 0.1405 | 0.0000 |
Student’s t-test (p < 0.05) | |||||
Treatments | N | P | K+ | Na+ | Na+/K+ |
Supply Water | 45.65 a | 6.74 a | 34.61 a | 9.52 a | 0.29 b |
Fish Farming Effluent | 22.60 b | 2.66 b | 15.36 b | 6.66 b | 0.44 a |
F Test (Pr > Fc) | ||||
Variation Sources | AN | gs | E | Fv/FM |
Block | 0.2686 | 0.0336 | 0.0896 | 0.3842 |
Water | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
NPK Doses | 0.0064 | 0.0002 | 0.0008 | 0.2235 |
Water × NPK Doses | 0.0247 | 0.0077 | 0.0019 | 0.7459 |
Student’s t-test (p < 0.05) | ||||
Treatments | AN | gs | E | Fv/FM |
Supply Water | 5.56 a | 0.060 a | 1.84 a | 0.722 a |
Fish Farming Effluent | 3.26 b | 0.028 b | 1.04 b | 0.683 b |
F Test (Pr > Fc) | ||||||
Variation Sources | Y | ETR | Fo’ | qL | YNPQ | YNO |
Block | 0.1561 | 0.0719 | 0.2490 | 0.3189 | 0.1344 | 0.9227 |
Water | 0.4889 | 0.0211 | 0.1298 | 0.6304 | 0.6688 | 0.0537 |
NPK Doses | 0.0187 | 0.3526 | 0.0833 | 0.5270 | 0.0178 | 0.3396 |
Water × NPK Doses | 0.1574 | 0.0353 | 0.0551 | 0.0044 | 0.1789 | 0.0139 |
Student’s t-test (p < 0.05) | ||||||
Treatments | Y | ETR | Fo’ | qL | YNPQ | YNO |
Supply Water | 0.454 a | 47.28 a | 3.68 a | 0.008 a | 0.469 a | 0.075 a |
Fish Farming Effluent | 0.431 a | 36.26 b | 4.22 a | 0.009 a | 0.483 a | 0.085 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
da Silva Sá, F.V.; Torres, S.B.; Oliveira, F.d.C.d.; Santos, A.S.d.; Souza, A.A.T.; Pereira, K.T.O.; Peixoto, T.D.C.; de Andrade Silva, L.; Moreira, R.C.L.; Paiva, E.P.d.; et al. Ecophysiology of Soursop Seedlings Irrigated with Fish Farming Effluent under NPK Doses. Sustainability 2024, 16, 4674. https://doi.org/10.3390/su16114674
da Silva Sá FV, Torres SB, Oliveira FdCd, Santos ASd, Souza AAT, Pereira KTO, Peixoto TDC, de Andrade Silva L, Moreira RCL, Paiva EPd, et al. Ecophysiology of Soursop Seedlings Irrigated with Fish Farming Effluent under NPK Doses. Sustainability. 2024; 16(11):4674. https://doi.org/10.3390/su16114674
Chicago/Turabian Styleda Silva Sá, Francisco Vanies, Salvador Barros Torres, Francisca das Chagas de Oliveira, Antônio Sávio dos Santos, Antônia Adailha Torres Souza, Kleane Targino Oliveira Pereira, Tayd Dayvison Custódio Peixoto, Luderlândio de Andrade Silva, Rômulo Carantino Lucena Moreira, Emanoela Pereira de Paiva, and et al. 2024. "Ecophysiology of Soursop Seedlings Irrigated with Fish Farming Effluent under NPK Doses" Sustainability 16, no. 11: 4674. https://doi.org/10.3390/su16114674
APA Styleda Silva Sá, F. V., Torres, S. B., Oliveira, F. d. C. d., Santos, A. S. d., Souza, A. A. T., Pereira, K. T. O., Peixoto, T. D. C., de Andrade Silva, L., Moreira, R. C. L., Paiva, E. P. d., Almeida, H. A. d., Melo, A. S. d., Ferreira Neto, M., Fernandes, P. D., & Dias, N. d. S. (2024). Ecophysiology of Soursop Seedlings Irrigated with Fish Farming Effluent under NPK Doses. Sustainability, 16(11), 4674. https://doi.org/10.3390/su16114674