Sustainability Indicators for Dairy Cattle Farms in European Union Countries: A Systematic Literature Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. Review Process
- -
- English was not the primary language (n = 33);
- -
- The record was not a journal or an article (gray literature: dissertations, conference proceedings and reports, etc.; n = 140);
- -
- The study was conducted in the United Kingdom after 2020 (n = 10).
2.2. Indicator Selection and Aggregation
3. Results
Sustainability Indicators
4. Discussion
4.1. Environmental Indicators
4.2. Economic Indicators
4.3. Social Indicators
4.4. Sustainability Indicators
4.4.1. Two-Pillar Indicators
4.4.2. Three-Pillar Indicators
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- European Commission. Directorate General for Agriculture and Rural Development. In EU Agricultural Outlook for Markets, Income and Environment 2022–2032; European Commission, 2022; Available online: https://agriculture.ec.europa.eu/system/files/2023-04/agricultural-outlook-2022-report_en_0.pdf (accessed on 9 May 2024).
- Autio, M.; Sekki, S.; Autio, J.; Peltonen, K.; Niva, M. Towards De-Dairyfication of the Diet?—Consumers Downshifting Milk, yet Justifying Their Dairy Pleasures. Front. Sustain. 2023, 4, 975679. [Google Scholar] [CrossRef]
- Heise, H.; Theuvsen, L. German Dairy Farmers’ Attitudes toward Farm Animal Welfare and Their Willingness to Participate in Animal Welfare Programs: A Cluster Analysis. Int. Food Agribus. Manag. Rev. 2018, 21, 1121–1136. [Google Scholar] [CrossRef]
- Staffolani, G.; Bentivoglio, D.; Finco, A. Consumers’ Purchasing Determinants towards Mountain Food Products. Sustainability 2022, 14, 8282. [Google Scholar] [CrossRef]
- Duglio, S.; Salotti, G.; Mascadri, G. Conditions for Operating in Marginal Mountain Areas: The Local Farmer’s Perspective. Societies 2023, 13, 107. [Google Scholar] [CrossRef]
- Pawlewicz, A.; Pawlewicz, K. The Risk of Agricultural Land Abandonment as a Socioeconomic Challenge for the Development of Agriculture in the European Union. Sustainability 2023, 15, 3233. [Google Scholar] [CrossRef]
- Fayet, C.M.J.; Reilly, K.H.; Van Ham, C.; Verburg, P.H. What Is the Future of Abandoned Agricultural Lands? A Systematic Review of Alternative Trajectories in Europe. Land Use Policy 2022, 112, 105833. [Google Scholar] [CrossRef]
- Battaglini, L.; Bovolenta, S.; Gusmeroli, F.; Salvador, S.; Sturaro, E. Environmental Sustainability of Alpine Livestock Farms. Ital. J. Anim. Sci. 2014, 13, 431–443. [Google Scholar] [CrossRef]
- Latruffe, L.; Niedermayr, A.; Desjeux, Y.; Dakpo, K.H.; Ayouba, K.; Schaller, L.; Kantelhardt, J.; Jin, Y.; Kilcline, K.; Ryan, M.; et al. Identifying and Assessing Intensive and Extensive Technologies in European Dairy Farming. Eur. Rev. Agric. Econ. 2023, 50, 1482–1519. [Google Scholar] [CrossRef]
- Clay, N.; Garnett, T.; Lorimer, J. Dairy Intensification: Drivers, Impacts and Alternatives. Ambio 2020, 95, 35–48. [Google Scholar] [CrossRef]
- European Commission. A Long-Term Vision for the EU’s Rural Areas—Towards Stronger, Connected, Resilient and Prosperous Rural Areas by 2040. Available online: https://www.fao.org/family-farming/detail/en/c/1414177/ (accessed on 28 March 2024).
- Masi, M.; Vecchio, Y.; Pauselli, G.; Di Pasquale, J.; Adinolfi, F. A Typological Classification for Assessing Farm Sustainability in the Italian Bovine Dairy Sector. Sustainability 2021, 13, 7097. [Google Scholar] [CrossRef]
- Cardillo, C.; Cimino, O.; De Rosa, M.; Francescone, M. The Evolution of Multifunctional Agriculture in Italy. Sustainability 2023, 15, 11403. [Google Scholar] [CrossRef]
- Koutouzidou, G.; Ragkos, A.; Melfou, K. Evolution of the Structure and Economic Management of the Dairy Cow Sector. Sustainability 2022, 14, 11602. [Google Scholar] [CrossRef]
- McGarr-O’Brien, K.; Herron, J.; Shalloo, L.; De Boer, I.J.M.; De Olde, E.M. Characterising Sustainability Certification Standards in Dairy Production. Animal 2023, 17, 100863. [Google Scholar] [CrossRef]
- Nguyen, T.T.T.; Richardson, C.M.; Post, M.; Amer, P.R.; Nieuwhof, G.J.; Thurn, P.; Shaffer, M. The Sustainability Index: A New Tool to Breed for Reduced Greenhouse-Gas Emissions Intensity in Australian Dairy Cattle. Anim. Prod. Sci. 2023, 63, 1126–1135. [Google Scholar] [CrossRef]
- Hassani, L.; Kakhki, M.D.; Sabouni, M.S.; Fantke, P. Quantitative Sustainability Assessment Applied to Dairy Farms. In Perspectives on Development in the Middle East and North Africa (MENA) Region; Springer: Singapore, 2020; pp. 11–20. [Google Scholar] [CrossRef]
- De Otálora, X.D.; Del Prado, A.; Dragoni, F.; Estellés, F.; Amon, B. Evaluating Three-Pillar Sustainability Modelling Approaches for Dairy Cattle Production Systems. Sustainability 2021, 13, 6332. [Google Scholar] [CrossRef]
- Rios, G.P.; Botero, S. An Integrated Indicator to Analyze Sustainability in Specialized Dairy Farms in Antioquia—Colombia. Sustainability 2020, 12, 9595. [Google Scholar] [CrossRef]
- Zira, S.; Röös, E.; Rydhmer, L.; Hoffmann, R. Sustainability Assessment of Economic, Environmental and Social Impacts, Feed-Food Competition and Economic Robustness of Dairy and Beef Farming Systems in South Western Europe. Sustain. Prod. Consum. 2023, 36, 439–448. [Google Scholar] [CrossRef]
- Brennan, M.; Hennessy, T.; Dillon, E. Embedding Animal Welfare in Sustainability Assessment: An Indicator Approach. Ir. J. Agric. Food Res. 2021, 60, 129–141. [Google Scholar] [CrossRef]
- SAFA (Sustainability Assessment of Food and Agriculture Systems). Tool: User Manual Version 2.2.40. Available online: https://openknowledge.fao.org/handle/20.500.14283/i3957e (accessed on 9 May 2024).
- Strozzilaan, B.; Amsterdam, H. GRI Sector Standard Project Agriculture; Aquaculture and Fishing; GRI: Amsterdam, The Netherlands, 2022; ISBN 978-90-8866-138-9. [Google Scholar]
- Baillet, V.; Balaine, L.; Díaz De Otálora, X.; Rodriguez, D.G.P.; Frątczak-Müller, J.; Flø, B.E.; Amon, B.; Alem, H.; Anestis, V.; Bartzanas, T.; et al. Dexi-Dairy Indicator Handbook—Sustainability Tree and Selected Indicators for Assessing European Specialised Dairy Farms; 2022. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 Statement: An Updated Guideline for Reporting Systematic Reviews. J. Clin. Epidemiol. 2021, 134, 178–189. [Google Scholar] [CrossRef]
- Arvidsson Segerkvist, K.; Hansson, H.; Sonesson, U.; Gunnarsson, S. Research on Environmental, Economic, and Social Sustainability in Dairy Farming: A Systematic Mapping of Current Literature. Sustainability 2020, 12, 5502. [Google Scholar] [CrossRef]
- Dieterich, B.; Finnan, J.; Hochstrasser, T.; Müller, C. The Greenhouse Gas Balance of a Dairy Farm as Influenced by the Uptake of Biogas Production. Bioenergy Res. 2014, 7, 95–109. [Google Scholar] [CrossRef]
- Karandušovská, I.; Mihina, Š.; Bošanský, M. Impact of Construction and Technological Solution of Dairy Cows Housing on Production of Ammonia and Greenhouse Gases in Winter. Res. Agric. Eng. 2015, 61, S13–S20. [Google Scholar] [CrossRef]
- Martin, G.; Willaume, M. A Diachronic Study of Greenhouse Gas Emissions of French Dairy Farms According to Adaptation Pathways. Agric. Ecosyst. Environ. 2016, 221, 50–59. [Google Scholar] [CrossRef]
- Bonazzi, G.; Iotti, M. Interest Coverage Ratios (ICRs) and Financial Sustainability: Application to Firms with Bovine Dairy Livestock. Am. J. Agric. Biol. Sci. 2014, 9, 482–489. [Google Scholar] [CrossRef]
- Meul, M.; Van Middelaar, C.E.; de Boer, I.J.M.; Van Passel, S.; Fremaut, D.; Haesaert, G. Potential of Life Cycle Assessment to Support Environmental Decision Making at Commercial Dairy Farms. Agric. Syst. 2014, 131, 105–115. [Google Scholar] [CrossRef]
- Mihailescu, E.; Ryan, W.; Murphy, P.N.C.; Casey, I.A.; Humphreys, J. Economic Impacts of Nitrogen and Phosphorus Use Efficiency on Nineteen Intensive Grass-Based Dairy Farms in the South of Ireland. Agric. Syst. 2015, 132, 121–132. [Google Scholar] [CrossRef]
- Sabia, E.; Kühl, S.; Flach, L.; Lambertz, C.; Gauly, M. Effect of Feed Concentrate Intake on the Environmental Impact of Dairy Cows in an Alpine Mountain Region Including Soil Carbon Sequestration and Effect on Biodiversity. Sustainability 2020, 12, 2128. [Google Scholar] [CrossRef]
- Egger-Danner, C.; Köck, A.; Fuchs, K.; Grassauer, B.; Fuerst-Waltl, B.; Obritzhauser, W. Use of Benchmarking to Monitor and Analyze Effects of Herd Size and Herd Milk Yield on Cattle Health and Welfare in Austrian Dairy Farms. J. Dairy Sci. 2020, 103, 7598–7610. [Google Scholar] [CrossRef] [PubMed]
- Ramin, M.; Fant, P.; Huhtanen, P. The Effects of Gradual Replacement of Barley with Oats on Enteric Methane Emissions, Rumen Fermentation, Milk Production, and Energy Utilization in Dairy Cows. J. Dairy Sci. 2021, 104, 5617–5630. [Google Scholar] [CrossRef]
- García-Souto, V.; Foray, S.; Lorenzana, R.; Veiga-López, M.; Pereira-Crespo, S.; González-González, L.; Flores-Calvete, G.; Báez, D.; Botana, A.; Resch-Zafra, C. Assessment of Greenhouse Gas Emissions in Dairy Cows Fed with Five Forage Systems. Ital. J. Anim. Sci. 2022, 21, 378–389. [Google Scholar] [CrossRef]
- Zanni, S.; Roccaro, M.; Bocedi, F.; Peli, A.; Bonoli, A. LCA to Estimate the Environmental Impact of Dairy Farms: A Case Study. Sustainability 2022, 14, 6028. [Google Scholar] [CrossRef]
- Oenema, J.; Oenema, O. Intensification of Grassland-Based Dairy Production and Its Impacts on Land, Nitrogen and Phosphorus Use Efficiencies. Front. Agric. Sci. Eng. 2021, 8, 130–147. [Google Scholar] [CrossRef]
- Linderholm, K.; Katterer, T.; Mattsson, J.E. Valuing Carbon Capture in Agricultural Production: Examples from Sweden. SN Appl. Sci. 2020, 2, 1264. [Google Scholar] [CrossRef]
- Bannink, A.; Zom, R.L.G.; Groenestein, K.C.; Dijkstra, J.; Sebek, L.B.J. Applying a Mechanistic Fermentation and Digestion Model for Dairy Cows with Emission and Nutrient Cycling Inventory and Accounting Methodology. Animal 2020, 14, s406–s416. [Google Scholar] [CrossRef] [PubMed]
- Pérez Urdiales, M.; Lansink, A.O.; Wall, A. Eco-Efficiency Among Dairy Farmers: The Importance of Socio-Economic Characteristics and Farmer Attitudes. Environ. Resour. Econ. 2016, 64, 559–574. [Google Scholar] [CrossRef]
- Hansson, H.; Lagerkvist, C.J. Decision Making for Animal Health and Welfare: Integrating Risk-Benefit Analysis with Prospect Theory. Risk Anal. 2014, 34, 1149–1159. [Google Scholar] [CrossRef]
- Salvador, S.; Corazzin, M.; Piasentier, E.; Bovolenta, S. Environmental Assessment of Small-Scale Dairy Farms with Multifunctionality in Mountain Areas. J. Clean. Prod. 2016, 124, 94–102. [Google Scholar] [CrossRef]
- Brennan, M.L.; Wright, N.; Wapenaar, W.; Jarratt, S.; Hobson-West, P.; Richens, I.F.; Kaler, J.; Buchanan, H.; Huxley, J.N.; O’Connor, H.M. Exploring Attitudes and Beliefs towards Implementing Cattle Disease Prevention and Control Measures: A Qualitative Study with Dairy Farmers in Great Britain. Animals 2016, 6, 61. [Google Scholar] [CrossRef]
- Chiumenti, A.; Da Borso, F.; Pezzuolo, A.; Sartori, L.; Chiumenti, R. Ammonia and Greenhouse Gas Emissions from Slatted Dairy Barn Floors Cleaned by Robotic Scrapers. Res. Agric. Eng. 2018, 64, 26–33. [Google Scholar] [CrossRef]
- Todde, G.; Murgia, L.; Caria, M.; Pazzona, A. A Comprehensive Energy Analysis and Related Carbon Footprint of Dairy Farms, Part 1: Direct Energy Requirements. Energies 2018, 11, 451. [Google Scholar] [CrossRef]
- Schueler, M.; Paulsen, H.M.; Berg, W.; Prochnow, A. Accounting for Inter-Annual Variability of Farm Activity Data for Calculation of Greenhouse Gas Emissions in Dairy Farming. Int. J. Life Cycle Assess. 2018, 23, 41–54. [Google Scholar] [CrossRef]
- Karlsson, J.; Ramin, M.; Kass, M.; Lindberg, M.; Holtenius, K. Effects of Replacing Wheat Starch with Glycerol on Methane Emissions, Milk Production, and Feed Efficiency in Dairy Cows Fed Grass Silage-Based Diets. J. Dairy Sci. 2019, 102, 7927–7935. [Google Scholar] [CrossRef] [PubMed]
- Frank, H.; Schmid, H.; Hülsbergen, K.-J. Modelling Greenhouse Gas Emissions from Organic and Conventional Dairy Farms. Landbauforschung 2019, 69, 37–46. [Google Scholar] [CrossRef]
- Lovarelli, D.; Bava, L.; Zucali, M.; D’Imporzano, G.; Adani, F.; Tamburini, A.; Sandrucci, A. Improvements to Dairy Farms for Environmental Sustainability in Grana Padano and Parmigiano Reggiano Production Systems. Ital. J. Anim. Sci. 2019, 18, 1035–1048. [Google Scholar] [CrossRef]
- Ibidhi, R.; Calsamiglia, S. Carbon Footprint Assessment of Spanish Dairy Cattle Farms: Effectiveness of Dietary and Farm Management Practices as a Mitigation Strategy. Animals 2020, 10, 2083. [Google Scholar] [CrossRef]
- Kühl, S.; Flach, L.; Gauly, M. Economic Assessment of Small-Scale Mountain Dairy Farms in South Tyrol Depending on Feed Intake and Breed. Ital. J. Anim. Sci. 2020, 19, 41–50. [Google Scholar] [CrossRef]
- Nowakowicz-Debek, B.; Wlazło, L.; Szymula, A.; Ossowski, M.; Kasela, M.; Chmielowiec-Korzeniowska, A.; Bis-Wencel, H. Estimating Methane Emissions from a Dairy Farm Using a Computer Program. Atmosphere 2020, 11, 803. [Google Scholar] [CrossRef]
- Grossi, S.; Compiani, R.; Rossi, L.; Dell’anno, M.; Castillo, I.; Sgoifo Rossi, C.A. Effect of Slow-Release Urea Administration on Production Performance, Health Status, Diet Digestibility, and Environmental Sustainability in Lactating Dairy Cows. Animals 2021, 11, 2405. [Google Scholar] [CrossRef] [PubMed]
- Jaklič, T.; Juvančič, L.; Kavčič, S.; Debeljak, M. Complementarity of Socio-Economic and Emergy Evaluation of Agricultural Production Systems: The Case of Slovenian Dairy Sector. Ecol. Econ. 2014, 107, 469–481. [Google Scholar] [CrossRef]
- Nicholas, P.K.; Mandolesi, S.; Naspetti, S.; Zanoli, R. Innovations in Low Input and Organic Dairy Supply Chains-What Is Acceptable in Europe? J. Dairy Sci. 2014, 97, 1157–1167. [Google Scholar] [CrossRef]
- Duluins, O.; Riera, A.; Schuster, M.; Baret, P.V.; Van den Broeck, G. Economic Implications of a Protein Transition: Evidence from Walloon Beef and Dairy Farms. Front. Sustain. Food Syst. 2022, 6, 803872. [Google Scholar] [CrossRef]
- Gaudino, S.; Reidsma, P.; Kanellopoulos, A.; Sacco, D.; van Ittersum, M.K. Integrated Assessment of the EU’s Greening Reform and Feed Self-Sufficiency Scenarios on Dairy Farms in Piemonte, Italy. Agriculture 2018, 8, 137. [Google Scholar] [CrossRef]
- O’brien, B.; Hennessy, D. Scientific Appraisal of the Irish Grass-Based Milk Production System as a Sustainable Source of Premium Quality Milk and Dairy Products. Ir. J. Agric. Food Res. 2017, 56, 120–129. [Google Scholar] [CrossRef]
- Senga Kiessé, T.; Heijungs, R.; Corson, M.S. Modeling Production Efficiency and Greenhouse Gas Objectives as a Function of Forage Production of Dairy Farms Using Copula Models. Environ. Model. Assess. 2022, 27, 413–424. [Google Scholar] [CrossRef]
- Zhu, L.; Lansink, A.O. Dynamic Sustainable Productivity Growth of Dutch Dairy Farming. PLoS ONE 2022, 17, e0264410. [Google Scholar] [CrossRef]
- van Eerdenburg, F.J.C.M.; Di Giacinto, A.M.; Hulsen, J.; Snel, B.; Stegeman, J.A. A New, Practical Animal Welfare Assessment for Dairy Farmers. Animals 2021, 11, 881. [Google Scholar] [CrossRef]
- Hansson, H.; Lagerkvist, C.J.; Azar, G. Use and Non-Use Values as Motivational Construct Dimensions for Farm Animal Welfare: Impacts on the Economic Outcome for the Farm. Animal 2018, 12, 2147–2155. [Google Scholar] [CrossRef]
- Hublin, A.; Schneider, D.R.; Džodan, J. Utilization of Biogas Produced by Anaerobic Digestion of Agro-Industrial Waste: Energy, Economic and Environmental Effects. Waste Manag. Res. 2014, 32, 626–633. [Google Scholar] [CrossRef]
- Owusu-Sekyere, E.; Hansson, H.; Telezhenko, E. Use and Non-Use Values to Explain Farmers’ Motivation for the Provision of Animal Welfare. Eur. Rev. Agric. Econ. 2022, 49, 499–525. [Google Scholar] [CrossRef]
- Hietala, S.; Smith, L.; Knudsen, M.T.; Kurppa, S.; Padel, S.; Hermansen, J.E. Carbon Footprints of Organic Dairying in Six European Countries—Real Farm Data Analysis. Org. Agric. 2015, 5, 91–100. [Google Scholar] [CrossRef]
- Agostini, A.; Battini, F.; Padella, M.; Giuntoli, J.; Baxter, D.; Marelli, L.; Amaducci, S. Economics of GHG Emissions Mitigation via Biogas Production from Sorghum, Maize and Dairy Farm Manure Digestion in the Po Valley. Biomass Bioenergy 2016, 89, 58–66. [Google Scholar] [CrossRef]
- de Graaf, S.; Vanhonacker, F.; Van Loo, E.J.; Bijttebier, J.; Lauwers, L.; Tuyttens, F.A.M.; Verbeke, W. Market Opportunities for Animal-Friendly Milk in Different Consumer Segments. Sustainability 2016, 8, 1302. [Google Scholar] [CrossRef]
- Van Dijk, L.; Elwes, S.; Main, D.C.J.; Mullan, S.M.; Jamieson, J. Farmer Perspectives on Welfare Outcome Assessment: Learnings from Four Farm Assurance Scheme Consultation Exercises. Anim. Welf. 2018, 27, 1–11. [Google Scholar] [CrossRef]
- Mostert, P.F.; van Middelaar, C.E.; de Boer, I.J.M.; Bokkers, E.A.M. The Impact of Foot Lesions in Dairy Cows on Greenhouse Gas Emissions of Milk Production. Agric. Syst. 2018, 167, 206–212. [Google Scholar] [CrossRef]
- Jaeger, M.; Brügemann, K.; Brandt, H.; König, S. Associations between Precision Sensor Data with Productivity, Health and Welfare Indicator Traits in Native Black and White Dual-Purpose Cattle under Grazing Conditions. Appl. Anim. Behav. Sci. 2019, 212, 9–18. [Google Scholar] [CrossRef]
- Hansson, H.; Lagerkvist, C.J.; Vesala, K.M. Impact of Personal Values and Personality on Motivational Factors for Farmers to Work with Farm Animal Welfare: A Case of Swedish Dairy Farmers. Anim. Welf. 2018, 27, 133–145. [Google Scholar] [CrossRef]
- Krieger, M.; Jones, P.J.; Blanco-Penedo, I.; Duval, J.E.; Emanuelson, U.; Hoischen-Taubner, S.; Sjöström, K.; Sundrum, A. Improving Animal Health on Organic Dairy Farms: Stakeholder Views on Policy Options. Sustainability 2020, 12, 3001. [Google Scholar] [CrossRef]
- Cárdenas, A.; Ammon, C.; Schumacher, B.; Stinner, W.; Herrmann, C.; Schneider, M.; Weinrich, S.; Fischer, P.; Amon, T.; Amon, B. Methane Emissions from the Storage of Liquid Dairy Manure: Influences of Season, Temperature and Storage Duration. Waste Manag. 2021, 121, 393–402. [Google Scholar] [CrossRef] [PubMed]
- Spigarelli, C.; Berton, M.; Corazzin, M.; Gallo, L.; Pinterits, S.; Ramanzin, M.; Ressi, W.; Sturaro, E.; Zuliani, A.; Bovolenta, S. Animal Welfare and Farmers’ Satisfaction in Small-Scale Dairy Farms in the Eastern Alps: A “One Welfare” Approach. Front. Vet. Sci. 2021, 8, 741497. [Google Scholar] [CrossRef]
- Crossley, R.E.; Bokkers, E.A.M.; Browne, N.; Sugrue, K.; Kennedy, E.; De Boer, I.J.M.; Conneely, M. Assessing Dairy Cow Welfare during the Grazing and Housing Periods on Spring-Calving, Pasture-Based Dairy Farms. J. Anim. Sci. 2021, 99, skab093. [Google Scholar] [CrossRef]
- Mogensen, L.; Kudahl, A.; Kristensen, T.; Bokkers, E.A.M.; Webb, L.E.; Vaarst, M.; Lehmann, J. Environmental Impact of Dam-Calf Contact in Organic Dairy Systems: A Scenario Study. Livest. Sci. 2022, 258, 104890. [Google Scholar] [CrossRef]
- Almeida, J.G.R.; Lorinquer, E.; Robin, P.; Ribeiro-filho, H.M.N.; Edouard, N. Ammonia and Nitrous Oxide Emissions from Dairy Cows on Straw-Based Litter Systems. Atmosphere 2022, 13, 283. [Google Scholar] [CrossRef]
- van Middelaar, C.E.; Berentsen, P.B.M.; Dijkstra, J.; van Arendonk, J.A.M.; de Boer, I.J.M. Methods to Determine the Relative Value of Genetic Traits in Dairy Cows to Reduce Greenhouse Gas Emissions along the Chain. J. Dairy Sci. 2014, 97, 5191–5205. [Google Scholar] [CrossRef] [PubMed]
- Brizga, J.; Kurppa, S.; Heusala, H. Environmental Impacts of Milking Cows in Latvia. Sustainability 2021, 13, 784. [Google Scholar] [CrossRef]
- Rajaniemi, M.; Jokiniemi, T.; Alakukku, L.; Ahokas, J. Electric Energy Consumption of Milking Process on Some Finnish Dairy Farms. Agric. Food Sci. 2017, 26, 160–172. [Google Scholar] [CrossRef]
- Knudsen, M.T.; Dorca-Preda, T.; Djomo, S.N.; Peña, N.; Padel, S.; Smith, L.G.; Zollitsch, W.; Hörtenhuber, S.; Hermansen, J.E. The Importance of Including Soil Carbon Changes, Ecotoxicity and Biodiversity Impacts in Environmental Life Cycle Assessments of Organic and Conventional Milk in Western Europe. J. Clean. Prod. 2019, 215, 433–443. [Google Scholar] [CrossRef]
- Karolinczak, B.; Dabrowski, W.; Żyłka, R. Evaluation of Dairy Wastewater Treatment Systems Using Carbon Footprint Analysis. Energies 2021, 14, 5366. [Google Scholar] [CrossRef]
- Lindberg, M.; Henriksson, M.; Bååth Jacobsson, S.; Berglund Lundberg, M. Byproduct-Based Concentrates in Swedish Dairy Cow Diets–Evaluation of Environmental Impact and Feed Costs. Acta Agric. Scand. Anim. Sci. 2021, 70, 132–144. [Google Scholar] [CrossRef]
- García-Cornejo, B.; Pérez-Méndez, J.A.; Roibás, D.; Wall, A. Effciency and Sustainability in Farm Diversification Initiatives in Northern Spain. Sustainability 2020, 12, 3983. [Google Scholar] [CrossRef]
- Ryan, M.; Hennessy, T.; Buckley, C.; Dillon, E.J.; Donnellan, T.; Hanrahan, K.; Moran, B. Developing Farm-Level Sustainability Indicators for Ireland Using the Teagasc National Farm Survey. Ir. J. Agric. Food Res. 2016, 55, 112–125. [Google Scholar] [CrossRef]
- López, N.M.; Sáenz, J.L.S.; Biedermann, A.; Tierz, A.S. Sustainability Assessment of Product-Service Systems Using Flows between Systems Approach. Sustainability 2020, 12, 3415. [Google Scholar] [CrossRef]
- Pereira, Á.; Carballo-Penela, A.; González-López, M.; Vence, X. A Case Study of Servicizing in the Farming-Livestock Sector: Organisational Change and Potential Environmental Improvement. J. Clean. Prod. 2016, 124, 84–93. [Google Scholar] [CrossRef]
- Styles, D.; Gibbons, J.; Williams, A.P.; Stichnothe, H.; Chadwick, D.R.; Healey, J.R. Cattle Feed or Bioenergy? Consequential Life Cycle Assessment of Biogas Feedstock Options on Dairy Farms. GCB Bioenergy 2015, 7, 1034–1049. [Google Scholar] [CrossRef]
- Moerkerken, A.; Duijndam, S.; Blasch, J.; van Beukering, P.; Smit, A. Determinants of Energy Efficiency in the Dutch Dairy Sector: Dilemmas for Sustainability. J. Clean. Prod. 2021, 293, 126095. [Google Scholar] [CrossRef]
- Špička, J.; Vintr, T.; Aulová, R.; Machácková, J. Trade-off between the Economic and Environmental Trade-off between the Economic and Environmental. Agric. Econ. Czech Repub. 2020, 66, 243–250. [Google Scholar] [CrossRef]
- O’Brien, D.; Brennan, P.; Humphreys, J.; Ruane, E.; Shalloo, L. An Appraisal of Carbon Footprint of Milk from Commercial Grass-Based Dairy Farms in Ireland According to a Certified Life Cycle Assessment Methodology. Int. J. Life Cycle Assess. 2014, 19, 1469–1481. [Google Scholar] [CrossRef]
- Farruggia, A.; Pomiès, D.; Coppa, M.; Ferlay, A.; Verdier-Metz, I.; Le Morvan, A.; Bethier, A.; Pompanon, F.; Troquier, O.; Martin, B. Animal Performances, Pasture Biodiversity and Dairy Product Quality: How It Works in Contrasted Mountain Grazing Systems. Agric. Ecosyst. Environ. 2014, 185, 231–244. [Google Scholar] [CrossRef]
- Gaudino, S.; Goia, I.; Grignani, C.; Monaco, S.; Sacco, D. Assessing Agro-Environmental Performance of Dairy Farms Innorthwest Italy Based on Aggregated Results from Indicators. J. Environ. Manag. 2014, 140, 120–134. [Google Scholar] [CrossRef] [PubMed]
- Andreasen, S.N.; Sandøe, P.; Forkman, B. Can Animal-Based Welfare Assessment Be Simplified? A Comparison of the Welfare Quality® Protocol for Dairy Cattle and the Simpler and Less Time-Consuming Protocol Developed by the Danish Cattle Federation. Anim. Welf. 2014, 23, 81–94. [Google Scholar] [CrossRef]
- Ross, S.A.; Chagunda, M.G.G.; Topp, C.F.E.; Ennos, R. Effect of Cattle Genotype and Feeding Regime on Greenhouse Gas Emissions Intensity in High Producing Dairy Cows. Livest. Sci. 2014, 170, 158–171. [Google Scholar] [CrossRef]
- Rong, L.; Liu, D.; Pedersen, E.F.; Zhang, G. Effect of Climate Parameters on Air Exchange Rate and Ammonia and Methane Emissions from a Hybrid Ventilated Dairy Cow Building. Energy Build. 2014, 82, 632–643. [Google Scholar] [CrossRef]
- Bos, J.F.F.P.; De Haan, J.; Sukkel, W.; Schils, R.L.M. Energy Use and Greenhouse Gas Emissions in Organic and Conventional Farming Systems in the Netherlands. NJAS—Wagening. J. Life Sci. 2014, 68, 61–70. [Google Scholar] [CrossRef]
- Torquati, B.; Venanzi, S.; Ciani, A.; Diotallevi, F.; Tamburi, V. Environmental Sustainability and Economic Benefits of Dairy Farm Biogas Energy Production: A Case Study in Umbria. Sustainability 2014, 6, 6696–6713. [Google Scholar] [CrossRef]
- Heath, C.; Lin, Y.; Mullan, S.; Browne, W.J.; Main, D. Implementing Welfare Quality® in UK Assurance Schemes: Evaluating the Challenges. Anim. Welf. 2014, 23, 95–107. [Google Scholar] [CrossRef]
- Ghisellini, P.; Protano, G.; Viglia, S.; Gaworski, M.; Setti, M.; Ulgiati, S. Integrated Agricultural and Dairy Production within a Circular Economy Framework. A Comparison of Italian and Polish Farming Systems. J. Environ. Account. Manag. 2014, 2, 367–384. [Google Scholar] [CrossRef]
- Popescu, S.; Borda, C.; Diugan, E.A.; Niculae, M.; Stefan, R.; Sandru, C.D. The Effect of the Housing System on the Welfare Quality of Dairy Cow. Ital. J. Anim. Sci. 2014, 13, 15–22. [Google Scholar] [CrossRef]
- Botreau, R.; Farruggia, A.; Martin, B.; Pomiès, D.; Dumont, B. Towards an Agroecological Assessment of Dairy Systems: Proposal for a Set of Criteria Suited to Mountain Farming. Animal 2014, 8, 1349–1360. [Google Scholar] [CrossRef] [PubMed]
- Petersen, S.O.; Hellwing, A.L.F.; Brask, M.; Højberg, O.; Poulsen, M.; Zhu, Z.; Baral, K.R.; Lund, P. Dietary Nitrate for Methane Mitigation Leads to Nitrous Oxide Emissions from Dairy Cows. J. Environ. Qual. 2015, 44, 1063–1070. [Google Scholar] [CrossRef] [PubMed]
- Pereira, J.; Trindade, H. Impact of the Intensity of Milk Production on Ammonia and Greenhouse Gas Emissions in Portuguese Cattle Farms. Span. J. Agric. Res. 2015, 13, e06SC05. [Google Scholar] [CrossRef]
- Boyland, N.K.; Mlynski, D.T.; James, R.; Brent, L.J.N.; Croft, D.P. The Social Network Structure of a Dynamic Group of Dairy Cows: From Individual to Group Level Patterns. Appl. Anim. Behav. Sci. 2016, 174, 1–10. [Google Scholar] [CrossRef]
- Battini, F.; Agostini, A.; Tabaglio, V.; Amaducci, S. Environmental Impacts of Different Dairy Farming Systems in the Po Valley. J. Clean. Prod. 2016, 112, 91–102. [Google Scholar] [CrossRef]
- Rzeźnik, W.; Mielcarek, P.; Rzeźnik, I. Pilot Study of Greenhouse Gases and Ammonia Emissions from Naturally Ventilated Barns for Dairy Cows. Pol. J. Environ. Stud. 2016, 25, 2553–2562. [Google Scholar] [CrossRef] [PubMed]
- Zucali, M.; Battelli, G.; Battini, M.; Bava, L.; Decimo, M.; Mattiello, S.; Povolo, M.; Brasca, M. Multi-Dimensional Assessment and Scoring System for Dairy Farms. Ital. J. Anim. Sci. 2016, 15, 492–503. [Google Scholar] [CrossRef]
- Wettemann, P.J.C.; Latacz-Lohmann, U. An Efficiency-Based Concept to Assess Potential Cost and Greenhouse Gas Savings on German Dairy Farms. Agric. Syst. 2017, 152, 27–37. [Google Scholar] [CrossRef]
- Auburger, S.; Petig, E.; Bahrs, E. Assessment of Grassland as Biogas Feedstock in Terms of Production Costs and Greenhouse Gas Emissions in Exemplary Federal States of Germany. Biomass Bioenergy 2017, 101, 44–52. [Google Scholar] [CrossRef]
- Todde, G.; Murgia, L.; Caria, M.; Pazzona, A. Dairy Energy Prediction (DEP) Model: A Tool for Predicting Energy Use and Related Emissions and Costs in Dairy Farms. Comput. Electron. Agric. 2017, 135, 216–221. [Google Scholar] [CrossRef]
- Duffková, R.; Hakrová, P.; Brom, J.; Fučík, P.; Novotná, K. Effects of Management Practices in Highland Pastures on Agronomic and Environmental Objectives. Appl. Ecol. Environ. Res. 2017, 15, 1677–1695. [Google Scholar] [CrossRef]
- Salou, T.; Le Mouël, C.; van der Werf, H.M.G. Environmental Impacts of Dairy System Intensification: The Functional Unit Matters! J. Clean. Prod. 2017, 140, 445–454. [Google Scholar] [CrossRef]
- Pierie, F.; Dsouza, A.; van Someren, C.E.J.; Benders, R.M.J.; van Gemert, W.J.T.; Moll, H.C. Improving the Sustainability of Farming Practices through the Use of a Symbiotic Approach for Anaerobic Digestion and Digestate Processing. Resources 2017, 6, 50. [Google Scholar] [CrossRef]
- Vida, E.; Tedesco, D.E.A. The Carbon Footprint of Integrated Milk Production and Renewable Energy Systems—A Case Study. Sci. Total Environ. 2017, 609, 1286–1294. [Google Scholar] [CrossRef]
- Todde, G.; Murgia, L.; Caria, M.; Pazzona, A. A Comprehensive Energy Analysis and Related Carbon Footprint of Dairy Farms, Part 2: Investigation and Modeling of Indirect Energy Requirements. Energies 2018, 11, 463. [Google Scholar] [CrossRef]
- Torrellas, M.; Burgos, L.; Tey, L.; Noguerol, J.; Riau, V.; Palatsi, J.; Antón, A.; Flotats, X.; Bonmatí, A. Different Approaches to Assess the Environmental Performance of a Cow Manure Biogas Plant. Atmos. Environ. 2018, 177, 203–213. [Google Scholar] [CrossRef]
- Shortall, J.; O’Brien, B.; Sleator, R.D.; Upton, J. Daily and Seasonal Trends of Electricity and Water Use on Pasture-Based Automatic Milking Dairy Farms. J. Dairy Sci. 2018, 101, 1565–1578. [Google Scholar] [CrossRef] [PubMed]
- Shine, P.; Scully, T.; Upton, J.; Shalloo, L.; Murphy, M.D. Electricity & Direct Water Consumption on Irish Pasture Based Dairy Farms: A Statistical Analysis. Appl. Energy 2018, 210, 529–537. [Google Scholar] [CrossRef]
- Fiore, M.; Spada, A.; Contò, F.; Pellegrini, G. GHG and Cattle Farming: CO-Assessing the Emissions and Economic Performances in Italy. J. Clean. Prod. 2018, 172, 3704–3712. [Google Scholar] [CrossRef]
- Vergote, T.L.I.; Vanrolleghem, W.J.; Van der Heyden, C.; De Dobbelaere, A.E.; Buysse, J.; Meers, E.; Volcke, E. Model-Based Analysis of Greenhouse Gas Emission Reduction Potential through Farm-Scale Digestion. Biosyst. Eng. 2019, 181, 157–172. [Google Scholar] [CrossRef]
- Vergote, T.L.I.; Bodé, S.; De Dobbelaere, A.E.J.; Buysse, J.; Meers, E.; Volcke, E.I.P. Monitoring Methane and Nitrous Oxide Emissions from Digestate Storage Following Manure Mono-Digestion. Biosyst. Eng. 2020, 196, 159–171. [Google Scholar] [CrossRef]
- Senga Kiessé, T.; Corson, M.S.; Eugène, M.; Aubin, J.; Wilfart, A. Analysis of Enteric Methane Emissions Due to Extreme Variations in Management Practices of Dairy-Production Systems. Agric. Syst. 2019, 173, 449–457. [Google Scholar] [CrossRef]
- Skrydstrup, J.; Larsen, S.L.; Rygaard, M. Eco-Efficiency of Water and Wastewater Management in Food Production: A Case Study from a Large Dairy in Denmark. J. Ind. Ecol. 2020, 24, 1101–1112. [Google Scholar] [CrossRef]
- Herzog, A.; Hörtenhuber, S.; Winckler, C.; Kral, I.; Zollitsch, W. Welfare Intervention and Environmental Impacts of Milk Production—Cradle-to-Farm-Gate Effects of Implementing Rubber Mats in Austrian Dairy Farms. J. Clean. Prod. 2020, 277, 123953. [Google Scholar] [CrossRef]
- Dentler, J.; Kiefer, L.; Hummler, T.; Bahrs, E.; Elsaesser, M. The Impact of Low-Input Grass-Based and High-Input Confinement-Based Dairy Systems on Food Production, Environmental Protection and Resource Use. Agroecol. Sustain. Food Syst. 2020, 44, 1089–1110. [Google Scholar] [CrossRef]
- Stanchev, P.; Vasilaki, V.; Egas, D.; Colon, J.; Ponsá, S.; Katsou, E. Multilevel Environmental Assessment of the Anaerobic Treatment of Dairy Processing Effluents in the Context of Circular Economy. J. Clean. Prod. 2020, 261, 121139. [Google Scholar] [CrossRef]
- Bechini, L.; Costamagna, C.; Zavattaro, L.; Grignani, C.; Bijttebier, J.; Ruysschaert, G. Drivers and Barriers to Adopt Best Management Practices. Survey among Italian Dairy Farmers. J. Clean. Prod. 2020, 245, 118825. [Google Scholar] [CrossRef]
- Fant, P.; Ramin, M.; Huhtanen, P. Replacement of Barley with Oats and Dehulled Oats: Effects on Milk Production, Enteric Methane Emissions, and Energy Utilization in Dairy Cows Fed a Grass Silage-Based Diet. J. Dairy Sci. 2021, 104, 12540–12552. [Google Scholar] [CrossRef] [PubMed]
- Kirilova, E.; Vaklieva-Bancheva, N.; Vladova, R.; Petrova, T.; Ivanov, B.; Nikolova, D.; Dzhelil, Y. An Approach for a Sustainable Decision-Making in Product Portfolio Design of Dairy Supply Chain in Terms of Environmental, Economic and Social Criteria. Clean Technol. Environ. Policy 2022, 24, 213–227. [Google Scholar] [CrossRef]
- Hodúr, C.; Nagypál, V.; Fazekas, Á.; Mikó, E. Blue and Gray Water Footprint of Some Hungarian Milking Parlors. Water Pract. Technol. 2022, 17, 1378–1389. [Google Scholar] [CrossRef]
- Nagypál, V.; Mikó, E.; Hodúr, C. Sustainable Water Use Considering Three Hungarian Dairy Farms. Sustainability 2020, 12, 3145. [Google Scholar] [CrossRef]
- Usva, K.; Virtanen, E.; Hyvärinen, H.; Nousiainen, J.; Sinkko, T.; Kurppa, S. Applying Water Scarcity Footprint Methodologies to Milk Production in Finland. Int. J. Life Cycle Assess. 2019, 24, 351–361. [Google Scholar] [CrossRef]
- Murphy, E.; de Boer, I.J.M.; van Middelaar, C.E.; Holden, N.M.; Shalloo, L.; Curran, T.P.; Upton, J. Water Footprinting of Dairy Farming in Ireland. J. Clean. Prod. 2017, 140, 547–555. [Google Scholar] [CrossRef]
- Drews, J.; Czycholl, I.; Krieter, J. A Life Cycle Assessment Study of Dairy Farms in Northern Germany: The Influence of Performance Parameters on Environmental Efficiency. J. Environ. Manag. 2020, 273, 111127. [Google Scholar] [CrossRef]
- Iseppi, L.; Rosa, F.; Bassi, I. A Multi--Criteria Decision Approach for the Sustainable Dairy Farm Management. Qual.—Access Success 2022, 23, 242–252. [Google Scholar] [CrossRef]
- Paterson, K.C.; Holden, N.M. Assessment of Policy Conflict Using Systems Thinking: A Case Study of Carbon Footprint Reduction on Irish Dairy Farms. Environ. Sci. Policy 2019, 101, 38–45. [Google Scholar] [CrossRef]
- Metz, J.H.M.; Dijkstra, T.; Franken, P.; Frankena, K. Development and Application of a Protocol to Evaluate Herd Welfare in Dutch Dairy Farms. Livest. Sci. 2015, 180, 183–193. [Google Scholar] [CrossRef]
- Vanhoudt, A.; Van Winden, S.; Fishwick, J.C.; Bell, N.J. Erratum to: Monitoring Cow Comfort and Rumen Health Indices in a Cubicle-Housed Herd with an Automatic Milking System: A Repeated Measures Approach. Ir. Vet. J. 2015, 68, 19. [Google Scholar] [CrossRef] [PubMed]
- Humski, A.; Cvitković, D.; Bujanić, M.; Konjević, D.; Bačić, G.; Rudan, N.; Pavlak, M. Influence of Different Dairy Farming Systems on Milk Quality and Production. Vet. Stanica 2018, 49, 425–433. [Google Scholar]
- Herzog, A.; Winckler, C.; Hörtenhuber, S.; Zollitsch, W. Environmental Impacts of Implementing Basket Fans for Heat Abatement in Dairy Farms. Animal 2021, 15, 100274. [Google Scholar] [CrossRef]
- Martinsson, E.; Hansson, H. Adjusting Eco-Efficiency to Greenhouse Gas Emissions Targets at Farm Level—The Case of Swedish Dairy Farms. J. Environ. Manag. 2021, 287, 112313. [Google Scholar] [CrossRef] [PubMed]
- Lahart, B.; Shalloo, L.; Herron, J.; O’Brien, D.; Fitzgerald, R.; Boland, T.M.; Buckley, F. Greenhouse Gas Emissions and Nitrogen Efficiency of Dairy Cows of Divergent Economic Breeding Index under Seasonal Pasture-Based Management. J. Dairy Sci. 2021, 104, 8039–8049. [Google Scholar] [CrossRef]
- Zehetmeier, M.; Hoffmann, H.; Sauer, J.; Hofmann, G.; Dorfner, G.; O’Brien, D. A Dominance Analysis of Greenhouse Gas Emissions, Beef Output and Land Use of German Dairy Farms. Agric. Syst. 2014, 129, 55–67. [Google Scholar] [CrossRef]
- Guerci, M.; Bava, L.; Zucali, M.; Tamburini, A.; Sandrucci, A. Effect of Summer Grazing on Carbon Footprint of Milk in Italian Alps: A Sensitivity Approach. J. Clean. Prod. 2014, 73, 236–244. [Google Scholar] [CrossRef]
- Glenk, K.; Eory, V.; Colombo, S.; Barnes, A. Adoption of Greenhouse Gas Mitigation in Agriculture: An Analysis of Dairy Farmers’ Perceptions and Adoption Behaviour. Ecol. Econ. 2014, 108, 49–58. [Google Scholar] [CrossRef]
- Herron, J.; Hennessy, D.; Curran, T.P.; Moloney, A.; O’Brien, D. The Simulated Environmental Impact of Incorporating White Clover into Pasture-Based Dairy Production Systems. J. Dairy Sci. 2021, 104, 7902–7918. [Google Scholar] [CrossRef] [PubMed]
- Gislon, G.; Ferrero, F.; Bava, L.; Borreani, G.; Prà, A.D.; Pacchioli, M.T.; Sandrucci, A.; Zucali, M.; Tabacco, E. Forage Systems and Sustainability of Milk Production: Feed Efficiency, Environmental Impacts and Soil Carbon Stocks. J. Clean. Prod. 2020, 260, 121012. [Google Scholar] [CrossRef]
- Cecchini, L.; Torquati, B.; Paffarini, C.; Barbanera, M.; Foschini, D.; Chiorri, M. The Milk Supply Chain in Italy’s Umbria Region: Environmental and Economic Sustainability. Sustainability 2016, 8, 728. [Google Scholar] [CrossRef]
- Chen, W.; Holden, N.M. Bridging Environmental and Financial Cost of Dairy Production: A Case Study of Irish Agricultural Policy. Sci. Total Environ. 2018, 615, 597–607. [Google Scholar] [CrossRef] [PubMed]
- Santolaya, J.L.; Lacasa, E.; Biedermann, A.; Muñoz, N. A Practical Methodology to Project the Design of More Sustainable Products in the Production Stage. Res. Eng. Des. 2019, 30, 539–558. [Google Scholar] [CrossRef]
- Micha, E.; Heanue, K.; Hyland, J.J.; Hennessy, T.; Dillon, E.J.; Buckley, C. Sustainability Levels in Irish Dairy Farming: A Farm Typology According to Sustainable Performance Indicators. Stud. Agric. Econ. 2017, 119, 62–69. [Google Scholar] [CrossRef]
- Jane Dillon, E.; Hennessy, T.; Buckley, C.; Donnellan, T.; Hanrahan, K.; Moran, B.; Ryan, M. Measuring Progress in Agricultural Sustainability to Support Policy-Making. Int. J. Agric. Sustain. 2016, 14, 31–44. [Google Scholar] [CrossRef]
- Adenaeuer, L.; Breen, J.; Hayden, A. Insights in Overcoming the Non-Adoption of Voluntary Agricultural Ghg Mitigation Measures in Ireland. Econ. Agro-Aliment. 2020, 22, 1–26. [Google Scholar] [CrossRef]
- Lehmann, J.O.; Mogensen, L.; Kristensen, T. Extended Lactations in Dairy Production: Economic, Productivity and Climatic Impact at Herd, Farm and Sector Level. Livest. Sci. 2019, 220, 100–110. [Google Scholar] [CrossRef]
- Larkin, J.; Sheridan, H.; Finn, J.A.; Denniston, H.; Huallachain, D.O. Semi-Natural Habitats and Ecological Focus Areas on Cereal, Beef and Dairy Farms in Ireland. Land Use Policy 2019, 88, 104096. [Google Scholar] [CrossRef]
- Pugesgaard, S.; Olesen, J.E.; Jorgensen, U.; Dalgaard, T. Biogas in Organic Agriculture—Effects on Productivity, Energy Self-Sufficiency and Greenhouse Gas Emissions. Renew. Agric. Food Syst. 2014, 29, 28–41. [Google Scholar] [CrossRef]
- Silva, S.; Alçada-Almeida, L.; Dias, L.C. Development of a Web-Based Multi-Criteria Spatial Decision Support System for the Assessment of Environmental Sustainability of Dairy Farms. Comput. Electron. Agric. 2014, 108, 46–57. [Google Scholar] [CrossRef]
- Fiorelli, J.-L.; Drouet, J.-L.; Duretz, S.; Gabrielle, B.; Graux, A.-I.; Blanfort, V.; Capitaine, M.; Cellier, P.; Soussana, J.-F. Evaluation of Greenhouse Gas Emissions and Design of Mitigation Options: A Whole Farm Approach Based on Farm Management Data and Mechanistic Models. Int. J. Sustain. Dev. 2014, 17, 22–34. [Google Scholar] [CrossRef]
- Chen, X.; Corson, M.S. Influence of Emission-Factor Uncertainty and Farm-Characteristic Variability in LCA Estimates of Environmental Impacts of French Dairy Farms. J. Clean. Prod. 2014, 81, 150–157. [Google Scholar] [CrossRef]
- Eory, V.; MacLeod, M.; Shrestha, S.; Roberts, D. Linking an Economic and a Life-Cycle Analysis Biophysical Model to Support Agricultural Greenhouse Gas Mitigation Policy. Ger. J. Agric. Econ. 2014, 6, 133–142. [Google Scholar]
- Kiefer, L.; Menzel, F.; Bahrs, E. The Effect of Feed Demand on Greenhouse Gas Emissions and Farm Profitability for Organic and Conventional Dairy Farms. J. Dairy Sci. 2014, 97, 7564–7574. [Google Scholar] [CrossRef]
- Chalmers, N.G.; Brander, M.; Revoredo-Giha, C. The Implications of Empirical and 1:1 Substitution Ratios for Consequential LCA: Using a 1% Tax on Whole Milk as an Illustrative Example. Int. J. Life Cycle Assess. 2015, 20, 1268–1276. [Google Scholar] [CrossRef]
- Charlier, J.; Velde, F.V.; van der Voort, M.; Van Meensel, J.; Lauwers, L.; Cauberghe, V.; Vercruysse, J.; Claerebout, E. ECONOHEALTH: Placing Helminth Infections of Livestock in an Economic and Social Context. Vet. Parasitol. 2015, 212, 62–67. [Google Scholar] [CrossRef] [PubMed]
- O’Brien, D.; Hennessy, T.; Moran, B.; Shalloo, L. Relating the Carbon Footprint of Milk from Irish Dairy Farms to Economic Performance. J. Dairy Sci. 2015, 98, 7394–7407. [Google Scholar] [CrossRef]
- Van Middelaar, C.E.; Berentsen, P.B.M.; Dijkstra, J.; Van Arendonk, J.A.M.; De Boer, I.J.M. Effect of Feed-Related Farm Characteristics on Relative Values of Genetic Traits in Dairy Cows to Reduce Greenhouse Gas Emissions along the Chain. J. Dairy Sci. 2015, 98, 4889–4903. [Google Scholar] [CrossRef] [PubMed]
- Dalla Riva, A.; Burek, J.; Kim, D.; Thoma, G.; Cassandro, M.; De Marchi, M. The Environmental Impact of Cow Milk in the Northeast of Italy. Poljoprivreda 2015, 21, 105–108. [Google Scholar] [CrossRef]
- Robert Kiefer, L.; Menzel, F.; Bahrs, E. Integration of Ecosystem Services into the Carbon Footprint of Milk of South German Dairy Farms. J. Environ. Manag. 2015, 152, 11–18. [Google Scholar] [CrossRef]
- Colombini, S.; Zucali, M.; Rapetti, L.; Crovetto, G.M.; Sandrucci, A.; Bava, L. Substitution of Corn Silage with Sorghum Silages in Lactating Cow Diets: In Vivo Methane Emission and Global Warming Potential of Milk Production. Agric. Syst. 2015, 136, 106–113. [Google Scholar] [CrossRef]
- Chen, W.; White, E.; Holden, N.M. The Effect of Lameness on the Environmental Performance of Milk Production by Rotational Grazing. J. Environ. Manag. 2016, 172, 143–150. [Google Scholar] [CrossRef] [PubMed]
- Soteriades, A.D.; Stott, A.W.; Moreau, S.; Charroin, T.; Blanchard, M.; Liu, J.; Faverdin, P. The Relationship of Dairy Farm Eco-Efficiency with Intensification and Self-Sufficiency. Evidence from the French Dairy Sector Using Life Cycle Analysis, Data Envelopment Analysis and Partial Least Squares Structural Equation Modelling. PLoS ONE 2016, 11, e0166445. [Google Scholar] [CrossRef]
- Hammond, K.J.; Jones, A.K.; Humphries, D.J.; Crompton, L.A.; Reynolds, C.K. Effects of Diet Forage Source and Neutral Detergent Fiber Content on Milk Production of Dairy Cattle and Methane Emissions Determined Using GreenFeed and Respiration Chamber Techniques. J. Dairy Sci. 2016, 99, 7904–7917. [Google Scholar] [CrossRef] [PubMed]
- Aggestam, V.; Buick, J. A Comparative Analysis of Vehicle-Related Greenhouse Gas Emissions between Organic and Conventional Dairy Production. J. Dairy Res. 2017, 84, 360–369. [Google Scholar] [CrossRef] [PubMed]
- Green, A.; Lewis, K.A.; Tzilivakis, J.; Warner, D.J. Agricultural Climate Change Mitigation: Carbon Calculators as a Guide for Decision Making. Int. J. Agric. Sustain. 2017, 15, 645–661. [Google Scholar] [CrossRef]
- Mu, W.; van Middelaar, C.E.; Bloemhof, J.M.; Engel, B.; de Boer, I.J.M. Benchmarking the Environmental Performance of Specialized Milk Production Systems: Selection of a Set of Indicators. Ecol. Indic. 2017, 72, 91–98. [Google Scholar] [CrossRef]
- Salvador, S.; Corazzin, M.; Romanzin, A.; Bovolenta, S. Greenhouse Gas Balance of Mountain Dairy Farms as Affected by Grassland Carbon Sequestration. J. Environ. Manag. 2017, 196, 644–650. [Google Scholar] [CrossRef] [PubMed]
- Green, A.; Tzilivakis, J.; Warner, D.J.; Lewis, K.A. Problems of Benchmarking Greenhouse Gas Emissions in Dairy Agriculture. Benchmarking 2017, 24, 1470–1489. [Google Scholar] [CrossRef]
- Chen, W.; Holden, N.M. Social Life Cycle Assessment of Average Irish Dairy Farm. Int. J. Life Cycle Assess. 2017, 22, 1459–1472. [Google Scholar] [CrossRef]
- Eckert, M.; Bell, M.; Potterton, S.; Craigon, J.; Saunders, N.; Wilcox, R.; Hunter, M.; Goodman, J.; Garnsworthy, P. Effect of Feeding System on Enteric Methane Emissions from Individual Dairy Cows on Commercial Farms. Land 2018, 7, 26. [Google Scholar] [CrossRef]
- Lynch, J.; Skirvin, D.; Wilson, P.; Ramsden, S. Integrating the Economic and Environmental Performance of Agricultural Systems: A Demonstration Using Farm Business Survey Data and Farmscoper. Sci. Total Environ. 2018, 628–629, 938–946. [Google Scholar] [CrossRef] [PubMed]
- Vellinga, T.V.; de Vries, M. Effectiveness of Climate Change Mitigation Options Considering the Amount of Meat Produced in Dairy Systems. Agric. Syst. 2018, 162, 136–144. [Google Scholar] [CrossRef]
- Schmithausen, A.J.; Trimborn, M.; Büscher, W. Sources of Nitrous Oxide and Other Climate Relevant Gases on Surface Area in a Dairy Free Stall Barn with Solid Floor and Outside Slurry Storage. Atmos. Environ. 2018, 178, 41–48. [Google Scholar] [CrossRef]
- Bittante, G.; Cipolat-Gotet, C. Direct and Indirect Predictions of Enteric Methane Daily Production, Yield, and Intensity per Unit of Milk and Cheese, from Fatty Acids and Milk Fourier-Transform Infrared Spectra. J. Dairy Sci. 2018, 101, 7219–7235. [Google Scholar] [CrossRef]
- Bell, M.J.; Wilson, P. Estimated Differences in Economic and Environmental Performance of Forage-Based Dairy Herds across the UK. Food Energy Secur. 2018, 7, e00127. [Google Scholar] [CrossRef]
- Syp, A.; Osuch, D. Assessing Greenhouse Gas Emissions from Conventional Farms Based on the Farm Accountancy Data Network. Pol. J. Environ. Stud. 2018, 27, 1261–1268. [Google Scholar] [CrossRef]
- Soteriades, A.D.; Gonzalez-Mejia, A.M.; Styles, D.; Foskolos, A.; Moorby, J.M.; Gibbons, J.M. Effects of High-Sugar Grasses and Improved Manure Management on the Environmental Footprint of Milk Production at the Farm Level. J. Clean. Prod. 2018, 202, 1241–1252. [Google Scholar] [CrossRef]
- Cameron, L.; Chagunda, M.G.G.; Roberts, D.J.; Lee, M.A. A Comparison of Milk Yields and Methane Production from Three Contrasting High-Yielding Dairy Cattle Feeding Regimes: Cut-and-Carry, Partial Grazing and Total Mixed Ration. Grass Forage Sci. 2018, 73, 789–797. [Google Scholar] [CrossRef]
- Morais, T.G.; Teixeira, R.F.M.; Rodrigues, N.R.; Domingos, T. Carbon Footprint of Milk from Pasture-Based Dairy Farms in Azores, Portugal. Sustainability 2018, 10, 3658. [Google Scholar] [CrossRef]
- Sharma, P.; Humphreys, J.; Holden, N.M. The Environmental Impact of Dairy Production on Poorly Drained Soils under Future Climate Scenarios for Ireland. J. Environ. Manag. 2018, 223, 625–632. [Google Scholar] [CrossRef]
- Sharma, P.; Humphreys, J.; Holden, N.M. Environmental Impacts of Alternative Agricultural Uses of Poorly Drained Farm Land in Ireland. Sci. Total Environ. 2018, 637–638, 120–131. [Google Scholar] [CrossRef] [PubMed]
- Doltra, J.; Villar, A.; Moros, R.; Salcedo, G.; Hutchings, N.J.; Kristensen, I.S. Forage Management to Improve On-Farm Feed Production, Nitrogen Fluxes and Greenhouse Gas Emissions from Dairy Systems in a Wet Temperate Region. Agric. Syst. 2018, 160, 70–78. [Google Scholar] [CrossRef]
- Sharma, P.; Humphreys, J.; Holden, N.M. The Effect of Local Climate and Soil Drainage on the Environmental Impact of Grass-Based Milk Production. Int. J. Life Cycle Assess. 2018, 23, 26–40. [Google Scholar] [CrossRef]
- Mostert, P.F.; van Middelaar, C.E.; Bokkers, E.A.M.; de Boer, I.J.M. The Impact of Subclinical Ketosis in Dairy Cows on Greenhouse Gas Emissions of Milk Production. J. Clean. Prod. 2018, 171, 773–782. [Google Scholar] [CrossRef]
- Chen, W.; Holden, N.M. Tiered Life Cycle Sustainability Assessment Applied to a Grazing Dairy Farm. J. Clean. Prod. 2018, 172, 1169–1179. [Google Scholar] [CrossRef]
- Schmithausen, A.J.; Schiefler, I.; Trimborn, M.; Gerlach, K.; Südekum, K.-H.; Pries, M.; Büscher, W. Quantification of Methane and Ammonia Emissions in a Naturally Ventilated Barn by Using Defined Criteria to Calculate Emission Rates. Animals 2018, 8, 75. [Google Scholar] [CrossRef]
- Garnsworthy, P.C.; Difford, G.F.; Bell, M.J.; Bayat, A.R.; Huhtanen, P.; Kuhla, B.; Lassen, J.; Peiren, N.; Pszczola, M.; Sorg, D.; et al. Comparison of Methods to Measure Methane for Use in Genetic Evaluation of Dairy Cattle. Animals 2019, 9, 837. [Google Scholar] [CrossRef] [PubMed]
- Soteriades, A.D.; Foskolos, A.; Styles, D.; Gibbons, J.M. Diversification Not Specialization Reduces Global and Local Environmental Burdens from Livestock Production. Environ. Int. 2019, 132, 104837. [Google Scholar] [CrossRef] [PubMed]
- Eugène, M.; Sauvant, D.; Nozière, P.; Viallard, D.; Oueslati, K.; Lherm, M.; Mathias, E.; Doreau, M. A New Tier 3 Method to Calculate Methane Emission Inventory for Ruminants. J. Environ. Manag. 2019, 231, 982–988. [Google Scholar] [CrossRef]
- Edouard, N.; Charpiot, A.; Robin, P.; Lorinquer, E.; Dollé, J.-B.; Faverdin, P. Influence of Diet and Manure Management on Ammonia and Greenhouse Gas Emissions from Dairy Barns. Animal 2019, 13, 2903–2912. [Google Scholar] [CrossRef] [PubMed]
- Mosnier, C.; Britz, W.; Julliere, T.; De Cara, S.; Jayet, P.-A.; Havlík, P.; Frank, S.; Mosnier, A. Greenhouse Gas Abatement Strategies and Costs in French Dairy Production. J. Clean. Prod. 2019, 236, 117589. [Google Scholar] [CrossRef]
- Lenerts, A.; Popluga, D.; Naglis-Liepa, K. Benchmarking the GHG Emissions Intensities of Crop and Livestock–Derived Agricultural Commodities Produced in Latvia. Agron. Res. 2019, 17, 1942–1952. [Google Scholar] [CrossRef]
- Danielsson, R.; Lucas, J.; Dahlberg, J.; Ramin, M.; Agenäs, S.; Bayat, A.-R.; Tapio, I.; Hammer, T.; Roslin, T. Compound- And Context-Dependent Effects of Antibiotics on Greenhouse Gas Emissions from Livestock. R. Soc. Open Sci. 2019, 6, 182049. [Google Scholar] [CrossRef] [PubMed]
- Hoekstra, N.J.; Schulte, R.P.O.; Forrestal, P.J.; Hennessy, D.; Krol, D.J.; Lanigan, G.J.; Müller, C.; Shalloo, L.; Wall, D.P.; Richards, K.G. Scenarios to Limit Environmental Nitrogen Losses from Dairy Expansion. Sci. Total Environ. 2020, 707, 134606. [Google Scholar] [CrossRef]
- Berton, M.; Bittante, G.; Zendri, F.; Ramanzin, M.; Schiavon, S.; Sturaro, E. Environmental Impact and Efficiency of Use of Resources of Different Mountain Dairy Farming Systems. Agric. Syst. 2020, 181, 102806. [Google Scholar] [CrossRef]
- Laca, A.; Gómez, N.; Laca, A.; Díaz, M. Overview on GHG Emissions of Raw Milk Production and a Comparison of Milk and Cheese Carbon Footprints of Two Different Systems from Northern Spain. Environ. Sci. Pollut. Res. 2020, 27, 1650–1666. [Google Scholar] [CrossRef]
- Baldini, M.; Da Borso, F.; Rossi, A.; Taverna, M.; Bovolenta, S.; Piasentier, E.; Corazzin, M. Environmental Sustainability Assessment of Dairy Farms Rearing the Italian Simmental Dual-purpose Breed. Animals 2020, 10, 296. [Google Scholar] [CrossRef]
- Depping, V.; Grunow, M.; Kulozik, U. A Methodological Framework for Comparing Fractionated and Non-Fractionated Products in Life Cycle Assessments: The Case of Milk Concentrates. J. Clean. Prod. 2020, 257, 120478. [Google Scholar] [CrossRef]
- Hoang, D.L.; Davis, C.; Moll, H.C.; Nonhebel, S. Impacts of Biogas Production on Nitrogen Flows on Dutch Dairy System: Multiple Level Assessment of Nitrogen Indicators within the Biogas Production Chain. J. Ind. Ecol. 2020, 24, 665–680. [Google Scholar] [CrossRef]
- González-Recio, O.; López-Paredes, J.; Ouatahar, L.; Charfeddine, N.; Ugarte, E.; Alenda, R.; Jiménez-Montero, J.A. Mitigation of Greenhouse Gases in Dairy Cattle via Genetic Selection: 2. Incorporating Methane Emissions into the Breeding Goal. J. Dairy Sci. 2020, 103, 7210–7221. [Google Scholar] [CrossRef]
- Ramayo-Caldas, Y.; Zingaretti, L.; Popova, M.; Estellé, J.; Bernard, A.; Pons, N.; Bellot, P.; Mach, N.; Rau, A.; Roume, H.; et al. Identification of Rumen Microbial Biomarkers Linked to Methane Emission in Holstein Dairy Cows. J. Anim. Breed. Genet. 2020, 137, 49–59. [Google Scholar] [CrossRef]
- Schönleben, M.; Mentschel, J.; Strelec, L. Towards Smart Dairy Nutrition: Improving Sustainability and Economics of Dairy Production. Czech J. Anim. Sci. 2020, 65, 153–161. [Google Scholar] [CrossRef]
- Jonova, S.; Ilgaza, A.; Zolovs, M.; Balins, A. Impact of Inulin and Yeast Containing Synbiotic on Calves’ Productivity and Greenhouse Gas Production. Vet. World 2020, 13, 1017–1024. [Google Scholar] [CrossRef]
- Melin, M.; Barth, H. Value Stream Mapping for Sustainable Change at a Swedish Dairy Farm. Int. J. Environ. Waste Manag. 2020, 25, 130–140. [Google Scholar] [CrossRef]
- Kiesse, T.S.; Corson, M.S.; LE Galludec, G.; Wilfart, A. Sensitivity of Greenhouse Gas Emissions to Extreme Differences in Forage Production of Dairy Farms. Livest. Sci. 2020, 232, 103906. [Google Scholar] [CrossRef]
- Grassauer, F.; Herndl, M.; Nemecek, T.; Guggenberger, T.; Fritz, C.; Steinwidder, A.; Zollitsch, W. Eco-Efficiency of Farms Considering Multiple Functions of Agriculture: Concept and Results from Austrian Farms. J. Clean. Prod. 2021, 297, 126662. [Google Scholar] [CrossRef]
- Berton, M.; Bovolenta, S.; Corazzin, M.; Gallo, L.; Pinterits, S.; Ramanzin, M.; Ressi, W.; Spigarelli, C.; Zuliani, A.; Sturaro, E. Environmental Impacts of Milk Production and Processing in the Eastern Alps: A “Cradle-to-Dairy Gate” LCA Approach. J. Clean. Prod. 2021, 303, 127056. [Google Scholar] [CrossRef]
- de Haas, Y.; Veerkamp, R.F.; de Jong, G.; Aldridge, M.N. Selective Breeding as a Mitigation Tool for Methane Emissions from Dairy Cattle. Animal 2021, 15, 100294. [Google Scholar] [CrossRef] [PubMed]
- Menardo, S.; Lanza, G.; Berg, W. The Effect of Diet and Farm Management on N2o Emissions from Dairy Farms Estimated from Farm Data. Agriculture 2021, 11, 654. [Google Scholar] [CrossRef]
- Lambotte, M.; De Cara, S.; Brocas, C.; Bellassen, V. Carbon Footprint and Economic Performance of Dairy Farms: The Case of Protected Designation of Origin Farms in France. Agric. Syst. 2021, 186, hal-03021963. [Google Scholar] [CrossRef]
- Bava, L.; Sandrucci, A.; Zucali, M.; Guerci, M.; Tamburini, A. How Can Farming Intensification Affect the Environmental Impact of Milk Production? J. Dairy Sci. 2014, 97, 4579–4593. [Google Scholar] [CrossRef]
- Chmelíková, L.; Schmid, H.; Anke, S.; Hülsbergen, K.-J. Nitrogen-Use Efficiency of Organic and Conventional Arable and Dairy Farming Systems in Germany. Nutr. Cycl. Agroecosystems 2021, 119, 337–354. [Google Scholar] [CrossRef]
- Herron, J.; O’Brien, D.; Shalloo, L. Life Cycle Assessment of Pasture-Based Dairy Production Systems: Current and Future Performance. J. Dairy Sci. 2022, 105, 5849–5869. [Google Scholar] [CrossRef]
- Jebari, A.; Álvaro-Fuentes, J.; Pardo, G.; Batalla, I.; Martín, J.A.R.; Del Prado, A. Effect of Dairy Cattle Production Systems on Sustaining Soil Organic Carbon Storage in Grasslands of Northern Spain. Reg. Environ. Change 2022, 22, 67. [Google Scholar] [CrossRef]
- Pierik, M.E.; Gusmeroli, F.; Marianna, G.D.; Tamburini, A.; Bocchi, S. Meadows Species Composition, Biodiversity and Forage Value in an Alpine District: Relationships with Environmental and Dairy Farm Management Variables. Agric. Ecosyst. Environ. 2017, 244, 14–21. [Google Scholar] [CrossRef]
- Di Felice, V.; De Jesus Soares Bessa Batista, E.R.; Mancinelli, R.; Ferreira Batista, J.G.; Campiglia, E. Rurality and Agroecosystem Sustainability: A Case Study at Farm-Field Level in Terceira Island (Portugal) and in Viterbo Province (Italy). Renew. Agric. Food Syst. 2014, 29, 265–276. [Google Scholar] [CrossRef]
- Pergola, M.; Piccolo, A.; Palese, A.M.; Ingrao, C.; Di Meo, V.; Celano, G. A Combined Assessment of the Energy, Economic and Environmental Issues Associated with on-Farm Manure Composting Processes: Two Case Studies in South of Italy. J. Clean. Prod. 2018, 172, 3969–3981. [Google Scholar] [CrossRef]
- Dolman, M.A.; Sonneveld, M.P.W.; Mollenhorst, H.; De Boer, I.J.M. Benchmarking the Economic, Environmental and Societal Performance of Dutch Dairy Farms Aiming at Internal Recycling of Nutrients. J. Clean. Prod. 2014, 73, 245–252. [Google Scholar] [CrossRef]
- Gullstrand, J.; De Blander, R.; Waldo, S. The Influence of Biodiversity Provision on the Cost Structure of Swedish Dairy Farming. J. Agric. Econ. 2014, 65, 87–111. [Google Scholar] [CrossRef]
- Mihailescu, E.; Murphy, P.N.C.; Ryan, W.; Casey, I.A.; Humphreys, J. Phosphorus Balance and Use Efficiency on 21 Intensive Grass-Based Dairy Farms in the South of Ireland. J. Agric. Sci. 2015, 153, 520–537. [Google Scholar] [CrossRef] [PubMed]
- de Vries, M.; Bokkers, E.A.M.; van Reenen, C.G.; Engel, B.; van Schaik, G.; Dijkstra, T.; de Boer, I.J.M. Housing and Management Factors Associated with Indicators of Dairy Cattle Welfare. Prev. Vet. Med. 2015, 118, 80–92. [Google Scholar] [CrossRef] [PubMed]
- De Graaf, S.; Ampe, B.; Tuyttens, F.A.M. Assessing Dairy Cow Welfare at the Beginning and End of the Indoor Period Using the Welfare Quality® Protocol. Anim. Welf. 2017, 26, 213–221. [Google Scholar] [CrossRef]
- Ragkos, A.; Abraham, E.M.; Papadopoulou, A.; Kyriazopoulos, A.P.; Parissi, Z.M.; Hadjigeorgiou, I. Effects of European Union Agricultural Policies on the Sustainability of Grazingland Use in a Typical Greek Rural Area. Land Use Policy 2017, 66, 196–204. [Google Scholar] [CrossRef]
- Schader, C.; Drapela, T.; Markut, T.; Meier, M.S.; Lindenthal, T.; Hörtenhuber, S.; Pfiffner, L. Farm- and Product-Level Biodiversity Assessment of Conventional and Organic Dairy Production in Austria. Int. J. Biodivers. Sci. Ecosyst. Serv. Manag. 2014, 10, 20–39. [Google Scholar] [CrossRef]
- Pornaro, C.; Spigarelli, C.; Pasut, D.; Ramanzin, M.; Bovolenta, S.; Sturaro, E.; Macolino, S. Plant Biodiversity of Mountain Grasslands as Influenced by Dairy Farm Management in the Eastern Alps. Agric. Ecosyst. Environ. 2021, 320, 107583. [Google Scholar] [CrossRef]
- Verhagen, W.; van der Zanden, E.H.; Strauch, M.; van Teeffelen, A.J.A.; Verburg, P.H. Optimizing the Allocation of Agri-Environment Measures to Navigate the Trade-Offs between Ecosystem Services, Biodiversity and Agricultural Production. Environ. Sci. Policy 2018, 84, 186–196. [Google Scholar] [CrossRef]
- Pilvere, I.; Nipers, A.; Pilvere, A. Evaluation of the European Green Deal Policy in the Context of Agricultural Support Payments in Latvia. Agriculture 2022, 12, 2028. [Google Scholar] [CrossRef]
- Faccioni, G.; Sturaro, E.; Ramanzin, M.; Bernués, A. Socio-Economic Valuation of Abandonment and Intensification of Alpine Agroecosystems and Associated Ecosystem Services. Land Use Policy 2019, 81, 453–462. [Google Scholar] [CrossRef]
- Van Middelaar, C.E.; Dijkstra, J.; Berentsen, P.B.M.; De Boer, I.J.M. Cost-Effectiveness of Feeding Strategies to Reduce Greenhouse Gas Emissions from Dairy Farming. J. Dairy Sci. 2014, 97, 2427–2439. [Google Scholar] [CrossRef] [PubMed]
- Syrůček, J.; Bartoň, L.; Řehák, D.; Kvapilík, J.; Burdych, J. Evaluation of Economic Indicators for Czech Dairy Farms. Agric. Econ. Czech Repub. 2019, 65, 499–508. [Google Scholar] [CrossRef]
- Chetroiu, R.; Cișmileanu, A.E.; Cofas, E.; Petre, I.L.; Rodino, S.; Dragomir, V.; Marin, A.; Turek-Rahoveanu, P.A. Assessment of the Relations for Determining the Profitability of Dairy Farms, A Premise of Their Economic Sustainability. Sustainability 2022, 14, 7466. [Google Scholar] [CrossRef]
- Shalloo, L.; Hanrahan, L. Setting Targets for the Irish Dairy Industry. Anim. Prod. Sci. 2019, 60, 159–163. [Google Scholar] [CrossRef]
- Lebacq, T.; Baret, P.V.; Stilmant, D. Role of Input Self-Sufficiency in the Economic and Environmental Sustainability of Specialised Dairy Farms. Animal 2015, 9, 544–552. [Google Scholar] [CrossRef] [PubMed]
- Krupová, Z.; Krupa, E.; Michaličková, M.; Zavadilová, L.; Kadlečík, O. Economic Sustainability of the Local Dual-Purpose Cattle. Poljoprivreda 2015, 21, 220–223. [Google Scholar] [CrossRef]
- Bassi, I.; Iseppi, L.; Nassivera, F.; Peccol, E.; Cisilino, F. Alpine Agriculture Today: Evidence from the Italian Alps. Qual.—Access Success 2020, 21, 122–127. [Google Scholar]
- Pavić, L.; Turk, J.; Grgić, I.; Prišenk, J. Impact Analysis of the Young Farmers’ Support Program on Slovenian Dairy Sector Development Using Econometric Modeling Approach. Agronomy 2020, 10, 429. [Google Scholar] [CrossRef]
- Paracchini, M.L.; Bulgheroni, C.; Borreani, G.; Tabacco, E.; Banterle, A.; Bertoni, D.; Rossi, G.; Parolo, G.; Origgi, R.; De Paola, C. A Diagnostic System to Assess Sustainability at a Farm Level: The SOSTARE Model. Agric. Syst. 2015, 133, 35–53. [Google Scholar] [CrossRef]
- Hoischen-Taubner, S.; Habel, J.; Uhlig, V.; Schwabenbauer, E.-M.; Rumphorst, T.; Ebert, L.; Möller, D.; Sundrum, A. The Whole and the Parts—A New Perspective on Production Diseases and Economic Sustainability in Dairy Farming. Sustainability 2021, 13, 9044. [Google Scholar] [CrossRef]
- Skevas, I.; Zhu, X.; Shestalova, V.; Emvalomatis, G. The Impact of Agri-Environmental Policies and Production Intensification on the Environmental Performance of Dutch Dairy Farms. J. Agric. Resour. Econ. 2018, 43, 423–440. [Google Scholar]
- Methorst, R.; Roep, D.; Verstegen, J.; Wiskerke, J.S.C. Three-Fold Embedding: Farm Development in Relation to Its Socio-Material Context. Sustainability 2017, 9, 1677. [Google Scholar] [CrossRef]
- Verhees, F.; Malak-Rawlikowska, A.; Stalgiene, A.; Kuipers, A.; Klopčič, M. Dairy Farmers’ Business Strategies in Central and Eastern Europe Based on Evidence from Lithuania, Poland and Slovenia. Ital. J. Anim. Sci. 2018, 17, 755–766. [Google Scholar] [CrossRef]
- Läpple, D.; Thorne, F. The Role of Innovation in Farm Economic Sustainability: Generalised Propensity Score Evidence from Irish Dairy Farms. J. Agric. Econ. 2019, 70, 178–197. [Google Scholar] [CrossRef]
- Grassauer, F.; Herndl, M.; Nemecek, T.; Fritz, C.; Guggenberger, T.; Steinwidder, A.; Zollitsch, W. Assessing and Improving Eco-Efficiency of Multifunctional Dairy Farming: The Need to Address Farms’ Diversity. J. Clean. Prod. 2022, 338, 130627. [Google Scholar] [CrossRef]
- Galliano, D.; Siqueira, T.T.S. Organizational Design and Environmental Performance: The Case of French Dairy Farms. J. Environ. Manag. 2021, 278, 111408. [Google Scholar] [CrossRef]
- Duval, J.E.; Bareille, N.; Madouasse, A.; De Joybert, M.; Sjöström, K.; Emanuelson, U.; Bonnet-Beaugrand, F.; Fourichon, C. Evaluation of the Impact of a Herd Health and Production Management Programme in Organic Dairy Cattle Farms: A Process Evaluation Approach. Animal 2018, 12, 1475–1483. [Google Scholar] [CrossRef] [PubMed]
- Ohm, M.; Schüler, M.; Warnecke, S.; Paulsen, H.M.; Rahmann, G. Measurement Methods on Pastures and Their Use in Environmental Life-Cycle Assessment. Org. Agric. 2014, 4, 325–329. [Google Scholar] [CrossRef]
- Scotton, M.; Sicher, L.; Kasal, A. Semi-Natural Grasslands of the Non Valley (Eastern Italian Alps): Agronomic and Environmental Value of Traditional and New Alpine Hay-Meadow Types. Agric. Ecosyst. Environ. 2014, 197, 243–254. [Google Scholar] [CrossRef]
- Pacini, G.C.; Merante, P.; Lazzerini, G.; Van Passel, S. Increasing the Cost-Effectiveness of EU Agri-Environment Policy Measures through Evaluation of Farm and Field-Level Environmental and Economic Performance. Agric. Syst. 2015, 136, 70–78. [Google Scholar] [CrossRef]
- Cui, J.; Askari, M.S.; Holden, N.M. Grassland Soil Carbon and Nitrogen Stocks under Temperate Livestock Grazing. Soil Res. 2015, 53, 485–493. [Google Scholar] [CrossRef]
- Zuliani, A.; Romanzin, A.; Corazzin, M.; Salvador, S.; Abrahantes, J.C.; Bovolenta, S. Welfare Assessment in Traditional Mountain Dairy Farms: Above and beyond Resource-Based Measures. Anim. Welf. 2017, 26, 203–211. [Google Scholar] [CrossRef]
- O’Connor, A.H.; Bokkers, E.A.M.; de Boer, I.J.M.; Hogeveen, H.; Sayers, R.; Byrne, N.; Ruelle, E.; Shalloo, L. Associating Cow Characteristics with Mobility Scores in Pasture-Based Dairy Cows. J. Dairy Sci. 2019, 102, 8332–8342. [Google Scholar] [CrossRef] [PubMed]
- Crossley, R.E.; Bokkers, E.A.M.; Browne, N.; Sugrue, K.; Kennedy, E.; Conneely, M. Risk Factors Associated with Indicators of Dairy Cow Welfare during the Housing Period in Irish, Spring-Calving, Hybrid Pasture-Based Systems. Prev. Vet. Med. 2022, 208, 105760. [Google Scholar] [CrossRef] [PubMed]
- Scheurich, A.; Penicka, A.; Hörtenhuber, S.; Lindenthal, T.; Quendler, E.; Zollitsch, W. Elements of Social Sustainability among Austrian Hay Milk Farmers: Between Satisfaction and Stress. Sustainability 2021, 13, 13010. [Google Scholar] [CrossRef]
- Gebska, M.; Grontkowska, A.; Swiderek, W.; Golebiewska, B. Farmer Awareness and Implementation of Sustainable Agriculture Practices in Different Types of Farms in Poland. Sustainability 2020, 12, 8022. [Google Scholar] [CrossRef]
- Haas, R.; Schnepps, A.; Pichler, A.; Meixner, O. Cow Milk versus Plant-Based Milk Substitutes: A Comparison of Product Image and Motivational Structure of Consumption. Sustainability 2019, 11, 5046. [Google Scholar] [CrossRef]
- Swagemakers, P.; Garcia, M.D.D.; Torres, A.O.; Oostindie, H.; Groot, J.C.J. A Values-Based Approach to Exploring Synergies between Livestock Farming and Landscape Conservation in Galicia (Spain). Sustainability 2017, 9, 1987. [Google Scholar] [CrossRef]
- Triste, L.; Debruyne, L.; Vandenabeele, J.; Marchand, F.; Lauwers, L. Communities of Practice for Knowledge Co-Creation on Sustainable Dairy Farming: Features for Value Creation for Farmers. Sustain. Sci. 2018, 13, 1427–1442. [Google Scholar] [CrossRef]
- Varela-Ortega, C.; Blanco-Gutiérrez, I.; Manners, R.; Detzel, A. Life Cycle Assessment of Animal-Based Foods and Plant-Based Protein-Rich Alternatives: A Socio-Economic Perspective. J. Sci. Food Agric. 2022, 102, 5111–5120. [Google Scholar] [CrossRef] [PubMed]
- Montrasio, R.; Mattiello, S.; Zucaro, M.; Genovese, D.; Battaglini, L. The Perception of Ecosystem Services of Mountain Farming and of a Local Cheese: An Analysis for the Touristic Valorization of an Inner Alpine Area. Sustainability 2020, 12, 8017. [Google Scholar] [CrossRef]
- Pachoud, C.; Da Re, R.; Ramanzin, M.; Bovolenta, S.; Gianelle, D.; Sturaro, E. Tourists and Local Stakeholders’ Perception of Ecosystem Services Provided by Summer Farms in the Eastern Italian Alps. Sustainability 2020, 12, 1095. [Google Scholar] [CrossRef]
- Beecher, M.; Ryan, A.; Gorman, M. Exploring Adolescents’ Perceptions of Dairy Farming Careers in Ireland: Views of Students Studying Agricultural Science in Secondary School. Ir. J. Agric. Food Res. 2022, 61, 1–16. [Google Scholar] [CrossRef]
- Gan, X.; Fernandez, I.C.; Guo, J.; Wilson, M.; Zhao, Y.; Zhou, B.; Wu, J. When to Use What: Methods for Weighting and Aggregating Sustainability Indicators. Ecol. Indic. 2017, 81, 491–502. [Google Scholar] [CrossRef]
Pillar | Principle | Criteria | Indicator | References |
---|---|---|---|---|
Environmental | Best management practices | Feed efficiency | Nitrogen efficiency | [27,28,29] |
Feed intake | [27,30,31,32,33,34,35,36] | |||
Energy utilization | [30,35] | |||
Dependence on other productive sectors | Feed management | [37] | ||
Feed composition | [27,30,36,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54] | |||
Feed self-sufficiency | [18,43,55,56,57,58,59,60] | |||
Herd management | Animal health and welfare | [3,37,55,56,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78] | ||
Resource use | Energy self-sufficiency | [12,18,27,37,38,39,43,46,47,49,55,56,64,71,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130] | ||
Water management | [18,37,55,77,80,82,104,105,119,120,124,125,126,129,131,132,133,134,135] | |||
Waste management use | [37,85] | |||
Environmental quality | Water quality | Eutrophication potential | [80,82,83,111,136,137,138,139,140] | |
Acidification potential | [82,83,92,111,137,138] | |||
Water footprint | [132,134,141] | |||
Contribution to climate change | Global warming potential | [12,18,27,29,31,33,35,38,39,40,43,45,46,47,48,50,51,53,54,55,59,64,66,67,70,71,74,79,80,81,82,84,85,86,87,89,92,94,97,98,99,101,104,105,107,108,109,110,111,114,115,116,117,118,121,122,123,124,125,126,129,130,136,138,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220] | ||
Air quality | Eutrophication potential | [46,82,86,124,138,148,149,190,207,209,217,221] | ||
Acidification potential | [32,80,81,82,86,87,124,138,148,149,190,205,207,217,221] | |||
Soil quality | Nutrient use efficiency | [12,38,127,222] | ||
Soil organic carbon | [33,71,88,92,106,144,149,177,202,223,224,225,226] | |||
Soil erosion | [18,71] | |||
Eutrophication potential | [43,81,82,84,92,106,107,108,111,114,140,187,221,227] | |||
Acidification potential | [43,47,81,82,92,106,107,111,114,136,173,187,221] | |||
Land management practices | [18,30,31,33,38,39,43,46,47,49,50,51,55,61,68,80,81,82,84,85,86,88,91,92,93,96,99,105,106,107,108,124,126,136,139,143,146,148,155,158,168,173,175,186,187,191,202,207,211,216,225,227,228,229,230,231,232,233] | |||
Biodiversity | Animal biodiversity | Species richness | [124,156,211,225,229,234] | |
Soil fauna | [234] | |||
Presence of endangered species | [156] | |||
Plant biodiversity | Species richness | [124,156,211,225,229,234,235] | ||
Floral intensity | [93] | |||
Dominant plant species | [113] | |||
Presence of endangered species | [156] | |||
Ecosystem services | Habitat sustainability | [82,156,157,236] | ||
Participation in agri-environmental scheme | [237] | |||
Grassland management | [43,235] | |||
Preserving ecological area | [56,103,159,234] | |||
Biodiversity conservation | [157,235,238] | |||
Economic | Profitability | Farm income | Total costs | [12,14,18,52,55,59,61,87,91,124,143,150,151,166,212,239,240,241,242,243,244] |
Farm economic size | [245] | |||
Farm income diversification | [245] | |||
Profit | Profit per workforce and unit of land | [14,86,150,153,154,163,246] | ||
Economic return | Farm gross margin | [14,63,85,109,151,154,241] | ||
Dairy product sales | Product value | [18,185,210,241,247] | ||
Product price | [59,240,242] | |||
Value added | [41,85,91,152,235,245,246,247] | |||
Product quality | [128,141,242,248] | |||
Resilience | Dependence on other productive sectors | Feed self-sufficiency | [18,43,55,56,57,58,59,60] | |
Economic self-sufficiency | [18] | |||
Energy self-sufficiency | [12,18,27,37,38,39,43,46,47,49,55,56,64,71,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130] | |||
CAP independency | [55,57,58,157,169,228,233,237,238,246,247,249] | |||
Market orientation | [86,153,154,250] | |||
Farmer attitude | Farmer age | [12,86,245,246] | ||
Farmer gender | [12,245,246] | |||
Farmer goal | [155,251] | |||
Business resilience | Economic viability | [59,153,154,199] | ||
Innovation | [56,64,86,154,252] | |||
Farm cooperation | [88] | |||
Investment capacity | [30,86] | |||
Agricultural system diversity | Farm business diversification | [18,66,245,247,253] | ||
CAP payments | [64] | |||
Participation in agri-environmental scheme | [237] | |||
Efficiency | Productivity | Dairy production | [52,55,141,216,236,242,244,254,255] | |
Animal health and welfare | [3,37,55,56,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78] | |||
Total costs | [55,59,150,166,239,243,244] | |||
Eco-efficiency | [41] | |||
Environmental pressure | Biodiversity | Herbage nutritive value | [93,225] | |
Biodiversity conservation | [235,238] | |||
Ecosystem services | Pasture maintenance | [21,27,32,33,51,55,59,70,71,76,82,92,93,98,113,119,120,141,144,146,148,163,171,177,187,188,189,190,191,192,199,223,228,236,238,244,256,257,258,259,260,261,262] | ||
Preserving ecological area | [56,103,159,234] | |||
Social | Farmer sustainability | Quality of life | Work–life balance | [12,18,55,59,86,87,153,263] |
Labour input | [151] | |||
Labour efficiency | [18] | |||
Labour conditions | [61,263] | |||
Farmer attitude | Innovation | [56,64,86,154,252] | ||
Awareness | [264] | |||
Motivation | [3,18,41,42,44,62,63,69,72,75,251,264,265,266] | |||
Farm cooperation | [88] | |||
Animal health and welfare | [3,37,55,56,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78] | |||
Social sustainability | Sustainability of farm life | Farmer age | [12,86,245,246] | |
Farmer gender | [12,245,246] | |||
Farmer education | [12,153,267] | |||
Equal opportunities | [61,263,268] | |||
Salaries | [131,237,268] | |||
Access to health services and medical care | [131,200,263] | |||
Social learning | Community engagement | [61,151,263,265,269,270,271] | ||
Social responsibility | [61,271] | |||
Food quality | Food safety | [68,268] | ||
Food security | [66,268] | |||
Product quality | [128,141,242,248] | |||
Ecosystem services | Preserving ecological area | [56,103,159,234] | ||
Aesthetic landscapes | [18,66,236,247] | |||
Pasture maintenance | [21,27,32,33,51,55,59,70,71,76,82,92,93,98,113,119,120,141,144,146,148,163,171,177,187,188,189,190,191,192,199,223,228,236,238,244,256,257,258,259,260,261,262] | |||
Biodiversity | Preserving ecological area | [56,103,159,234] | ||
Aesthetic landscapes | [18,66,236,247] | |||
Biodiversity conservation | [238] | |||
Economic sustainability | Dependence on other productive sectors | CAP independency | [55,57,58,157,169,228,233,237,238,246,247,249] | |
Feed self-sufficiency | [18,43,55,56,57,58,59,60] | |||
Energy self-sufficiency | [12,18,27,37,38,39,43,46,47,49,55,56,64,71,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130] | |||
Eco-efficiency | Eco-efficiency | [41] | ||
Economic security and farm succession | Economic security and farm succession | [151,268] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pavanello, C.; Franchini, M.; Bovolenta, S.; Marraccini, E.; Corazzin, M. Sustainability Indicators for Dairy Cattle Farms in European Union Countries: A Systematic Literature Review. Sustainability 2024, 16, 4214. https://doi.org/10.3390/su16104214
Pavanello C, Franchini M, Bovolenta S, Marraccini E, Corazzin M. Sustainability Indicators for Dairy Cattle Farms in European Union Countries: A Systematic Literature Review. Sustainability. 2024; 16(10):4214. https://doi.org/10.3390/su16104214
Chicago/Turabian StylePavanello, Cristina, Marcello Franchini, Stefano Bovolenta, Elisa Marraccini, and Mirco Corazzin. 2024. "Sustainability Indicators for Dairy Cattle Farms in European Union Countries: A Systematic Literature Review" Sustainability 16, no. 10: 4214. https://doi.org/10.3390/su16104214
APA StylePavanello, C., Franchini, M., Bovolenta, S., Marraccini, E., & Corazzin, M. (2024). Sustainability Indicators for Dairy Cattle Farms in European Union Countries: A Systematic Literature Review. Sustainability, 16(10), 4214. https://doi.org/10.3390/su16104214