Characterization and Multi-Scenario Prediction of Habitat Quality Evolution in the Bosten Lake Watershed Based on the InVEST and PLUS Models
Abstract
:1. Introduction
2. Data and Materials
2.1. Study Area
2.2. Data Sources and Processing
2.3. Mode Selection and Profiles
2.3.1. PLUS Models
2.3.2. LEAS (Land Expansion Strategy Analysis)
2.3.3. CARS (CA Based on Multiple Random Seeds)
2.3.4. InVEST Habitat Quality Model
2.3.5. Multi-Scenario Settings
- (1)
- Scenario One: Natural development scenario. Without considering urban master-planning factors and current ecological land-protection factors, urban development in 2030 was simulated using historical land-use transfer probabilities based on historical urban expansion trends only. The number of land image elements of each type in 2030 was predicted through Markov chains.
- (2)
- Scenario Two: Ecological protection scenario. Since the study area is home to China’s largest inland freshwater lake and contains the country’s only nature reserve for swans, the primary objective of ecological protection of the environment is to limit urbanization and develop land use in a more environmentally friendly direction. In this scenario, the probability of transferring forest land, grassland and water bodies to impervious is reduced by 30%; the probability of transferring cropland to forest land and grassland is increased by 30% by continuing the implementation of the ecological project of returning farmland to forests and grasslands; and the probability of transferring cropland to water bodies is increased by 10% by taking into account the return of cropland to wetland. Further, the probability of transferring unutilized land to forest land and grassland is increased by 20%, while the conversion of water bodies to other land types is restricted.
- (3)
- Scenario Three: Economic development scenario. Accompanied by rapid economic development and urbanization, the expansion of cities and arable land is increasing. This scenario sets a 20% increase in the probability of transferring cropland, forest land and grassland to impervious; a 20% increase in the probability of transferring bare land to impervious; and a 20% decrease in the probability of transferring impervious to land use other than cropland. The scenario also limits the conversion of impervious to other land-use categories.
2.3.6. Geographic Detector Model
3. Results and Analysis
3.1. Characteristics and Prediction of Land-Use Change
3.1.1. Analysis of Land-Use Characteristics from 2000 to 2022
3.1.2. Multi-Scenario Analysis of Land-Use Prediction
3.2. Comparative Analysis of Spatial-Temporal Evolution of Habitat Quality and Multi-Scenario Simulation
3.2.1. Characteristics of Habitat Quality Evolution in 2000–2022
3.2.2. Comparative Analysis of Habitat Quality by Multiple Scenario Simulation
3.3. Mechanisms of Spatial Differentiation in Habitat Quality
3.3.1. Factor Detection
3.3.2. Interaction Detection
4. Discussion
4.1. Analysis of Land-Use Change Attribution
4.2. Impacts of Land-Use Change on Habitat Quality
4.3. Comparative Analysis of Habitat Quality under Multiple Scenarios
4.4. Limitations and Outlook
5. Conclusions
- (1)
- Habitat quality degrades and then improves from 2000 to 2022, reaching its lowest mean habitat quality value in 2010. Spatially, it is characterized by high in the northwest and low in the southeast. Comparison of the habitat quality of the different scenarios in 2030 reveals that the ecological protection scenario has the highest mean value and the lowest degree of degradation.
- (2)
- The PLUS model projections show that land use changes in 2022–2030 are similar to actual changes in 2000–2022, but with a slowdown in the degree of land turnover. Trends in agricultural land and impervious surface expansion have slowed, and the shrinkage of ecological land use has been controlled.
- (3)
- DEM, mean annual precipitation and GDP per capita are the main drivers of differences in the spatial distribution of habitat quality in the Bosten Lake Basin. Stronger interactions within natural environmental factors and between socio-economic factors and natural environmental factors. X1∩X4 (0.50) and X4∩X10 (0.51) are the interaction factors with the largest dominant effect in 2000, 2010 and 2020, respectively.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hall, L.S.; Krausman, P.R.; Morrison, M.L. The habitat concept and a plea for standard terminology. Wildl. Soc. Bull. 1997, 25, 173–182. [Google Scholar]
- He, Y.; Mo, Y.; Ma, J. Spatio-Temporal Evolution and Influence Mechanism of Habitat Quality in Guilin City, China. Int. J. Environ. Res. Public Health 2023, 20, 748. [Google Scholar] [CrossRef] [PubMed]
- Newbold, T.; Hudson, L.N.; Hill, S.L.L.; Contu, S.; Lysenko, I.; Senior, R.A.; Börger, L.; Bennett, D.J.; Choimes, A.; Collen, B.; et al. Global effects of land use on local terrestrial biodiversity. Nature 2015, 520, 45–50. [Google Scholar] [CrossRef] [PubMed]
- Rao, Y.X.; Zhou, M.; Ou, G.; Dai, D.; Zhang, L.; Zhang, Z.; Nie, X.; Yang, C. Integrating ecosystem services value for sustainable land-use management in semi-arid region. J. Clean. Prod. 2018, 186, 662–672. [Google Scholar] [CrossRef]
- Otto, C.R.; Roth, C.L.; Carlson, B.L.; Smart, M.D. Land-use change reduces habitat suitability for supporting managed honeybee colonies in the Northern Great Plains. Proc. Natl. Acad. Sci. USA 2016, 113, 10430–10435. [Google Scholar] [CrossRef] [PubMed]
- Terrado, M.; Sabater, S.; Chaplinkramer, B.; Mandle, L.; Ziv, G.; Acuña, V. Model development for the assessment of terrestrial and aquatic habitat quality in conservation planning. Sci. Total Environ. 2016, 540, 63–70. [Google Scholar] [CrossRef] [PubMed]
- Dessel, W.V.; Rompaey, A.V.; Szilassi, P. Sensitivity analysis of logistic regression parameterization for land use and land cover probability estimation. Int. J. Geogr. Inf. Sci. 2011, 25, 489–508. [Google Scholar] [CrossRef]
- Verburg, P.H.; Soepboer, W.; Veldkamp, A.; Limpiada, R.; Espaldon, V.; Mastura, S.S.A. Modeling the spatial dynamics of regional land use: The CLUES model. Environ. Manag. 2002, 30, 391–405. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Liang, X.; Li, X.; Xu, X.; Ou, J.; Chen, Y.; Li, S.; Wang, S.; Pei, F. A future land-use simulation model (FLUS) for simulating multiple land-use scenarios by coupling human and natural effects. Landsc. Urban Plan. 2017, 168, 94–116. [Google Scholar] [CrossRef]
- Xia, M.; Zhang, Y.; Zhang, Z.; Liu, J.; Ou, W.; Zou, W. Modeling agricultural land-use change in a rapidly urbanizing town: Linking the decisions of government, peasant households and enterprises. Land Use Policy 2020, 90, 104266. [Google Scholar] [CrossRef]
- Li, C.; Wu, Y.; Gao, B.; Zheng, K.; Wu, Y.; Li, C. Multi-scenario simulation of ecosystem service value for optimization of land use in the Sichuan- Yunnan ecological barrier, China. Ecol. Indic. 2021, 132, 108328. [Google Scholar] [CrossRef]
- Mutale, B.; Qiang, F. Modeling future land use and land cover under different scenarios using patch-generating land use simulation model. A case study of Ndola district. Front. Environ. Sci. 2024, 12, 1362666. [Google Scholar] [CrossRef]
- Li, X.; Liu, Z.; Li, S.; Li, Y. Multi-Scenario Simulation Analysis of Land Use Impacts on Habitat Quality in Tianjin Based on the PLUS Model Coupled with the InVEST Model. Sustainability 2022, 14, 6923. [Google Scholar] [CrossRef]
- Xu, L.F.; Liu, X.; Tong, D.; Liu, Z.; Yin, L.; Zheng, W. Forecasting Urban Land Use Change Based on Cellular Automata and the PLUS Model. Land 2022, 11, 652. [Google Scholar] [CrossRef]
- Wang, J.; Wu, Y.; Gou, A. Habitat quality evolution characteristics and multi-scenario prediction in Shenzhen based on PLUS and InVEST models. Front. Environ. Sci. 2023, 11, 46347. [Google Scholar] [CrossRef]
- Sherrouse, B.C.; Clement, J.M.; Semmens, D.J. A CIS application for assessing, mapping, and quantifying the social values of ecosystem services. Appl. Geogr. 2011, 31, 748–760. [Google Scholar] [CrossRef]
- Villa, F.; Ceroni, M.; Bagstad, K.; Johnson, G.; Krivov, S. ARIES (ARtificial Intelligence for Ecosystem Services): A New Tool for Ecosystem Services Assessment, Planning, and Valuation. In Proceedings of the 11th Annual BIOECON Conference on Economic Instruments to Enhance the Conservation and Sustainable Use of Biodiversity, Venice, Italy, 21 September 2009. [Google Scholar]
- Tang, F.; Fu, M.C.; Wang, L.; Zhang, P. Land-use change in Changli County, China: Predicting its spatio-temporal evolution in habitat quality. Ecol. Indic. 2020, 117, 106719. [Google Scholar] [CrossRef]
- Meng, R.; Cai, J.; Xin, H.; Meng, Z.; Dang, X.; Han, Y. Spatio-Temporal Changes in Land Use and Habitat Quality of the Hobq Desert along the Yellow River Section. Int. J. Environ. Res. Public Health 2023, 20, 3599. [Google Scholar] [CrossRef] [PubMed]
- Louis, V.; Page, S.E.; Tansey, K.J.; Jones, L.; Bika, K.; Balzter, H. Tiger Habitat Quality Modelling in Malaysia with Sentinel-2 and InVEST. Remote Sens. 2024, 16, 284. [Google Scholar] [CrossRef]
- Zhai, Y.X.; Zhang, F.Y.; Ma, L.N. Evolution and prediction of habitat quality in the Bosten Lake Basin based on production-living ecological space. Arid Land Geogr. 2023, 46, 1792–1802. [Google Scholar]
- Yang, J.; Huang, X. The 30 m annual land cover dataset and its dynamics in China from 1990 to 2019. Earth Syst. Sci. Data 2021, 13, 3907–3925. [Google Scholar] [CrossRef]
- Guo, H.J.; Cai, Y.P.; Li, B.W.; Tang, Y.; Qi, Z.; Huang, Y.; Yang, Z. An integrated modeling approach for ecological risks assessment under multiple scenarios in Guangzhou, China. Ecol. Indic. 2022, 142, 109270. [Google Scholar] [CrossRef]
- Liang, X.; Guan, Q.; Clarke, K.C.; Liu, S.; Wang, B.; Yao, Y. Understanding the drivers of sustainable land expansion using a patch-generating land use simulation (PLUS) model: A case study in Wuhan, China. Comput. Environ. Urban Syst. 2021, 85, 101569. [Google Scholar] [CrossRef]
- Zhang, D.C.; Liu, X.P.; Yao, Y.; Zhang, J.B. Simulating Spatiotemporal Change of Multiple Land Use Types in Dongguan by Using Random Forest Based on Cellular Automata. Geogr. Geo-Inf. Sci. 2016, 32, 29–36. [Google Scholar]
- Wang, A.; Zhang, M.; Kafy, A.A.; Tong, B.; Hao, D.; Feng, Y. Predicting the impacts of urban land change on LST and carbon storage using InVEST, CA-ANN and WOA-LSTM models in Guangzhou, China. Earth Sci. Inform. 2022, 16, 437–454. [Google Scholar] [CrossRef]
- Wei, Q.; Abudureheman, M.; Halike, A.; Yao, K.; Yao, L.; Tang, H.; Tuheti, B. Temporal and spatial variation analysis of habitat quality on the PLUS-InVEST model for Ebinur Lake Basin, China. Ecol. Indic. 2022, 145, 109632. [Google Scholar] [CrossRef]
- Wang, B.; Cheng, W. Effects of Land Use/Cover on Regional Habitat Quality under Different Geomorphic Types Based on InVEST Model. Remote Sens. 2022, 14, 1279. [Google Scholar] [CrossRef]
- Zhang, H.T.; Li, J.L.; Tian, P.; Wang, Z.Y.; Shen, X. Spatio-temporal evolution of habitat quality in the East China Sea continental coastal zone based on land use changes. Acta Ecol. Sin. 2023, 43, 1–11. [Google Scholar]
- Chen, H.; Zhao, Y.; Fu, X.; Wu, G. Characteristics of Spatio-temporal evolution and influence mechanism of habitat quality in the upper reaches of the West Liaohe River. Acta Ecol. Sin. 2023, 43, 1–14. [Google Scholar]
- Ji, Y.F.; Jia, L.J.; Yang, L.A.; Li, Y.L.; Dong, Q.H. Spatio-temporal evolution and prediction analysis of habitat quality in Yulin city coupled with InVEST-PLUS model. J. Soil Water Conserv. 2023, 37, 123–132. [Google Scholar]
- Sharp, R.; Tallis, H.T.; Ricketts, T.; Guerry, A.D.; Wood, S.A.; Chaplin-Kramer, R.; Nelson, E.; Ennaanay, D.; Wolny, S.; Olwero, N.; et al. InVEST 3.2.0 User’s Guide. In The Natural Capital Project; Stanford University: Stanford, CA, USA; University of Minnesota: Minneapolis-Saint Paul, MN, USA; The Nature Conservancy: Arlington, VA, USA; World Wildlife Fund: Gland, Switzerland, 2017. [Google Scholar]
- Deng, C.X.; Guo, F.Y.; Huang, D.L.; Li, Z. Research on the impact of land use and landscape pattern on habitat quality in Dongting Lake area based on InVEST model. Ecol. Sci. 2021, 40, 99–109. [Google Scholar]
- Teng, Y.; Xie, M.; Wang, H.; Chen, Y.; Li, F. Land use transition in resource-based cities and its impact on habitat quality, a case of Wuhai City. Acta Ecol. Sin. 2022, 42, 1–11. [Google Scholar]
- Zhao, Q.J.; Wu, X.Z. Research on the impact of land use change on habitat quality in Minjiang River Basin based on InVEST Model. Ecol. Sci. 2022, 41, 1–10. [Google Scholar]
- Wang, J.; Xu, C. Geodetector: Principle and prospective. Acta Geogr. Sin. 2017, 72, 116–134. [Google Scholar]
- Santos-Martin, F.; Zorrilla-Miras, P.; Palomo, I.; Montes, C.; Benayas, J.; Maes, J. Protecting nature is necessary but not sufficient for conserving ecosystem services: A comprehensive assessment along a gradient of land-use intensity in Spain. Ecosyst. Serv. 2019, 35, 43–51. [Google Scholar] [CrossRef]
- Zhang, F.; Yusufujiang, R.; Aierken, T. Spatio-temporal change of ecosystem service value in Bosten Lake Watershed based on land use. Acta Ecol. Sin. 2021, 41, 5254–5265. [Google Scholar]
- Wang, X.Q.; Lin, M.I.; Ding, Z.; Zhou, J.; Wang, C.; Chen, J. Ecological health assessment of Kaikong River Basin based on automatic screening of indicators in Xinjiang. Acta Ecol. Sin. 2020, 40, 4302–4315. [Google Scholar]
- Li, Y.; Chen, Y.; Zhang, Q.; Fang, G. Analysis of the change in water level and its influencing factors on Bosten Lake from 1960 to 2018. Arid Zone Res. 2021, 38, 48–58. [Google Scholar]
- Li, M.; Yu, X.L. Research on Evaluation and Development of Wetland Ecotourism Resources in Bazhou, Xinjiang. Ind. Sci. Trib. 2020, 19, 20–23. [Google Scholar]
- Wu, D.; Zhu, K.; Zhang, S.; Huang, C.Q.; Li, J. Evolution Analysis of Carbon Storage in Chengdu–Chongqing Economic Zone Based on PLUS Model and InVEST Model. Ecol. Environ. Monit. Three Gorges 2022, 7, 1–18. [Google Scholar]
- Wang, Z.Y.; Huang, C.L.; Li, L.; Lin, Q. Ecological zoning planning and dynamic evaluation coupled with Invest-HFI-Plus model: A case study in Bortala Mongolian Autonomous Prefecture. Acta Ecol. Sin. 2022, 42, 5789–5798. [Google Scholar]
- Gulimire, A.; Paruke, W.; Ayituerxun, S. Change of Regional Ecosystem Service Value of Land Use/Cover Change in Kaikong River Basin. Acta Agric. Jiangxi 2020, 32, 118–124. [Google Scholar]
- Du, F. Ecological environment evaluation and land use change simulation in Bosten Lake Basin. Ph.D. Thesis, Xinjiang University, Ürümqi, China, 2022. [Google Scholar]
- Gao, Z.B.; Wang, X.R.; Sui, X.Y.; Wang, X.; Fan, Y.T.; Zhu, Q.; Lü, L.G. Multi-scenario prediction of habitat quality in Nanjing based on FLUS and INVEST modes. J. Agric. Resour. Environ. 2022, 39, 1001–1013. [Google Scholar]
Threat Types | Max_Dist/km | Weight | Spatial Decay Type |
---|---|---|---|
Cropland | 3 | 0.7 | linear |
Barren | 1 | 0.1 | linear |
Impervious | 6 | 1 | exponential |
Land Use and Land Cover | Habitat Quality | Cropland | Impervious | Barren |
---|---|---|---|---|
Cropland | 0.3 | 0.4 | 0.6 | 0.1 |
Forest | 1 | 0.5 | 0.6 | 0 |
Shrub | 0.9 | 1 | 0.8 | 0.5 |
Grassland | 0.7 | 0.6 | 0.6 | 0.7 |
Waters | 0.7 | 0.2 | 0.3 | 0.4 |
Snow/Ice | 0.1 | 0 | 0.1 | 0.2 |
Barren | 0.2 | 0.1 | 0.4 | 0.2 |
Impervious | 0 | 0 | 0 | 0 |
Wetland | 0.8 | 0.2 | 0.6 | 0.7 |
Cropland | Forest | Shrub | Grassland | Waters | Snow/Ice | Barren | Impervious | Wetland | Total (2000) | Transfer Out | |
---|---|---|---|---|---|---|---|---|---|---|---|
Cropland | 3534.34 | 4.63 | - | 387.78 | 13.74 | - | 19.99 | 64.42 | 4.24 | 4029.15 | 494.81 |
Forest | 98.84 | 449.17 | - | 24.67 | 5.15 | - | 0.03 | 5.19 | 0.86 | 583.92 | 134.75 |
Shrub | - | - | 0.01 | - | - | - | - | - | - | 0.01 | 0.01 |
Grassland | 1521.97 | 216.64 | 1.10 | 29,319.36 | 19.50 | 68.99 | 1678.35 | 175.95 | 112.07 | 33,113.92 | 3794.57 |
Waters | 69.19 | 3.62 | - | 40.68 | 1064.77 | 1.01 | 26.83 | 16.85 | 0.60 | 1223.56 | 158.80 |
Snow/Ice | - | 0.09 | - | 64.60 | 10.64 | 927.94 | 481.11 | - | 0.01 | 1484.40 | 556.46 |
Barren | 1125.21 | 0.23 | 0.01 | 2241.19 | 14.49 | 209.88 | 60,148.08 | 119.25 | 0.02 | 63,858.35 | 3710.27 |
Impervious | 1.89 | - | - | 1.59 | 0.19 | - | 0.59 | 45.93 | - | 50.19 | 4.27 |
Wetland | 21.20 | 3.69 | - | 114.22 | 1.51 | 0.01 | 0.04 | - | 208.64 | 349.30 | 140.66 |
Total (2022) | 6372.65 | 678.06 | 1.12 | 32,194.10 | 1129.99 | 1207.83 | 62,355.03 | 427.59 | 326.45 | 104,692.81 | |
Transfer in | 2838.30 | 228.90 | 1.12 | 2874.74 | 65.22 | 279.90 | 2206.95 | 381.66 | 117.81 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Sheng, Z.; Wang, H.; Xue, X.; Hu, J.; Yang, Y. Characterization and Multi-Scenario Prediction of Habitat Quality Evolution in the Bosten Lake Watershed Based on the InVEST and PLUS Models. Sustainability 2024, 16, 4202. https://doi.org/10.3390/su16104202
Wang Y, Sheng Z, Wang H, Xue X, Hu J, Yang Y. Characterization and Multi-Scenario Prediction of Habitat Quality Evolution in the Bosten Lake Watershed Based on the InVEST and PLUS Models. Sustainability. 2024; 16(10):4202. https://doi.org/10.3390/su16104202
Chicago/Turabian StyleWang, Yang, Ziyi Sheng, Haowei Wang, Xuan Xue, Jiaxin Hu, and Yuhai Yang. 2024. "Characterization and Multi-Scenario Prediction of Habitat Quality Evolution in the Bosten Lake Watershed Based on the InVEST and PLUS Models" Sustainability 16, no. 10: 4202. https://doi.org/10.3390/su16104202
APA StyleWang, Y., Sheng, Z., Wang, H., Xue, X., Hu, J., & Yang, Y. (2024). Characterization and Multi-Scenario Prediction of Habitat Quality Evolution in the Bosten Lake Watershed Based on the InVEST and PLUS Models. Sustainability, 16(10), 4202. https://doi.org/10.3390/su16104202