Tackling Arsenic and Mercury Contamination: Implications for Sustainable Mining and Occupational Health Risks
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description
- Zone of chimneys and ducts for smoke exhaust;
- Area of demolition debris from the support structures of the roasting furnace in the metallurgical plant;
- Upper waste dump, made up of residues from the metallurgical process;
- Lower waste dump, made up of mining waste;
- Horizontal platform at the base of this dump, where leachates from it converge;
- Other areas, such as transit areas, warehouses, buildings, cleaning facilities, roads, etc., that are different from the aforementioned types.
2.2. Sampling Description
2.3. Methodology for Assessing Human Health Risk
3. Results and Discussion
3.1. Obtention and Elaboration of the Data
3.2. Analysis of the Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chartres, N.; Bero, L.A.; Norris, S.L. A Review of Methods Used for Hazard Identification and Risk Assessment of Environmental Hazards. Environ. Int. 2019, 123, 231–239. [Google Scholar] [CrossRef]
- Zhang, S.; Han, Y.; Peng, J.; Chen, Y.; Zhan, L.; Li, J. Human Health Risk Assessment for Contaminated Sites: A Retrospective Review. Environ. Int. 2023, 171, 107700. [Google Scholar] [CrossRef]
- United States Environmental Protection Agency. Soil Screening Guidance: User’s Guide; United States Environmental Protection Agency: Washington, DC, USA, 1996; p. 49.
- Jury, W.A.; Spencer, W.F.; Farmer, W.J. Behavior Assessment Model for Trace Organics in Soil: IV. Review of Experimental Evidence. J. Environ. Qual. 1984, 13, 580–586. [Google Scholar] [CrossRef]
- Spencer, W.F.; Cliath, M.M.; Jury, W.A.; Zhang, L.-Z. Volatilization of Organic Chemicals from Soil as Related to Their Henry’s Law Constants. J. Environ. Qual. 1988, 17, 504–509. [Google Scholar] [CrossRef]
- Wu, Z.; Zhang, L.; Xia, T.; Jia, X.; Wang, S. Heavy Metal Pollution and Human Health Risk Assessment at Mercury Smelting Sites in Wanshan District of Guizhou Province, China. RSC Adv. 2020, 10, 23066–23079. [Google Scholar] [CrossRef] [PubMed]
- Gruszecka-Kosowska, A. Human Health Risk Assessment and Potentially Harmful Element Contents in the Cereals Cultivated on Agricultural Soils. Int. J. Environ. Res. Public Health 2020, 17, 1674. [Google Scholar] [CrossRef] [PubMed]
- Xia, Q.; Zhang, J.; Chen, Y.; Ma, Q.; Peng, J.; Rong, G.; Tong, Z.; Liu, X. Pollution, Sources and Human Health Risk Assessment of Potentially Toxic Elements in Different Land Use Types under the Background of Industrial Cities. Sustainability 2020, 12, 2121. [Google Scholar] [CrossRef]
- Custodio, M.; Peñaloza, R.; Ochoa, S.; Cuadrado, W. Human Risk Associated with the Ingestion of Artichokes Grown in Soils Irrigated with Water Contaminated by Potentially Toxic Elements, Junin, Peru. Saudi J. Biol. Sci. 2021, 28, 5952–5962. [Google Scholar] [CrossRef]
- Wcisło, E. Health Risk Assessment in Contaminated Site Management. In Integrated Environmental Management of Land and Soil in European Urban Areas; Institute of Environmental Engineering of the Polish Academy of Sciences: Zabrze, Poland, 2021; pp. 116–135. ISBN 978-83-60877-19-7. [Google Scholar]
- Wcisło, E.; Bronder, J. Health Risk Assessment for the Residential Area Adjacent to a Former Chemical Plant. Int. J. Environ. Res. Public Health 2022, 19, 2590. [Google Scholar] [CrossRef]
- Wcisło, E.; Bronder, J.; Rodríguez-Valdés, E.; Gallego, J.L.R. Health Risk Assessment of Post-Mining Hg-As-Contaminated Soil: Implications for Land Remediation. Water Air Soil Pollut 2022, 233, 306. [Google Scholar] [CrossRef]
- Wu, Z.; Zhang, D.; Xia, T.; Jia, X. Characteristics, Sources and Risk Assessments of Heavy Metal Pollution in Soils of Typical Chlor-Alkali Residue Storage Sites in Northeastern China. PLoS ONE 2022, 17, e0273434. [Google Scholar] [CrossRef]
- Fernández, B.; Lara, L.; Menendez-Aguado, J.; Ayala, J.; García-González, N.; Salgado, L.; Colina, A.; Gallego, J.L. A Multi-Faceted, Environmental Forensic Characterization of a Paradigmatic Brownfield Polluted by Hazardous Waste Containing Hg, As, PAHs and Dioxins. Sci. Total Environ. 2020, 726, 138546. [Google Scholar] [CrossRef]
- IARC–International Agency for Research on Cancer. Available online: https://www.iarc.who.int/ (accessed on 16 March 2021).
- Nordberg, G. Metales: Propiedades Quimicas y Toxicidad; Ministerio de Trabajo y Asuntos Sociales Subdirección General de Publicaciones: Madrid, Spain, 1998; Volume Enciclopedia de Salud y Seguridad en el Trabajo, ISBN 84-8417-047-0. [Google Scholar]
- Peters, J.M.; Thomas, D.; Falk, H.; Oberdörster, G.; Smith, T.J. Contribution of Metals to Respiratory Cancer. Environ. Health Perspect 1986, 70, 71–83. [Google Scholar] [CrossRef]
- Palma-Lara, I.; Martínez-Castillo, M.; Quintana-Pérez, J.C.; Arellano-Mendoza, M.G.; Tamay-Cach, F.; Valenzuela-Limón, O.L.; García-Montalvo, E.A.; Hernández-Zavala, A. Arsenic Exposure: A Public Health Problem Leading to Several Cancers. Regul. Toxicol. Pharmacol. 2020, 110, 104539. [Google Scholar] [CrossRef]
- González, H.G. Revisión Bibliográfica Sobre Los Efectos Del Arsénico En La Salud. In Proceedings of the Revisión e Innovación en la Actuación de los Profesionales de la Salud: Visiones Actuales Basadas en la Evidencia; Asociación Universitaria de Educación y Psicología (ASUNIVEP): Almeria, Spain, 2021; pp. 103–109. ISBN 978-84-09-32796-6. [Google Scholar]
- Español Cano, S. Toxicología del Mercurio. Actuaciones Preventivas em Sanidad Laboral y Ambiental; GAMA: Lima, Perú, 2001. [Google Scholar]
- The Chlorine Institute, Inc. Guidelines to Physicians in Conducting Mercury Medical Surveillance Programs; The Chlorine Institute, Inc.: Arlington, VA, USA, 1998. [Google Scholar]
- OMS Mercurio en Productos que Aclaran la Piel. Available online: https://www.who.int/es/publications/i/item/WHO-CED-PHE-EPE-19.13 (accessed on 31 January 2023).
- Mina de la Soterraña (Lena-Asturias) a Vista de Dron; Ax1 Ahora: La Soterraña, Asturias, 2022; Available online: https://www.youtube.com/watch?v=PE0gvoT_QJc (accessed on 15 April 2024).
- Loredo, J.; Ordóñez, A.; Álvarez, R. Environmental Impact of Toxic Metals and Metalloids from the Muñón Cimero Mercury-Mining Area (Asturias, Spain). J. Hazard. Mater. 2006, 136, 455–467. [Google Scholar] [CrossRef]
- Soto Yen, J.E. Análisis Comparado de la Contaminación por Mercurio en Distritos Mineros de Ayacucho (Perú) y Asturias (España). Ph.D. Thesis, University of Oviedo, Oviedo, Spain, 2005. [Google Scholar]
- Ayala, J.; Fernández, B. Industrial Waste Materials as Adsorbents for the Removal of As and Other Toxic Elements from an Abandoned Mine Spoil Heap Leachate: A Case Study in Asturias. J. Hazard. Mater. 2019, 384, 121446. [Google Scholar] [CrossRef] [PubMed]
- Garcia Gonzalez, H.; García-Ordiales, E.; Diez, R.R. Analysis of the Airborne Mercury and Particulate Arsenic Levels Close to an Abandoned Waste Dump and Buildings of a Mercury Mine and the Potential Risk of Atmospheric Pollution. SN Appl. Sci. 2022, 4, 76. [Google Scholar] [CrossRef]
- Rodríguez, R.; Garcia-Gonzalez, H.; García-Ordiales, E. Empirical Model of Gaseous Mercury Emissions for the Analysis of Working Conditions in Outdoor Highly Contaminated Sites. Sustainability 2022, 14, 13951. [Google Scholar] [CrossRef]
- Ministerio de la Presidencia, Gobierno de España. ROYAL DECREE 9/2005 of 14 January Which Establishes a List of Potentially Soil Contaminating Activities and Criteria and Standards for Declaring That Sites Are Contaminated. 2005. Available online: https://www.boe.es/eli/es/rd/2005/01/14/9 (accessed on 1 July 2023).
- United States Environmental Protection Agency. AirToxScreen Glossary of Terms. Available online: https://www.epa.gov/AirToxScreen/airtoxscreen-glossary-terms (accessed on 1 May 2024).
- Rodríguez, R.; Garcia-Gonzalez, H.; Pastrana, Á.; Hernández, Z. Health and Safety Protocol for the Management of Building Demolition Waste with High Mercury Contamination. Buildings 2023, 13, 1310. [Google Scholar] [CrossRef]
- Loredo, J.; Luque Cabal, C.; Garcia Iglesias, J. Conditions of Formation of Mercury Deposits from the Cantabrian Zone (Spain). Bull. De Minéralogie 1988, 111, 393–400. [Google Scholar] [CrossRef]
- Liu, T.; Ni, S.Y.; Wang, Z. Contamination and Health Risk Assessment of Heavy Metals in Soil Surrounding an Automobile Industry Factory in Jiaxing, China. Front. Environ. Sci. 2024, 12, 1362366. [Google Scholar] [CrossRef]
- González-Valoys, A.C.; Jiménez Salgado, J.U.; Rodríguez, R.; Monteza-Destro, T.; Vargas-Lombardo, M.; García-Noguero, E.M.; Esbrí, J.M.; Jiménez-Ballesta, R.; García-Navarro, F.J.; Higueras, P. An Approach for Evaluating the Bioavailability and Risk Assessment of Potentially Toxic Elements Using Edible and Inedible Plants—The Remance (Panama) Mining Area as a Model. Environ. Geochem. Health 2021, 45, 151–170. [Google Scholar] [CrossRef] [PubMed]
Parameter Code | Parameter Definition | Value |
---|---|---|
EF | Exposure frequency; EF (days/year) | 240 |
ED | Exposure duration; ED (years) | 40 |
IR0 | Ingestion rate for soil; IR0 (mg/day) | 100 |
RBA | Relative bioavailability factor; RBA (unitless) As = 0.6, Hg = 1.0 | 0.6/1.0 |
CF1 | Conversion factor; CF1 (10−6 kg/mg) | 1.0 × 10−6 |
SA | Skin surface area—soil contact; SA (cm2) | 3300 |
AF | Soil-to-skin adherence factor; AF (mg/cm2/day) | 0.20 |
ABSd | Dermal absorption fraction; ABSd (unitless) As = 0.03, Hg = 0.01 | 0.03/0.01 |
BW | Body weight; BW (kg) | 70 |
AT | Averaging time for carcinogens; AT (days) = 70 years = 70 × 365 days | 70 × 365 |
AT | Averaging time for no carcinogens; AT (days) = ED × 365 days | ED × 365 |
ET | Exposure time; ET (h/h) = working shift = 8 h/24 h | 0.33 |
Parameter Code | Parameter Definition | Value |
---|---|---|
CSFO | Oral cancer slope factor; CSFO (mg/kg/day)−1 | 1.5 |
ABSGI | Gastrointestinal absorption factor; ABSGI (unitless) | 1 |
IUR | Inhalation unit risk; IUR (mg/m3)−1 | 4.3 |
Parameter Code | Parameter Definition | Value |
---|---|---|
ABSGI | Gastrointestinal absorption factor; ABSGI (unitless) As = 1.0; Hg = 0.07 | 1.0/0.07 |
RfDO | Oral reference dose; RfDO (mg/kg/day) As = 3 × 10−4; Hg = 3 × 10−4 | 3 × 10−4 |
RfC | Inhalation reference concentration; RfC (mg/m3)—As = 1 × 10−5; Hg = 3 × 10−4 | 1 × 10−5/3 × 10−4 |
Lower Waste Dump | Lower Platform | Upper Waste Dump | Chimneys | Demolition Debris | Other Zones | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
As | Hg | As | Hg | As | Hg | As | Hg | As | Hg | As | Hg | |
N | 5 | 5 | 6 | 6 | 7 | 7 | 4 | 4 | 11 | 11 | 13 | 13 |
Min | 11,089 | 454 | 1074 | 243 | 2594 | 240 | 12,906 | 25,114 | 29,644 | 530 | 36 | 2 |
Max | 26,776 | 4991 | 73,374 | 4991 | 38,841 | 7266 | 445,171 | 250,842 | 603,337 | 41,498 | 8958 | 538 |
Aver | 17,159 | 1708 | 51,810 | 2731 | 16,107 | 3646 | 215,223 | 87,476 | 136,130 | 17,199 | 2386 | 94 |
SD | 6960 | 1928 | 27,206 | 1840 | 13,312 | 2645 | 177,818 | 109,054 | 172,072 | 13,175 | 2792 | 138 |
Lower Waste Dump | Lower Platform | Upper Waste Dump | Chimneys (Estimated) | Demolition Debris | Other Zones | |
---|---|---|---|---|---|---|
N | 40 | 24 | 22 | 42 | 42 | 130 |
Min | 3.4 × 10−5 | 1.0 × 10−5 | 3.0 × 10−5 | 1.0 × 10−2 | 5.1 × 10−3 | 1.0 × 10−5 |
Max | 7.9 × 10−3 | 4.4 × 10−4 | 1.3 × 10−3 | 1.2 × 10−1 | 5.8 × 10−2 | 7.4 × 10−3 |
Aver | 8.0 × 10−4 | 7.8 × 10−5 | 2.8 × 10−4 | 4.6 × 10−2 | 2.3 × 10−2 | 8.9 × 10−4 |
SD | 1.3 × 10−3 | 9.1 × 10−5 | 2.9 × 10−4 | 3.3 × 10−2 | 1.7 × 10−2 | 1.4 × 10−3 |
Lower Waste Dump | Lower Platform | Upper Waste Dump | Chimneys | Demolition Debris | Other Zones | |
---|---|---|---|---|---|---|
As in air (mg/m3) | 5.90 × 10−5 | 5.40 × 10−4 | 5.90 × 10−5 | 5.40 × 10−4 | 5.40 × 10−4 | 3.30 × 10−5 |
Hg in air (mg/m3) | 1.66 × 10−4 | 1.66 × 10−4 | 1.66 × 10−4 | 4.50 × 10−4 | 4.50 × 10−4 | 8.00 × 10−5 |
Cancer risk | Lower Waste Dump | Lower Platform | Upper Waste Dump | Chimneys | Demolition Debris | Other Zones |
---|---|---|---|---|---|---|
Oral CRO | 8.3 × 10−3 | 2.5 × 10−2 | 7.8 × 10−3 | 1.0 × 10−1 | 6.6 × 10−2 | 1.2 × 10−3 |
Dermal CRd | 2.7 × 10−3 | 8.3 × 10−3 | 2.6 × 10−3 | 3.4 × 10−2 | 2.2 × 10−2 | 3.8 × 10−4 |
Inhalation CRinh | 3.1 × 10−5 | 2.9 × 10−4 | 3.1 × 10−5 | 2.9 × 10−4 | 2.9 × 10−4 | 1.8 × 10−5 |
Total CR | 1.1 × 10−2 | 3.4 × 10−2 | 1.0 × 10−2 | 1.4 × 10−1 | 8.8 × 10−2 | 1.6 × 10−3 |
Hazard Quotient | Lower Waste Dump | Lower Platform | Upper Waste Dump | Chimneys | Demolition Debris | Other Zones | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
As | Hg | As | Hg | As | Hg | As | Hg | As | Hg | As | Hg | |
Oral HQO | 32.2 | 5.3 | 97.3 | 8.6 | 30.3 | 11.4 | 404.3 | 273.9 | 255.7 | 53.9 | 4.5 | 0.3 |
Dermal HQd | 10.6 | 5.0 | 32.1 | 8.1 | 10.0 | 10.8 | 133.4 | 258.2 | 84.4 | 50.8 | 1.5 | 0.3 |
Inhalation HQinh | 1.3 | 0.7 | 11.7 | 0.2 | 1.3 | 0.3 | 11.7 | 33.8 | 11.7 | 17.1 | 0.7 | 0.7 |
Total HI | 44.2 | 11.1 | 141.2 | 16.8 | 41.5 | 22.5 | 549.5 | 565.9 | 351.9 | 121.7 | 6.7 | 1.3 |
Area | CR Range | HI Range |
---|---|---|
High risk to health (Green) (Area F) | 1.5 × 10−4 < CR < 1.5 × 10−3 | 0 < HI < 10 |
Very high risk to health (Brown) (Areas C and D) | 1.5 × 10−3 < CR < 1.5 × 10−2 | 10 < HI < 100 |
Extremely high risk to health (Red) (Areas A and D) | 1.5 × 10−2 < CR < 1.5 × 10−1 | 100 < HI < 1000 |
Case | Country | Site | As (mg/kg) | Hg (mg/kg) | CR | HI | Reference |
---|---|---|---|---|---|---|---|
1 | Poland | Agricultural soils | 1.40–16.6 | 0.00–0.52 | 1.41 × 10−5 | 0.103 | [7] |
2 | Poland | Former chemical plant | 2.72–3.26 | 0.05–0.07 | 2.8 × 10−7–4.2 × 10−5 | 2.2 × 10−4–4.6 × 10−2 | [11] |
3 | China | Industrial area | 0.4–70.6 | - | 1.3 × 10−4 | 1.69 × 10−2 | [8] |
4 | Peru | Agricultural soils | 21.1–28.7 | - | 3.4 × 10−4 | 3.6 × 10−1 | [9] |
5 | China | Automobile industry | 88.25–1994.75 | - | 6.3 × 10−4 | 6.4 × 10−5–1.4 × 10−3 | [33] |
6 | China | Mercury smelting site | 67.42 | 358.51 | 1.2 × 10−6–3.4 × 10−4 | 0.37–43.56 | [6] |
7 | Panama | Abandoned gold mine | 35.5–5030 | 0.06–1.37 | 1.1 × 10−4–3.5 × 10−3 | 1.51–11.54 | [34] |
8 | China | Metalliferous, industrial district | 0.54–3895 | 0.00–3.29 | 7.1 × 10−7–3.2 × 10−2 | 0.29–211 | [13] |
9 | Spain | Former mercury mine | 13–392,238 | 0.7–4498 | 8.5 × 10−6–2.5 × 10−1 | 0.1–1000 | [12] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rodríguez, R.; Garcia-Gonzalez, H.; Hernández, Z.; Sanmiquel, L. Tackling Arsenic and Mercury Contamination: Implications for Sustainable Mining and Occupational Health Risks. Sustainability 2024, 16, 4027. https://doi.org/10.3390/su16104027
Rodríguez R, Garcia-Gonzalez H, Hernández Z, Sanmiquel L. Tackling Arsenic and Mercury Contamination: Implications for Sustainable Mining and Occupational Health Risks. Sustainability. 2024; 16(10):4027. https://doi.org/10.3390/su16104027
Chicago/Turabian StyleRodríguez, Rafael, Hector Garcia-Gonzalez, Zenaida Hernández, and Lluís Sanmiquel. 2024. "Tackling Arsenic and Mercury Contamination: Implications for Sustainable Mining and Occupational Health Risks" Sustainability 16, no. 10: 4027. https://doi.org/10.3390/su16104027
APA StyleRodríguez, R., Garcia-Gonzalez, H., Hernández, Z., & Sanmiquel, L. (2024). Tackling Arsenic and Mercury Contamination: Implications for Sustainable Mining and Occupational Health Risks. Sustainability, 16(10), 4027. https://doi.org/10.3390/su16104027