Active Learning, Living Laboratories, Student Empowerment, and Urban Sustainability
Abstract
:1. Introduction
2. Sustainability Rankings of Universities
Examples of Active Learning Challenges with a Focus on Sustainability
3. A Course Curriculum—Urban Food and Society
3.1. Science versus Opinion
3.2. Food Insecurity and Climate Change
3.3. Food Waste
3.4. Environmental Footprint of Crop Production
3.5. Households and Carbon Footprint
3.6. Food Strategies and UN’s 2030 Agenda for Sustainable Development
3.7. Urban Water Footprint
3.8. Re-Thinking Food Waste
3.9. Urban Farming and Food Production
3.10. Industrial Symbioses and Urban Community Pillars
4. Conclusions
Funding
Informed Consent Statement
Conflicts of Interest
References
- Robinson, K. How to Escape Education’s Death Valley. Available online: https://www.ted.com/talks/sir_ken_robinson_how_to_escape_education_s_death_valley?language=en (accessed on 11 March 2024).
- Børte, K.; Nesje, K.; Lillejord, S. Barriers to student active learning in higher education. Teach. High. Educ. 2023, 28, 597–615. [Google Scholar] [CrossRef]
- Lee, D.; Morrone, A.S.; Siering, G. From swimming pool to collaborative learning studio: Pedagogy, space, and technology in a large active learning classroom. Educ. Technol. Res. Dev. 2018, 66, 95–127. [Google Scholar] [CrossRef]
- Grabinger, R.S.; Dunlap, J.C. Rich environments for active learning: A definition. ALT-J 1995, 3, 5–34. [Google Scholar] [CrossRef]
- Theobald, E.J.; Hill, M.J.; Tran, E.; Agrawal, S.; Arroyo, E.N.; Behling, S.; Chambwe, N.; Cintrón, D.L.; Cooper, J.D.; Dunster, G. Active learning narrows achievement gaps for underrepresented students in undergraduate science, technology, engineering, and math. Proc. Natl. Acad. Sci. USA 2020, 117, 6476–6483. [Google Scholar] [CrossRef] [PubMed]
- Prince, M. Does active learning work? A review of the research. J. Eng. Educ. 2004, 93, 223–231. [Google Scholar] [CrossRef]
- Li, R.; Lund, A.; Nordsteien, A. The link between flipped and active learning: A scoping review. Teach. High. Educ. 2023, 28, 1993–2027. [Google Scholar] [CrossRef]
- Aramburuzabala, P.; Cerrillo, R. Service-learning as an approach to educating for sustainable development. Sustainability 2023, 15, 11231. [Google Scholar] [CrossRef]
- Tercanli, H.; Jongbloed, B. A systematic review of the literature on living labs in higher education institutions: Potentials and constraints. Sustainability 2022, 14, 12234. [Google Scholar] [CrossRef]
- Jeno, L.M. Encouraging active learning in higher education: A self-determination theory perspective. Int. J. Technol. Incl. Educ. 2015, 5, 716–721. [Google Scholar]
- Giesenbauer, B.; Müller-Christ, G. University 4.0: Promoting the Transformation of Higher Education Institutions toward Sustainable Development. Sustainability 2020, 12, 3371. [Google Scholar] [CrossRef]
- Hansen, S.S. The campus as a living laboratory: Macalester College case study. In Handbook of Theory and Practice of Sustainable Development in Higher Education; Filho, W.L., Mifsud, M., Shiel, C., Pretorius, R., Eds.; Springer International Publishing: Cham, Switzerland, 2017; Volume 3, pp. 223–239. [Google Scholar]
- Masseck, T. Living labs in architecture as innovation arenas within higher education institutions. Energy Procedia 2017, 115, 383–389. [Google Scholar] [CrossRef]
- O’Brien, W.; Doré, N.; Campbell-Templeman, K.; Lowcay, D.; Derakhti, M. Living labs as an opportunity for experiential learning in building engineering education. Adv. Eng. Inform. 2021, 50, 101440. [Google Scholar] [CrossRef]
- Nansen, C.; Omoto, C. Entomology and the art of creativity. Am. Entomol. 2011, 57, 179–181. [Google Scholar] [CrossRef]
- Blackawton, P.S.; Airzee, S.; Allen, A.; Baker, S.; Berrow, A.; Blair, C.; Churchill, M.; Coles, J.; Cumming, R.F.-J.; Fraquelli, L.; et al. Blackawton bees. Biol. Lett. 2011, 7, 168–172. [Google Scholar] [CrossRef] [PubMed]
- Owens, D.C.; Sadler, T.D.; Barlow, A.T.; Smith-Walters, C. Student motivation from and resistance to active learning rooted in essential science practices. Res. Sci. Educ. 2020, 50, 253–277. [Google Scholar] [CrossRef]
- Wu, J.; Snell, G.; Samji, H. Climate anxiety in young people: A call to action. Lancet Planet. Health 2020, 4, e435–e436. [Google Scholar] [CrossRef] [PubMed]
- Clayton, S.; Karazsia, B.T. Development and validation of a measure of climate change anxiety. J. Environ. Psychol. 2020, 69, 101434. [Google Scholar] [CrossRef]
- Coffey, Y.; Bhullar, N.; Durkin, J.; Islam, M.S.; Usher, K. Understanding eco-anxiety: A systematic scoping review of current literature and identified knowledge gaps. J. Clim. Chang. Health 2021, 3, 100047. [Google Scholar] [CrossRef]
- UI GreenMetric World University Rankings: Background of the Ranking. Available online: https://greenmetric.ui.ac.id/rankings/overall-rankings-2023 (accessed on 11 March 2024).
- Easley, J.A. UC Davis Tops Nation in Sustainability Rankings. Available online: https://www.ucdavis.edu/news/uc-davis-tops-nation-sustainability-rankings#:~:text=The%20University%20of%20California%2C%20Davis,UI%20GreenMetric%20World%20University%20rankings (accessed on 4 May 2024).
- QS World University Rankings by Subject—Agriculture & Forestry. Available online: https://www.qschina.cn/en/university-rankings/university-subject-rankings/2023/agriculture-forestry (accessed on 11 March 2024).
- Grobman, Y.J.; Weisser, W.; Shwartz, A.; Ludwig, F.; Kozlovsky, R.; Ferdman, A.; Perini, K.; Hauck, T.E.; Selvan, S.U.; Saroglou, S.; et al. Architectural multispecies building design: Concepts, challenges, and design process. Sustainability 2023, 15, 15480. [Google Scholar] [CrossRef]
- Vidal, M. This Ancient Material Is Displacing Plastics and Creating a Billion-Dollar Industry. Available online: https://www.washingtonpost.com/climate-solutions/2024/02/03/cork-sustainable-material/ (accessed on 4 May 2024).
- Berg, N. This Building Made of Growing Trees Could Change the Way We Think about Architecture. Available online: https://l.smartnews.com/p-DTPDb/Tn8NtG (accessed on 11 March 2024).
- Irga, P.J.; Torpy, F.R.; Griffin, D.; Wilkinson, S.J. Vertical greening systems: A perspective on existing technologies and new design recommendation. Sustainability 2023, 15, 6014. [Google Scholar] [CrossRef]
- Bitler, M.; Haider, S.J. An economic view of food deserts in the United States. J. Policy Anal. Manag. 2011, 30, 153–176. [Google Scholar] [CrossRef]
- Hamidi, S. Urban sprawl and the emergence of food deserts in the USA. Urban Stud. 2020, 57, 1660–1675. [Google Scholar] [CrossRef]
- Testa, A.; Jackson, D.B.; Semenza, D.C.; Vaughn, M.G. Food deserts and cardiovascular health among young adults. Public Health Nutr. 2021, 24, 117–124. [Google Scholar] [CrossRef] [PubMed]
- Fong, A.J.; Lafaro, K.; Ituarte, P.H.G.; Fong, Y. Association of living in urban food deserts with mortality from breast and colorectal cancer. Ann. Surg. Oncol. 2021, 28, 1311–1319. [Google Scholar] [CrossRef] [PubMed]
- Kuddus, M.A.; Tynan, E.; McBryde, E. Urbanization: A problem for the rich and the poor? Public Health Rev. 2020, 41, 1. [Google Scholar] [CrossRef] [PubMed]
- Anonymous. Science and Society. Available online: https://www.ucdavis.edu/minors/science-and-society (accessed on 4 May 2024).
- Nansen, C. Urban Food and Society. Available online: https://chrnansen.wixsite.com/nansen2/urbanfood (accessed on 4 May 2024).
- Chen, C.; Chaudhary, A.; Mathys, A. Nutritional and environmental losses embedded in global food waste. Resour. Conserv. Recycl. 2020, 160, 104912. [Google Scholar] [CrossRef]
- Dance, S. Why a Sudden Surge of Broken Heat Records Is Scaring Scientists. Available online: https://www.washingtonpost.com/weather/2023/07/06/earth-record-heat-climate-extremes/ (accessed on 4 May 2024).
- Lomborg, B. Thinking smartly about climate change. Imprimis. 2023. Available online: https://imprimis.hillsdale.edu/thinking-smartly-about-climate-change/ (accessed on 4 May 2024).
- Halpern, B.S.; Frazier, M.; Verstaen, J.; Rayner, P.-E.; Clawson, G.; Blanchard, J.L.; Cottrell, R.S.; Froehlich, H.E.; Gephart, J.A.; Jacobsen, N.S. The environmental footprint of global food production. Nat. Sustain. 2022, 5, 1027–1039. [Google Scholar] [CrossRef]
- Fujimori, S.; Hasegawa, T.; Krey, V.; Riahi, K.; Bertram, C.; Bodirsky, B.L.; Bosetti, V.; Callen, J.; Després, J.; Doelman, J.; et al. A multi-model assessment of food security implications of climate change mitigation. Nat. Sustain. 2019, 2, 386–396. [Google Scholar] [CrossRef]
- Berrill, P.; Wilson, E.J.H.; Reyna, J.L.; Fontanini, A.D.; Hertwich, E.G. Decarbonization pathways for the residential sector in the United States. Nat. Clim. Chang. 2022, 12, 712–718. [Google Scholar] [CrossRef]
- Ilieva, R.T. Urban food systems strategies: A promising tool for implementing the SDGs in practice. Sustainability 2017, 9, 1707. [Google Scholar] [CrossRef]
- McDougall, R.; Kristiansen, P.; Rader, R. Small-scale urban agriculture results in high yields but requires judicious management of inputs to achieve sustainability. Proc. Natl. Acad. Sci. USA 2019, 116, 129–134. [Google Scholar] [CrossRef] [PubMed]
- Shamshiri, R.R.; Kalantari, F.; Ting, K.C.; Thorp, K.R.; Hameed, I.A.; Weltzien, C.; Ahmad, D.; Shad, Z.M. Advances in greenhouse automation and controlled environment agriculture: A transition to plant factories and urban agriculture. Int. J. Agric. Biol. Eng. 2018, 11, 1–22. [Google Scholar] [CrossRef]
- Hoekstra, A.Y. Water footprint assessment: Evolvement of a new research field. Water Resour. Manag. 2017, 31, 3061–3081. [Google Scholar] [CrossRef]
- Wen, Z.; Wang, Y.; de Clercq, D. What is the true value of food waste? A case study of technology integration in urban food waste treatment in Suzhou City, China. J. Clean. Prod. 2016, 118, 88–96. [Google Scholar] [CrossRef]
- Cleveland, D.A.; Phares, N.; Nightingale, K.D.; Weatherby, R.L.; Radis, W.; Ballard, J.; Campagna, M.; Kurtz, D.; Livingston, K.; Riechers, G. The potential for urban household vegetable gardens to reduce greenhouse gas emissions. Landsc. Urban Plan. 2017, 157, 365–374. [Google Scholar] [CrossRef]
- Chance, E.; Ashton, W.; Pereira, J.; Mulrow, J.; Norberto, J.; Derrible, S.; Guilbert, S. The Plant—An experiment in urban food sustainability. Environ. Prog. Sustain. Energy 2018, 37, 82–90. [Google Scholar] [CrossRef]
- Zanten, V.H.; Simon, W.; Van Selm, B.; Wacker, J.; Maindl, T.; Frehner, A.; Hijbeek, R.; Van Ittersum, M.; Herrero, M. Circularity in Europe strengthens the sustainability of the global food system. Nat. Food 2023, 4, 320–330. [Google Scholar] [CrossRef] [PubMed]
- Diekmann, L.O.; Gray, L.C.; Thai, C.L. More than food: The social benefits of localized urban food systems. Front. Sustain. Food Syst. 2020, 4, 534219. [Google Scholar] [CrossRef]
- Palar, K.; Hufstedler, E.L.; Hernandez, K.; Chang, A.; Ferguson, L.; Lozano, R.; Weiser, S.D. Nutrition and health improvements after participation in an urban home garden program. J. Nutr. Educ. Behav. 2019, 51, 1037–1046. [Google Scholar] [CrossRef] [PubMed]
- Aschemann-Witzel, J.; Zielke, S. Can’t buy me green? A review of consumer perceptions of and behavior toward the price of organic food. J. Consum. Aff. 2017, 51, 211–251. [Google Scholar] [CrossRef]
- Katt, F.; Meixner, O. A systematic review of drivers influencing consumer willingness to pay for organic food. Trends Food Sci. Technol. 2020, 100, 374–388. [Google Scholar] [CrossRef]
- Durham, T.C.; Mizik, T. Comparative economics of conventional, organic, and alternative agricultural production systems. Economies 2021, 9, 64. [Google Scholar] [CrossRef]
- Heinrichs, J.; Kuhn, T.; Pahmeyer, C.; Britz, W. Economic effects of plot sizes and farm-plot distances in organic and conventional farming systems: A farm-level analysis for Germany. Agric. Syst. 2021, 187, 102992. [Google Scholar] [CrossRef]
- Gschwandtner, A. The organic food premium: A local assessment in the UK. Int. J. Econ. Bus. 2018, 25, 313–338. [Google Scholar] [CrossRef]
- Tchonkouang, R.D.; Onyeaka, H.; Miri, T. From waste to plate: Exploring the impact of food waste valorisation on achieving zero hunger. Sustainability 2023, 15, 10571. [Google Scholar] [CrossRef]
- United States Housing Statistics. Available online: https://www.infoplease.com/us/census/housing-statistics (accessed on 11 March 2024).
- How Many U.S. Homes Have Solar Panels? Available online: https://www.consumeraffairs.com/solar-energy/how-many-us-homes-have-solar-panels.html (accessed on 29 February 2024).
- UC Davis On-Site Renewable Energy. Available online: https://sustainability.ucdavis.edu/goals/energy/on-site (accessed on 11 March 2024).
- Ringersma, J.; Batjes, N.; Dent, D. Green Water: Definitions and Data for Assessment Report 2003/2. Available online: https://edepot.wur.nl/36619#:~:text=Green%20water%20is%20that%20fraction,replenishment%20of%20reserves%20by%20rainfall (accessed on 11 March 2024).
- Rost, S.; Gerten, D.; Bondeau, A.; Lucht, W.; Rohwer, J.; Schaphoff, S. Agricultural green and blue water consumption and its influence on the global water system. Water Resour. Res. 2008, 44, 1–17. [Google Scholar] [CrossRef]
- Allen, L.; Christian-Smith, J.; Palaniappan, M. Overview of greywater reuse: The potential of greywater systems to aid sustainable water management. Pac. Inst. 2010, 654, 19–21. [Google Scholar]
- Weather and Climate—Davis, CA. Available online: https://weather-and-climate.com/average-monthly-hours-Sunshine,davis-california-us,United-States-of-America (accessed on 11 March 2024).
- Land & Water—Databases and Software. Available online: https://www.fao.org/land-water/databases-and-software/crop-information/en/ (accessed on 11 March 2024).
- Shahbandeh, M. U.S. per Capita Consumption of Fresh Cabbage 2000–2022. Available online: https://www.statista.com/statistics/257336/per-capita-consumption-of-fresh-cabbage-in-the-us/#:~:text=According%20to%20the%20report%2C%20the,approximately%206.2%20pounds%20in%202022 (accessed on 4 May 2024).
- Davison, D. How Urban Agriculture Is Transforming Detroit. Available online: https://www.ted.com/talks/devita_davison_how_urban_agriculture_is_transforming_detroit (accessed on 11 March 2024).
- Finley, R. A Guerrilla Gardener in South Central LA. Available online: https://www.ted.com/talks/ron_finley_a_guerrilla_gardener_in_south_central_la?language=en (accessed on 11 March 2024).
- Food Wastage Footprint. Impacts on Natural Resources; FAO: Rome, Italy, 2013. [Google Scholar]
- Bouce, D. Turning Poop into Power, Not Pollution. Available online: https://www.pbs.org/newshour/show/turning-poop-into-power-not-pollution (accessed on 4 May 2024).
- Fowles, T.M.; Nansen, C. Artificial selection of insects to bioconvert pre-consumer organic wastes. A review. Agron. Sustain. Dev. 2019, 39, 31. [Google Scholar] [CrossRef]
- Rivero, N. Why Companies Are Racing to Build the World’s Biggest Bug Farm. Available online: https://www.washingtonpost.com/climate-solutions/2023/11/12/biggest-insect-farm-record/ (accessed on 4 May 2024).
- Student Farm. Available online: https://asi.ucdavis.edu/programs/sf (accessed on 11 March 2024).
- Scharmer, C.O. Vertical Literacy: Re-Imagining the 21st-Century University. Available online: https://medium.com/presencing-institute-blog/vertical-literacy-12-principles-for-reinventing-the-21stcentury-university-39c2948192ee (accessed on 11 March 2024).
- Hubbart, J.A. Harmonizing science and society: A change management approach to align scientific endeavors with societal needs. Sustainability 2023, 15, 15233. [Google Scholar] [CrossRef]
Lecture # | Lecture Topic | Reading Assignment |
---|---|---|
1 | Course introduction | Course syllabus |
2 | Scientific approaches | Instructor notes |
3 | Sustainability concept | [35] |
4 | Climate change and news and opinion | [36,37] |
5 | Env. footprint of food production | [38] |
6 | Env. footprint of food production | [38] |
7 | Climate change and food security | [39] |
8 | Households and carbon footprint | [40] |
9 | Food strategies and UN’s SDGs | [41] |
10 | Food strategies and UN’s SDGs | [41] |
11 | Urban farming yields | [42] |
12 | Urban farming and food production | [43] |
13 | Urban water footprint | [44] |
14 | Urban water footprint | [44] |
15 | Re-thinking food waste | [45] |
16 | Urban farming and GHGs | [46] |
17 | Urban systems—the Plant | [47] |
18 | Urban systems—European analysis | [48] |
19 | School of food | [49] |
20 | Nutrition and home cooking | [50] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nansen, C. Active Learning, Living Laboratories, Student Empowerment, and Urban Sustainability. Sustainability 2024, 16, 3902. https://doi.org/10.3390/su16103902
Nansen C. Active Learning, Living Laboratories, Student Empowerment, and Urban Sustainability. Sustainability. 2024; 16(10):3902. https://doi.org/10.3390/su16103902
Chicago/Turabian StyleNansen, Christian. 2024. "Active Learning, Living Laboratories, Student Empowerment, and Urban Sustainability" Sustainability 16, no. 10: 3902. https://doi.org/10.3390/su16103902
APA StyleNansen, C. (2024). Active Learning, Living Laboratories, Student Empowerment, and Urban Sustainability. Sustainability, 16(10), 3902. https://doi.org/10.3390/su16103902