The Spatiotemporal Eutrophication Status and Trends in the Paldang Reservoir, Republic of Korea
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Sites
2.2. Sampling and Analysis
2.3. Precipitation and Hydrological Data Collection
2.4. Data Treatment and Analysis
2.5. Korean-Type Trophic State Index Calculation
2.6. Seasonal Mann–Kendall Test
- Data preparation: time-series data were grouped by month or season.
- Rank computation: the ranks of observations within each group were calculated.
- statistical computation: monthly or seasonal statistics were computed using Equation (5), where represents the monthly statistics, represents the number of years, represents the month, and represents the water quality data for that year. is an indicator representing the difference between the data of month for years and as either positive (+1), zero (0), or negative (−1).
- Statistical computation: using Equation (7), we summed all monthly statistics to compute the overall statistic.
- computation: the variance of the overall statistic, denoted as , was calculated. In this process, the grouped impact of data values was considered.
- Z-Statistic computation: the statistic and were used to calculate the Z-statistic. This was used to determine the significance of the trends.
- p-value computation: the p-value associated with the Z-statistic was calculated. The p-value indicates the significance of the trend in a seasonal context.
- Hypothesis testing: the calculated p-value was compared with the chosen significance level. If the p-value is ≥0.05 at a 95% confidence interval for both sides at the significance level (α = 0.05), accept the null hypothesis of no trend; if the p-value is <0.05, reject the null hypothesis and accept the alternative hypothesis of having a trend.
3. Results and Discussion
3.1. Precipitation and Hydrological Characteristics
3.2. Water Quality Characteristics of the Paldang Reservoir
3.3. Correlation Analysis
3.4. Trophic State Index
3.5. The Seasonal Mann–Kendall Test of TSIKO
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Crosbie, R.S.; Scanlon, B.R.; Mpelasoka, F.S.; Reedy, R.C.; Gates, J.B.; Zhang, L. Potential climate change effects on groundwater recharge in the High Plains aquifer, USA. Water Resour. Res. 2013, 49, 3936–3951. [Google Scholar] [CrossRef]
- Ding, L.; Li, Q.; Tang, J.; Wang, J.; Chen, X. Linking Land Use Metrics Measured in Aquatic–Terrestrial Interfaces to Water Quality of Reservoir-Based Water Sources in Eastern China. Sustainability 2019, 11, 4860. [Google Scholar] [CrossRef]
- Li, P.; Tian, R.; Xue, C.; Wu, J. Progress, opportunities and key fields for groundwater quality research under the impacts of human activities in China with a special focus on western China. Environ. Sci. Pollut. Res. 2017, 24, 13224–13234. [Google Scholar] [CrossRef]
- Zhou, Z.; Huang, T.; Gong, W.; Li, Y.; Liu, Y.; Zhou, S.; Cao, M. Water Quality Responses during the Continuous Mixing Process and Informed Management of a Stratified Drinking Water Reservoir. Sustainability 2019, 11, 7106. [Google Scholar] [CrossRef]
- Duan, W.; He, B.; Nover, D.; Yang, G.; Chen, W.; Meng, H.; Zou, S.; Liu, C. Water Quality Assessment and Pollution Source Identification of the Eastern Poyang Lake Basin Using Multivariate Statistical Methods. Sustainability 2016, 8, 133. [Google Scholar] [CrossRef]
- Xia, R.; Zhang, Y.; Wang, G.; Zhang, Y.; Dou, M.; Hou, X.; Qiao, Y.; Wang, Q.; Yang, Z. Multi-factor identification and modelling analyses for managing large river algal blooms. Environ. Pollut. 2019, 254, 113056. [Google Scholar] [CrossRef]
- Domysheva, V.; Vorobyeva, S.; Golobokova, L.; Netsvetaeva, O.; Onischuk, N.; Sakirko, M.; Khuriganova, O.; Fedotov, A. Assessment of the Current Trophic Status of the Southern Baikal Littoral Zone. Water 2023, 15, 1139. [Google Scholar] [CrossRef]
- Selman, M.; Greenh, S. Eutrophication: Sources and drivers of nutrient pollution. Renew. Resour. J. 2010, 26, 19–26. [Google Scholar]
- Ansari, A.A.; Gill, S.S.; Khan, F.A. Eutrophication: Threat to Aquatic Ecosystems. In Eutrophication: Causes, Consequences and Control; Ansari, A.A., Singh Gill, S., Lanza, G.R., Rast, W., Eds.; Springer: Dordrecht, The Netherlands, 2010; pp. 143–170. ISBN 978-90-481-9624-1. [Google Scholar]
- Kwon, Y.S.; Bae, M.J.; Kim, J.S.; Kim, Y.J.; Kim, B.H.; Park, Y.S. Characterizing changes of water quality and relationships with environmental factors in the selected Korean reservoirs. Korean J. Ecol. Environ. 2014, 47, 146–159. [Google Scholar] [CrossRef]
- Bekteshi, A.; Cupi, A. Reserved area protection use of trophic state index (Carlson, 1977) for assessment of trophic status of the Shkodra Lake. J. Environ. Prot. Ecol. 2015, 15, 359–365. [Google Scholar]
- Zhang, Y.; Li, M.; Dong, J.; Yang, H.; Van Zwieten, L.; Lu, H.; Alshameri, A.; Zhan, Z.; Chen, X.; Jiang, X. A critical review of methods for analyzing freshwater eutrophication. Water 2021, 13, 225. [Google Scholar] [CrossRef]
- Jargal, N.; Lee, E.H.; An, K.G. Monsoon-induced response of algal chlorophyll to trophic state, light availability, and morphometry in 293 temperate reservoirs. J. Environ. Manag. 2023, 337, 117737. [Google Scholar] [CrossRef]
- Ge, Y.; Liu, X.; Chen, L.; Zhang, G.; Wu, Y.; Yang, X.; Yang, J. Attribution of lake eutrophication risk to anthropogenic forcing adjacent to the agriculture areas: A case study of Chagan Lake. Environ. Sci. Pollut. Res. 2023, 30, 112159–112172. [Google Scholar] [CrossRef]
- Park, S.C.; Kim, J.O.; Lee, W.B.; Park, S.H.; Lee, S.D. Characteristics of Eutrophication of Yeongsan River area using the Trophic State Index (TSIKO). J. Wat. Treat. 2017, 25, 3–15. [Google Scholar]
- Chen, P.C.; Wang, Y.H.; You, G.J.Y.; Wei, C.C. Comparison of methods for non-stationary hydrologic frequency analysis: Case study using annual maximum daily precipitation in Taiwan. J. Hydrol. 2017, 545, 197–211. [Google Scholar] [CrossRef]
- Asfaw, A.; Simane, B.; Hassen, A.; Bantider, A. Variability and time series trend analysis of rainfall and temperature in northcentral Ethiopia: A case study in Woleka sub-basin. Weather Clim. Extrem. 2018, 19, 29–41. [Google Scholar] [CrossRef]
- Nourani, V.; Danandeh, M.A.; Azad, N. Trend analysis of hydroclimatological variables in Urmia lake basin using hybrid wavelet Mann–Kendall and Şen tests. Environ. Earth Sci. 2018, 77, 207. [Google Scholar] [CrossRef]
- Mehr, A.D.; Vaheddoost, B. Identifcation of the trends associated with the SPI and SPEI indices across Ankara, Turkey. Theor. Appl. Clim. 2020, 139, 1531–1542. [Google Scholar] [CrossRef]
- Cho, Y.C.; Im, J.K.; Han, J.; Kim, S.H.; Kang, T.; Lee, S. Comprehensive Water Quality Assessment Using Korean Water Quality Indices and Multivariate Statistical Techniques for Sustainable Water Management of the Paldang Reservoir, South Korea. Water 2023, 15, 509. [Google Scholar] [CrossRef]
- Boopathi, T.; Wang, H.; Lee, M.D.; Ki, J.S. Seasonal Changes in Cyanobacterial Diversity of a Temperate Freshwater Paldang Reservoir (Korea) Explored by using Pyrosequencing. Environ. Biol. Res. 2018, 36, 424–437. [Google Scholar] [CrossRef]
- Song, C.M. Analysis of the Effects of Local Regulations on the Preservation of Water Resources Using the CA-Markov Model. Sustainability 2021, 13, 5652. [Google Scholar] [CrossRef]
- Sim, Y.; Byeon, M.S.; Kim, K.; Yu, S.J.; Im, J.K. Influence of Zooplankton and Environmental Factors on Clear-Water Phase in Lake Paldang, South Korea. Int. J. Environ. Res. Public Health 2021, 18, 7205. [Google Scholar] [CrossRef] [PubMed]
- Yu, S.J.; Son, J.Y.; Kang, H.Y.; Cho, Y.C.; Im, J.K. Effects of Long-Term Increases in Water Temperature and Stratification on Large Artificial Water-Source Lakes in South Korea. Water 2021, 13, 2341. [Google Scholar] [CrossRef]
- Ryu, I.; Yu, S.; Chung, S. Characterizing Density Flow Regimes of Three Rivers with Different Physicochemical Properties in a Run-Of-The-River Reservoir. Water 2020, 12, 717. [Google Scholar] [CrossRef]
- Kim, D.Y.; Park, S.H.; Song, C.M. Evaluation of Water Social Service and Comprehensive Water Management Linked with Integrated River Evaluation. Water 2021, 13, 706. [Google Scholar] [CrossRef]
- Ministry of Environment (MOE). Official Testing Method with Respect to Water Pollution Process; National Institute of Environmental Research (NIER): Incheon, Republic of Korea, 2018. [Google Scholar]
- Mamun, M.; Kim, J.Y.; An, K.G. Multivariate Statistical Analysis of Water Quality and Trophic State in an Artificial Dam Reservoir. Water 2021, 13, 186. [Google Scholar] [CrossRef]
- Lee, S.; Park, J.R.; Joo, J.C.; Ahn, C.H. Application of WQIEUT and TSIKO for comprehensive water quality assessment immediately after the construction of the Yeongju Multipurpose Dam in the Naeseong Stream Basin, Republic of Korea. Sci. Total Environ. 2022, 819, 152997. [Google Scholar] [CrossRef]
- Choi, H.; Ryu, I.; Park, M.; Song, Y.; Yu, S. Analysis of the Water Circulation Structure in the Paldang Reservoir, South Korea. Appl. Sci. 2020, 10, 6822. [Google Scholar] [CrossRef]
- Son, J.Y.; Park, J.R.; Noh, H.R.; Yu, S.J.; Im, J.K. Seasonal Characteristics of thermal and chemical stratification in Lake Paldang. J. Korean Soc. Water Environ. 2020, 36, 1–13. [Google Scholar]
- Nadarajah, S.; Wijenayake, W.M.H.K.; Amarasinghe, U.S. Influence of hydrology on water quality and trophic state of irrigation reservoirs in Sri Lanka. Lakes Reserv. Res. Manag. 2019, 24, 287–298. [Google Scholar] [CrossRef]
- Lee, Y.; Ha, S.Y.; Park, H.K.; Han, M.S.; Shin, K.H. Identification of key factors influencing primary productivity in two river-type reservoirs by using principal component regression analysis. Environ. Monit. Assess. 2015, 187, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Collins, K.T. Integrating water quality indices and multivariate statistical techniques for water pollution assessment of the Volta Lake, Ghana. Sustain. Water Resour. Manag. 2021, 7, 71. [Google Scholar]
- Environmental Protection Agency (EPA). An Approach to a Relative Trophic Index System for Classifying Lakes and Reservoirs; Working paper No. 24. US Environmental Protection Agency, National Eutrophication Survey. Working Paper Series; National Service Centre for Environmental Publications (NSCEP): Cincinnati, OH, USA, 1974. [Google Scholar]
- Li, T.; Zhu, B.; Cao, F.; Sun, H.; He, X.; Liu, M.; Gong, F.; Bai, Y. Monitoring changes in the transparency of the largest reservoir in eastern China in the past decade, 2013–2020. Remote Sens. 2021, 13, 2570. [Google Scholar] [CrossRef]
- Mamun, M.; Ferdous, J.; An, K.G. Empirical Estimation of Nutrient, Organic Matter and Algal Chlorophyll in Drinking Water Reservoir Using Landsat 5 TM Data. Remote Sens. 2021, 13, 2256. [Google Scholar] [CrossRef]
- Sener, S.; Davraz, A.; Karaguzel, R. Evaluating the anthropogenic and geologic impacts on water quality of the Egirdir Lake, Turkey. Environ. Earth Sci. 2013, 70, 2527–2544. [Google Scholar] [CrossRef]
- Sener, S.; Sener, E.; Davraz, A. Evaluation of water quality using water quality index (WQI) method and GIS in Aksu River (SW-Turkey). Sci. Total Environ. 2017, 584–585, 131–144. [Google Scholar] [CrossRef]
- Park, H.K.; Cho, K.H.; Won, D.H.; Lee, J.; Kong, D.S.; Jung, D. Il Ecosystem responses to climate change in a large on-river reservoir, Lake Paldang, Korea. Clim. Chang. 2013, 120, 477–489. [Google Scholar] [CrossRef]
- Naveesullah, N.; Hashmi, M.Z.; Yu, C.; Shen, C.; Muhammas, N.; Shen, H.; Chen, Y. Water quality characterization of the Siling Reservoir (Zhejiang, China) using water quality index. Clean. Soil. Air. Water 2016, 44, 553–562. [Google Scholar] [CrossRef]
- Ustaoglu, F.; Tas, B.; Tepe, Y.; Topaldemir, H. Comprehensive assessment of water quality and associated health risk by using physicochemical quality indices and multivariate analysis in Terme River, Turkey. Environ. Sci. Pollut. Res. 2021, 28, 62736–62754. [Google Scholar] [CrossRef]
- Fox, G.A.; Purvis, R.A.; Penn, C.J. Streambanks: A net source of sediment and phosphorus to streams and rivers. J. Environ. Manag. 2016, 181, 602–614. [Google Scholar] [CrossRef]
- Atique, U.; An, K.G. Landscape heterogeneity impacts water chemistry, nutrient regime, organic matter and chlorophyll dynamics in agricultural reservoirs. Ecol. Indic. 2020, 110, 105813. [Google Scholar] [CrossRef]
- Varol, M. Use of water quality index and multivariate statistical methods for the evaluation of water quality of a stream affected by multiple stressors: A case study. Environ. Pollut. 2020, 266, 115417. [Google Scholar] [CrossRef] [PubMed]
- Jung, S.; Shin, M.; Kim, J.; Eum, J.; Lee, Y.; Lee, J.; Choi, Y.; You, K.; Owen, J.; Kim, B. The effects of Asian summer monsoons on algal blooms in reservoirs. Inland Waters 2016, 6, 406–413. [Google Scholar] [CrossRef]
Variables | Water Quality Grade | Mean Values at Sites (Grade) | Mean Values at Seasons (Grade) | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Ia | Ib | II | III | IV | V | VI | PD1 | PD2 | PD3 | PD4 | PD5 | Spring | Summer | Autumn | Winter | |
pH | 6.5–8.5 | 6.5–8.5 | 6.5–8.5 | 6.5–8.5 | 6.0–8.5 | 6.0–8.5 | 8.1 (Ia) | 7.9 (Ia) | 8.1 (Ia) | 7.9 (Ia) | 8.0 (Ia) | 8.1 (Ia) | 7.9 (Ia) | 7.9 (Ia) | 8.1 (Ia) | |
DO | >7.5 | >5.0 | >5.0 | >5.0 | >2.0 | >2.0 | <2.0 | 10.8 (Ia) | 10.3 (Ia) | 10.8 (Ia) | 10.7 (Ia) | 10.8 (Ia) | 11.7 (Ia) | 8.8 (Ia) | 9.8 (Ia) | 13.0 (Ia) |
BOD | <1.0 | <2.0 | <3.0 | <5.0 | <8.0 | <10.0 | >10.0 | 1.4 (Ib) | 1.2 (Ib) | 1.7 (Ib) | 1.1 (Ib) | 2.1 (II) | 1.9 (Ib) | 1.6 (Ib) | 1.2 (Ib) | 1.0 (Ib) |
COD | <2.0 | <3.0 | <4.0 | <5.0 | <8.0 | <10.0 | >10.0 | 4.0 (III) | 3.7 (II) | 4.2 (III) | 3.5 (II) | 5.0 (IV) | 4.2 (III) | 4.6 (III) | 3.9 (II) | 3.3 (II) |
TSS | <1.0 | <5.0 | <5.0 | <15.0 | <15.0 | 6.4 (III) | 5.4 (III) | 6.7 (III) | 3.6 (Ib) | 8.0 (III) | 6.2 (III) | 8.1 (III) | 5.8 (III) | 3.1 (Ib) | ||
TN | <0.20 | <0.30 | <0.40 | <0.60 | <1.00 | <1.50 | >1.50 | 2.53 (VI) | 2.14 (VI) | 2.50 (VI) | 1.88 (VI) | 2.60 (VI) | 2.47 (VI) | 2.01 (VI) | 2.27 (VI) | 2.64 (VI) |
TP | <0.01 | <0.02 | <0.03 | <0.05 | <0.10 | <0.15 | >0.15 | 0.04 (III) | 0.03 (III) | 0.04 (III) | 0.02 (II) | 0.04 (III) | 0.03 (III) | 0.05 (III) | 0.04 (III) | 0.02 (III) |
Chl-a | <5.0 | <9.0 | <14.0 | <20.0 | <35.0 | <70.0 | 70.0> | 13.5 (II) | 12.2 (II) | 17.0 (III) | 10.6 (II) | 23.0 (IV) | 17.3 (II) | 17.8 (III) | 14.8 (III) | 9.1 (II) |
Sites | TSIKO (COD) | TSIKO (TP) | TSIKO (Chl-a) | TSIKO |
---|---|---|---|---|
PD1 | 44 (Mesotrophic) | 52 (Eutrophic) | 48 (Mesotrophic) | 47 (Mesotrophic) |
PD2 | 42 (Mesotrophic) | 46 (Mesotrophic) | 53 (Eutrophic) | 46 (Mesotrophic) |
PD3 | 45 (Mesotrophic) | 53 (Eutrophic) | 55 (Eutrophic) | 50 (Mesotrophic) |
PD4 | 40 (Mesotrophic) | 38 (Mesotrophic) | 49 (Mesotrophic) | 42 (Mesotrophic) |
PD5 | 50 (Mesotrophic) | 53 (Eutrophic) | 61 (Eutrophic) | 53 (Eutrophic) |
Sites | Variables | N | Range | Z-Value | p-Value | Slope | Trend |
---|---|---|---|---|---|---|---|
PD1 | TSIKO (COD) | 120 | 29–54 | −1.48 | 0.14 | −0.09 | No |
TSIKO (TP) | 120 | 34–80 | 0.09 | 0.93 | 0.01 | No | |
TSIKO (Chl-a) | 120 | 1–73 | −1.84 | 0.07 | −0.11 | Down | |
TSIKO | 120 | 25–61 | −1.64 | 0.10 | −0.10 | No | |
PD2 | TSIKO (COD) | 120 | 31–52 | −0.45 | 0.65 | −0.03 | No |
TSIKO (TP) | 120 | 30–74 | 1.18 | 0.24 | 0.07 | No | |
TSIKO (Chl-a) | 120 | 25–70 | 1.60 | 0.11 | 0.10 | No | |
TSIKO | 120 | 31–58 | 1.12 | 0.26 | 0.07 | No | |
PD3 | TSIKO (COD) | 120 | 30–59 | −1.16 | 0.25 | −0.07 | No |
TSIKO (TP) | 120 | 36–82 | 0.67 | 0.50 | 0.04 | No | |
TSIKO (Chl-a) | 120 | 6–79 | −0.80 | 0.42 | −0.05 | No | |
TSIKO | 120 | 26–64 | −0.38 | 0.70 | −0.02 | No | |
PD4 | TSIKO (COD) | 120 | 30–53 | −1.01 | 0.31 | −0.06 | No |
TSIKO (TP) | 120 | 26–59 | 0.34 | 0.73 | 0.02 | No | |
TSIKO (Chl-a) | 120 | 24–74 | 1.84 | 0.07 | 0.12 | Up | |
TSIKO | 120 | 30–60 | 0.78 | 0.43 | 0.05 | No | |
PD5 | TSIKO (COD) | 120 | 22–61 | 1.78 | 0.07 | 0.11 | Up |
TSIKO (TP) | 120 | 22–83 | 3.88 | 0.00 | 0.24 | Up | |
TSIKO (Chl-a) | 120 | 23–83 | 4.25 | 0.00 | 0.27 | Up | |
TSIKO | 120 | 22–66 | 3.57 | 0.00 | 0.22 | Up |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cho, Y.-C.; Kang, H.-Y.; Son, J.-Y.; Kang, T.; Im, J.-K. The Spatiotemporal Eutrophication Status and Trends in the Paldang Reservoir, Republic of Korea. Sustainability 2024, 16, 373. https://doi.org/10.3390/su16010373
Cho Y-C, Kang H-Y, Son J-Y, Kang T, Im J-K. The Spatiotemporal Eutrophication Status and Trends in the Paldang Reservoir, Republic of Korea. Sustainability. 2024; 16(1):373. https://doi.org/10.3390/su16010373
Chicago/Turabian StyleCho, Yong-Chul, Ho-Yeong Kang, Ju-Yeon Son, Taegu Kang, and Jong-Kwon Im. 2024. "The Spatiotemporal Eutrophication Status and Trends in the Paldang Reservoir, Republic of Korea" Sustainability 16, no. 1: 373. https://doi.org/10.3390/su16010373
APA StyleCho, Y.-C., Kang, H.-Y., Son, J.-Y., Kang, T., & Im, J.-K. (2024). The Spatiotemporal Eutrophication Status and Trends in the Paldang Reservoir, Republic of Korea. Sustainability, 16(1), 373. https://doi.org/10.3390/su16010373