Ammonia Volatilization from Pig Slurries in a Semiarid Agricultural Rainfed Area
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site and Design
2.2. Field Ammonia Emission Measurements
2.3. Slurry Sampling and Analyses
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Van Damme, M.; Clarisse, L.; Franco, B.; Sutton, M.A.; Willem Erisman, J.; Wichink Kruit, R.; van Zanten, M.; Whitburn, S.; Hadji-Lazaro, J.; Hurtmans, D.; et al. Global, regional and national trends of atmospheric ammonia derived from a decadal (2008–2018) satellite record. Environ. Res. Lett. 2021, 16, 055017. [Google Scholar] [CrossRef]
- European Environment Agency (EEA). European Union Emission Inventory Report 1990–2019 under the UNECE Convention on Long-range Transboundary Air Pollution (Air Convention); EEA Report No 05/2021; European Environment Agency (EEA): Copenhagen, Denmark, 2021. [Google Scholar] [CrossRef]
- Phogat, V.; Šimůnek, J.; Petrie, P.; Pitt, T.; Filipović, V. Sustainability of a rainfed wheat production system in relation to water and Nitrogen dynamics in the soil in the Eyre Peninsula, South Australia. Sustainability 2023, 15, 13370. [Google Scholar] [CrossRef]
- Sutton, M.A.; Oenema, O.J.; Erisman, W.; Leip, A.; van Grinsven, H.; Winiwarter, W. Too much of a good thing. Nature 2011, 472, 159–161. [Google Scholar] [CrossRef] [PubMed]
- Behera, S.N.; Sharma, M.; Aneja, V.P.; Balasubramanian, R. Ammonia in the atmosphere: A review on emission sources, atmospheric chemistry, and deposition on terrestrial bodies. Environ. Sci. Pollut. Res. Int. 2013, 20, 8092–8131. [Google Scholar] [CrossRef] [PubMed]
- Babar, Z.B.; Park, J.H.; Lim, H.J. Influence of NH3 on secondary organic aerosols from the ozonolysis and photooxidation of α-pinene in a flow reactor. Atmos. Environ. 2017, 164, 71–84. [Google Scholar] [CrossRef]
- Link, M.F.; Kim, J.; Park, G.; Lee, T.; Park, T.; Babar, Z.B.; Farmer, D.K. Elevated production of NH4NO3 from the photochemical processing of vehicle exhaust: Implications for air quality in the Seoul Metropolitan Region. Atmos. Environ. 2017, 156, 95–101. [Google Scholar] [CrossRef]
- Wyer, K.E.; Kelleghan, D.B.; Blanes-Vidal, V.; Schauberger, G.; Curran, T.P. Ammonia emissions from agriculture and their contribution to fine particulate matter: A review of implications for human health. J. Environ. Manag. 2022, 323, 116285. [Google Scholar] [CrossRef]
- Shuttleworth, F.; EU Pork Production at Lowest Level in Almost a Decade. Agriculture and Horticulture Development Board. Available online: https://ahdb.org.uk/news/eu-pork-production-at-lowest-level-in-almost-a-decade (accessed on 11 November 2023).
- Antezana, W.; De Blas, C.; García-Rebollar, P.; Rodríguez, C.; Beccaccia, A.; Ferrer, P.; Cerisuelo, A.; Moset, V.; Estellés, F.; Cambra-López, M.; et al. Composition, potential emissions and agricultural value of pig slurry from Spanish commercial farms. Nutr. Cycl. Agroecosyst. 2016, 104, 159–173. [Google Scholar] [CrossRef]
- Ministerio de Medio Ambiente y Medio Rural y Marino (MARM). Caracterización de Sistemas de Gestión de Deyecciones: Sector Porcino Intensivo. NIPO: 770-10-260-4. Available online: https://www.mapa.gob.es/es/ganaderia/publicaciones/Porcino%20Intensivo_tcm30-105327.pdf (accessed on 11 November 2023). (In Spanish).
- Bosch-Serra, A.D.; Ortiz, C.; Yagüe, M.R.; Boixadera, J. Strategies to optimize nitrogen efficiency when fertilizing with pig slurries in dryland agricultural systems. Eur. J. Agron. 2015, 67, 27–36. [Google Scholar] [CrossRef]
- Webb, J.; Pain, B.; Bittman, S.; Morgan, J. The impacts of manure application methods on emissions of ammonia, nitrous oxide and on crop response—A review. Agric. Ecosyst. Environ. 2010, 137, 39–46. [Google Scholar] [CrossRef]
- Loyon, L.; Guiziou, F. Ammonia volatilization from different pig slurries applied on wheat stubble using different land spreading techniques under French conditions. Agric. Ecosyst. Environ. 2019, 280, 114–117. [Google Scholar] [CrossRef]
- Hafner, S.D.; Pacholski, A.; Bittman, S.; Burchill, W.; Bussink, W.; Chantigny, M.; Carozzi, M.; Génermont, S.; Häni, C.; Hansen, M.N.; et al. The ALFAM2 database on ammonia emission from field-applied manure: Description and illustrative analysis. Agric. For. Meteorol. 2018, 258, 66–79. [Google Scholar] [CrossRef]
- Emmerling, C.; Krein, A.; Junk, J. Meta-analysis of strategies to reduce NH3 emissions from slurries in European agriculture and consequences for greenhouse gas emissions. Agronomy 2020, 10, 1633. [Google Scholar] [CrossRef]
- Andersson, K.; Delin, S.; Pedersen, J.; Hafner, S.D.; Nyord, T. Ammonia emissions from untreated, separated, and digested cattle slurry–Effects of slurry type and application strategy on a Swedish clay soil. Biosyst. Eng. 2023, 226, 194–208. [Google Scholar] [CrossRef]
- Thompson, R.B.; Pain, B.F.; Rees, Y.J. Ammonia volatilization from cattle slurry following surface application to grassland. Plant Soil 1990, 125, 119–128. [Google Scholar] [CrossRef]
- Braschkat, J.; Mannheim, T.; Marschner, H. Estimation of ammonia losses after application of liquid cattle manure on grassland. Z. Pflanzenernähr. Bodenkd. 1997, 160, 117–123. [Google Scholar] [CrossRef]
- Hurtado, J.; Velázquez, E.; Lassaletta, L.; Guardia, G.; Aguilera, E.; Sanz-Cobena, A. Drivers of ammonia volatilization in Mediterranean climate cropping systems. Environ. Pollut. 2023, 341, 122814. [Google Scholar] [CrossRef]
- Misselbrook, T.H.; Brookman, S.K.E.; Smith, K.A.; Cumby, T.; Williams, A.G.; McCrory, D.F. Crusting of stored dairy slurry to abate ammonia emissions: Pilot-scale studies. J. Environ. Qual. 2005, 34, 411–419. [Google Scholar] [CrossRef]
- Holcomb, J.C., III; Sullivan, D.M.; Horneck, D.A.; Clough, G.H. Effect of irrigation rate on ammonia volatilization. Soil Sci. Soc. Am. J. 2011, 75, 2341–2347. [Google Scholar] [CrossRef]
- Thompson, R.B.; Meisinger, J.J. Management factors affecting ammonia volatilization from land-applied cattle slurry in the Mid-Atlantic USA. J. Environ. Qual. 2002, 31, 1329–1338. [Google Scholar] [CrossRef]
- Sintermann, J.; Neftel, A.; Ammann, C.; Häni, C.; Hensen, A.; Loubet, B.; Flechard, C.R. Are ammonia emissions from field-applied slurry substantially overestimated in European emission inventories? Biogeosci. Discuss. 2011, 8, 10069–10118. [Google Scholar]
- Soil Survey Staff. Keys to Soil Taxonomy, 12th ed.; USDA-Natural Resources Conservation Service: Washington, DC, USA, 2014. [Google Scholar]
- Large, E.C. Growth stages in cereals: Illustration of the Feekes Scale. Plant Pathol. 1954, 3, 128–129. [Google Scholar] [CrossRef]
- Grant, C.A.; Jia, S.; Brown, K.R.; Bailey, L.D. Volatile losses of NH3 from surface-applied urea and urea ammonium nitrate with and without the urease inhibitors NBPT or ammonium thiosulphate. Can. J. Soil. Sci. 1996, 76, 417–419. [Google Scholar] [CrossRef]
- Nômmik, H. The effect of pellet size on the ammonia loss from urea applied to forest soil. Plant Soil 1973, 39, 309–318. [Google Scholar] [CrossRef]
- Alves, A.C.; Oliveira, P.P.A.; Herling, V.R.; Trivelin, P.C.O.; de Cerqueira Luz, P.H.; Alves, T.C.; Rochetti, R.C.; Júnior, W.B. New methods to quantify NH3 volatilization from fertilized surface soil with urea. Rev. Bras. Cienc. Solo 2011, 35, 133–140. [Google Scholar] [CrossRef]
- AOAC International. Official Methods of Analysis, 17th ed.; The Association of Official Analytical Chemists: Gaithersburg, MD, USA, 2000. [Google Scholar]
- APHA. Nitrogen (ammonia): 4500-NH3B, preliminary distillation step and 4500-NH3C, titrimetric method. In Standard Methods for the Examination of Water and Wastewater, 2nd ed.; Rice, E.W., Bridgewater, L., Eds.; American Public Health Association, AWWA, Water Environment Federation: Washington, DC, USA, 2012; pp. 4, 110–111. [Google Scholar]
- Ritchie, J.T. Soil water availability. Plant Soil 1981, 58, 327–338. [Google Scholar] [CrossRef]
- SAS Institute. Statistical Analysis System, SAS/TAT, Software V 9.4, SAS Institute Inc.: Cary, NC, USA, 2014.
- Rochette, P.; Chantigny, M.H.; Angers, D.A.; Bertrand, N.; Côté, D. Ammonia volatilization and soil nitrogen dynamics following fall application of pig slurry on canola crop residues. Can. J. Soil Sci. 2001, 81, 515–523. [Google Scholar] [CrossRef]
- Kissel, D.E.; Cabrera, M.L. Ammonia. In Encyclopedia of Soils in the Environment; Hillel, D., Ed.; Elsevier: Amsterdam, The Netherlands, 2005; pp. 56–64, ISBN-13: 978-0123485304. [Google Scholar]
- Sommer, S.G.; Jacobsen, O.H. Infiltration of slurry liquid and volatilization of ammonia from surface applied pig slurry as affected by soil water content. J. Agric. Sci. 1999, 132, 297–303. [Google Scholar] [CrossRef]
- Huijsmans, J.F.M.; Hol, J.M.G.; Hendriks, M.M.W.B. Effect of application technique, manure characteristics, weather, and field conditions on ammonia volatilization from manure applied to grassland. NJAS-Wagening. J. Life Sci. 2001, 49, 323–342. [Google Scholar] [CrossRef]
- Misselbrook, T.H.; Nicholson, F.A.; Chambers, B.J. Predicting ammonia losses following the application of livestock manure to land. Bioresour. Technol. 2005, 96, 159–168. [Google Scholar] [CrossRef]
- Hafner, S.D.; Bisogni, J.J., Jr. Modelling of ammonia speciation in anaerobic digesters. Water Res. 2009, 43, 4105–4114. [Google Scholar] [CrossRef] [PubMed]
- Morin, J.; Benyamini, Y.; Michaeli, A. The effect of raindrop impact on the dynamics of soil surface crusting and water movement in the profile. J. Hydrol. 1981, 52, 321–335. [Google Scholar] [CrossRef]
- Sommer, S.G.; Olesen, J.E.; Christensen, B.T. Effects of temperature, wind speed and air humidity on ammonia volatilization from surface applied cattle slurry. J. Agric. Sci. 1991, 117, 91–100. [Google Scholar] [CrossRef]
- Bourdin, F.; Sakrabani, R.; Kibblewhite, M.G.; Lanigan, G.J. Effect of slurry dry matter content, application technique and timing on emissions of ammonia and greenhouse gas from cattle slurry applied to grassland soils in Ireland. Agric. Ecosyst. Environ. 2014, 188, 122–133. [Google Scholar] [CrossRef]
- Sanz, A.; Misselbrook, T.; Sanz, M.J.; Vallejo, A. Use of an inverse dispersion technique for estimating ammonia emission from surface-applied slurry. Atmos. Environ. 2010, 44, 999–1002. [Google Scholar] [CrossRef]
- Shen, H.Z.; Chen, Y.L.; Hu, Y.T.; Ran, L.M.; Lam, S.K.; Pavur, G.K.; Zhou, F.; Pleim, J.E.; Russell, A.G. Intense warming will significantly increase cropland ammonia volatilization threatening food security and ecosystem health. One Earth 2020, 3, 126–134. [Google Scholar] [CrossRef]
- Joo, H.S.; Han, S.W.; Han, J.S.; Ndegwa, P.M. Emission characteristics of fine particles in relation to precursor gases in agricultural emission sources: A case study of dairy barns. Atmosphere 2023, 14, 171. [Google Scholar] [CrossRef]
- Hu, B.; Zhao, X.; Liu, H.; Liu, Z.; Song, T.; Wang, Y.; Tang, L.; Xia, X.; Tang, G.; Ji, D.; et al. Quantification of the impact of aerosol on broadband solar radiation in North China. Sci. Rep. 2017, 7, 44851. [Google Scholar] [CrossRef]
- Jing, Z.; Liu, P.; Wang, T.; Song, H.; Le, J.; Xing, Y. Effects of meteorological and antropogenic precursors on PM2.5 concentrations in cities in China. Sustainability 2020, 12, 3550. [Google Scholar] [CrossRef]
Soil Property | Units | Value |
---|---|---|
Texture (Pipette method) | Silty loam | |
Sand | g kg−1 | 131 |
Silt | g kg−1 | 609 |
Clay | g kg−1 | 260 |
pH (1:2.5; soil:distilled water) | 8.2 | |
Organic-C content (Walkley and Black method) | g kg−1 | 11.7 |
Bulk density (Field cylinder method) | g cm−3 | 1.65 |
Calcium carbonate equivalent (Bernard calcimeter method) | g kg−1 | 300 |
Water field capacity (Pressure extraction, −33 kPa) | % (w/w) | 17.2 |
Permanent wilting point (Pressure extraction, −1500 kPa) | % (w/w) | 10.2 |
Parameters | Sowing | Tillering | |
---|---|---|---|
PSF | PSF | Sows | |
Slurry rate (Mg ha−1) | 20 1 | 35 2 | 77 3 |
Total N added (kg N ha−1) | 152 1 | 265 2 | 233 3 |
Ammonium-N added (kg N ha−1) | 101 1 | 183 2 | 119 3 |
pH | 8.5 | 8.6 | 8.5 |
Electrical conductivity | 6.7 | 6.6 | 2.4 |
Dry matter (kg m−3) | 127 | 101 | 84 |
Organic N (kg m−3) | 2.6 | 2.4 | 1.5 |
Total N (kg m−3) | 7.7 | 7.6 | 3.1 |
Ammonium-N (kg m−3) | 5.1 | 5.3 | 1.6 |
Total organic-C (kg m−3) | 49 | 39 | 24 |
Application Time | Treatment Codes 1 | Equation | R2 |
---|---|---|---|
Sowing | S20 | y = 1.1875∙ln(x) + 8.1362 | 0.94 |
Tillering | S04 | y = 6.8756∙ln(x) − 12.372 | 0.97 |
S08 | y = 2.3432∙ln(x) − 3.6139 | 0.97 | |
S24 | y = 6.9631∙ln(x) − 11.721 | 0.97 | |
S28 | y = 2.8267∙ln(x) − 5.1685 | 0.98 |
Source | df | Sum of Squares | Mean Square | F Ratio | p |
---|---|---|---|---|---|
Between treatments | 3 | 2135.832 | 711.944 | 26.11 | <0.0001 |
Between blocks | 1 | 0.016 | 0.016 | 0.00 | 0.98 |
Between samples within treatments | 8 | 605.739 | 75.717 | 2.78 | 0.06 |
Within samples (residual) | 11 | 299.927 | 27.266 | ||
Total | 23 | 3041.514 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiménez-de-Santiago, D.E.; Ovejero, J.; Antúnez, M.; Bosch-Serra, A.D. Ammonia Volatilization from Pig Slurries in a Semiarid Agricultural Rainfed Area. Sustainability 2024, 16, 238. https://doi.org/10.3390/su16010238
Jiménez-de-Santiago DE, Ovejero J, Antúnez M, Bosch-Serra AD. Ammonia Volatilization from Pig Slurries in a Semiarid Agricultural Rainfed Area. Sustainability. 2024; 16(1):238. https://doi.org/10.3390/su16010238
Chicago/Turabian StyleJiménez-de-Santiago, Diana E., Jonatan Ovejero, Montserrat Antúnez, and Angela D. Bosch-Serra. 2024. "Ammonia Volatilization from Pig Slurries in a Semiarid Agricultural Rainfed Area" Sustainability 16, no. 1: 238. https://doi.org/10.3390/su16010238
APA StyleJiménez-de-Santiago, D. E., Ovejero, J., Antúnez, M., & Bosch-Serra, A. D. (2024). Ammonia Volatilization from Pig Slurries in a Semiarid Agricultural Rainfed Area. Sustainability, 16(1), 238. https://doi.org/10.3390/su16010238