From Investment to the Environment: Exploring the Relationship between the Coordinated Development of Two-Way FDI and Carbon Productivity under Fiscal Decentralization
Abstract
:1. Introduction
2. Literature Review and Theoretical Hypotheses
2.1. Carbon Productivity
2.2. Coordinated Development of Two-Way Foreign Direct Investment
2.3. Coordinated Development Level of Two-Way FDI and Carbon Productivity
2.4. Fiscal Decentralization and Carbon Productivity
2.5. Hypothesis
3. Methodology and Data
3.1. Econometric Model
3.1.1. Benchmark Model
3.1.2. The Spatial Econometric Model
3.1.3. Spatial Weight Matrix
3.1.4. Spatial Autocorrelation Analysis
3.1.5. Dynamic Panel Threshold Model
3.2. Variables and Data
3.2.1. Explained Variable
3.2.2. Key Explanatory Variable
3.2.3. Moderating Variable and Threshold Variable
3.2.4. Control Variables
4. Empirical Results Analysis and Discussion
4.1. Spatial Autocorrelation Test
4.2. Space Suitability Test and Empirical Results
4.3. Robustness test
- Replacing spatial weight matrix
- Replacing key explanatory variable
- Replacing dependent variable
5. Further Discussion
5.1. DFDI Subsample Analysis
5.2. Results of Dynamic Panel Threshold Regression
6. Conclusion and Policy Implications
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lin, B.; Xu, B. How does fossil energy abundance affect China’s economic growth and CO2 emissions? Sci. Total Environ. 2020, 719, 137503. [Google Scholar] [CrossRef] [PubMed]
- Mensah, I.A.; Sun, M.; Gao, C.; Omari-Sasu, A.Y.; Zhu, D.; Ampimah, B.C.; Quarcoo, A. Analysis on the nexus of economic growth, fossil fuel energy consumption, CO2 emissions and oil price in Africa based on a PMG panel ARDL approach. J. Clean. Prod. 2019, 228, 161–174. [Google Scholar] [CrossRef]
- Song, W.; Mao, H.; Han, X. The two-sided effects of foreign direct investment on carbon emissions performance in China. Sci. Total Environ. 2021, 791, 148331. [Google Scholar] [CrossRef] [PubMed]
- Wagner, U.J.; Timmins, C.D. Agglomeration effects in foreign direct investment and the pollution haven hypothesis. Environ. Resour. Econ. 2009, 43, 231–256. [Google Scholar] [CrossRef]
- Xu, L.; Du, H.; Zhang, X. Driving forces of carbon dioxide emissions in China’s cities: An empirical analysis based on the geodetector method. J. Clean. Prod. 2021, 287, 125169. [Google Scholar] [CrossRef]
- Zhang, X.-P.; Cheng, X.-M. Energy consumption, carbon emissions, and economic growth in China. Ecol. Econ. 2009, 68, 2706–2712. [Google Scholar] [CrossRef]
- Zhang, X.; Han, J.; Zhao, H.; Deng, S.; Xiao, H.; Peng, H.; Li, Y.; Yang, G.; Shen, F.; Zhang, Y. Evaluating the interplays among economic growth and energy consumption and CO2 emission of China during 1990–2007. Renew. Sustain. Energy Rev. 2012, 16, 65–72. [Google Scholar] [CrossRef]
- Fan, M.; Li, M.; Liu, J.; Shao, S. Is high natural resource dependence doomed to low carbon emission efficiency? Evidence from 283 cities in China. Energy Econ. 2022, 115, 106328. [Google Scholar] [CrossRef]
- Wang, R.; Tan, J.; Yao, S. Are natural resources a blessing or a curse for economic development? The importance of energy innovations. Resour. Policy 2021, 72, 102042. [Google Scholar] [CrossRef]
- Wu, Y.; Tam, V.W.; Shuai, C.; Shen, L.; Zhang, Y.; Liao, S. Decoupling China’s economic growth from carbon emissions: Empirical studies from 30 Chinese provinces (2001–2015). Sci. Total Environ. 2019, 656, 576–588. [Google Scholar] [CrossRef]
- Baumol, W.J.; Oates, W.E. The Theory of Environmental Policy; Cambridge University Press: Cambridge, UK, 1988. [Google Scholar]
- Baek, J. A new look at the FDI–income–energy–environment nexus: Dynamic panel data analysis of ASEAN. Energy Policy 2016, 91, 22–27. [Google Scholar] [CrossRef]
- Muhammad, S.; Long, X.; Salman, M.; Dauda, L. Effect of urbanization and international trade on CO2 emissions across 65 belt and road initiative countries. Energy 2020, 196, 117102. [Google Scholar] [CrossRef]
- Zhang, Y.-J.; Liu, Z.; Zhang, H.; Tan, T.-D. The impact of economic growth, industrial structure and urbanization on carbon emission intensity in China. Nat. Hazards 2014, 73, 579–595. [Google Scholar] [CrossRef]
- Zarsky, L. Havens, halos and spaghetti: Untangling the evidence about foreign direct investment and the environment. Foreign Direct Invest. Environ. 1999, 13, 47–74. [Google Scholar]
- Kisswani, K.M.; Zaitouni, M. Does FDI affect environmental degradation? Examining pollution haven and pollution halo hypotheses using ARDL modelling. J. Asia Pac. Econ. 2021, 28, 1406–1432. [Google Scholar] [CrossRef]
- Nguyen-Thanh, N.; Chin, K.-H.; Nguyen, V. Does the pollution halo hypothesis exist in this “better” world? The evidence from STIRPAT model. Environ. Sci. Pollut. Res. 2022, 29, 87082–87096. [Google Scholar] [CrossRef]
- Zhang, W.; Wang, Y.; Fan, F. How does coordinated development of two-way foreign direct investment affect natural resources Utilization?—Spatial analysis based on China’s coal resource utilization efficiency. Resour. Policy 2023, 85, 104002. [Google Scholar] [CrossRef]
- Meng, S.; Sun, R.; Guo, F. Does the use of renewable energy increase carbon productivity?—An empirical analysis based on data from 30 provinces in China. J. Clean. Prod. 2022, 365, 132647. [Google Scholar] [CrossRef]
- Wu, H.; Li, Y.; Hao, Y.; Ren, S.; Zhang, P. Environmental decentralization, local government competition, and regional green development: Evidence from China. Sci. Total Environ. 2020, 708, 135085. [Google Scholar] [CrossRef]
- Yang, X.; Yan, J.; Tian, K.; Yu, Z.; Li, R.Y.; Xia, S. Centralization or decentralization? the impact of different distributions of authority on China’s environmental regulation. Technol. Forecast. Soc. Chang. 2021, 173, 121172. [Google Scholar] [CrossRef]
- Kassouri, Y. Fiscal decentralization and public budgets for energy RD&D: A race to the bottom? Energy Policy 2022, 161, 112761. [Google Scholar] [CrossRef]
- Chen, X.; Chang, C.-P. Fiscal decentralization, environmental regulation, and pollution: A spatial investigation. Environ. Sci. Pollut. Res. 2020, 27, 31946–31968. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.; Zhang, Z.-Y.; Liang, Q.-M. An empirical analysis of the green paradox in China: From the perspective of fiscal decentralization. Energy Policy 2017, 103, 203–211. [Google Scholar] [CrossRef]
- Jiang, S.-S.; Li, J.-M. Do political promotion incentive and fiscal incentive of local governments matter for the marine environmental pollution? Evidence from China’s coastal areas. Mar. Policy 2021, 128, 104505. [Google Scholar] [CrossRef]
- Pan, K.; Cheng, C.; Kirikkaleli, D.; Genç, S.Y. Does financial risk and fiscal decentralization curb resources curse hypothesis in China? Analyzing the role of globalization. Resour. Policy 2021, 72, 102020. [Google Scholar] [CrossRef]
- Kaya, Y.; Yokobori, K. Environment, Energy, and Economy: Strategies for Sustainability; United Nations University Press: Tokyo, Japan, 1997. [Google Scholar]
- Mielnik, O.; Goldemberg, J. Communication The evolution of the “carbonization index” in developing countries. Energy Policy 1999, 27, 307–308. [Google Scholar] [CrossRef]
- Tahara, K.; Sagisaka, M.; Ozawa, T.; Yamaguchi, K.; Inaba, A. Comparison of “CO2 efficiency” between company and industry. J. Clean. Prod. 2005, 13, 1301–1308. [Google Scholar] [CrossRef]
- Shen, N.; Peng, H.; Wang, Q. Spatial dependence, agglomeration externalities and the convergence of carbon productivity. Socio-Econ. Plan. Sci. 2021, 78, 101060. [Google Scholar] [CrossRef]
- Zhu, Z.-S.; Liao, H.; Cao, H.-S.; Wang, L.; Wei, Y.-M.; Yan, J. The differences of carbon intensity reduction rate across 89 countries in recent three decades. Appl. Energy 2014, 113, 808–815. [Google Scholar] [CrossRef]
- Liu, X.; Zhou, D.; Zhou, P.; Wang, Q. Dynamic carbon emission performance of Chinese airlines: A global Malmquist index analysis. J. Air Transp. Manag. 2017, 65, 99–109. [Google Scholar] [CrossRef]
- Zhang, N.; Choi, Y. Total-factor carbon emission performance of fossil fuel power plants in China: A metafrontier non-radial Malmquist index analysis. Energy Econ. 2013, 40, 549–559. [Google Scholar] [CrossRef]
- Zhang, N.; Wei, X. Dynamic total factor carbon emissions performance changes in the Chinese transportation industry. Appl. Energy 2015, 146, 409–420. [Google Scholar] [CrossRef]
- Zhang, N.; Zhou, P.; Kung, C.-C. Total-factor carbon emission performance of the Chinese transportation industry: A bootstrapped non-radial Malmquist index analysis. Renew. Sustain. Energy Rev. 2015, 41, 584–593. [Google Scholar] [CrossRef]
- Zhou, P.; Ang, B.; Han, J. Total factor carbon emission performance: A Malmquist index analysis. Energy Econ. 2010, 32, 194–201. [Google Scholar] [CrossRef]
- Lu, J.; Fan, W.; Meng, M. Empirical research on China’s carbon productivity decomposition model based on multi-dimensional factors. Energies 2015, 8, 3093–3117. [Google Scholar] [CrossRef]
- Zhengnan, L.; Yang, Y.; Jian, W. Factor decomposition of carbon productivity chang in china’s main industries: Based on the laspeyres decomposition method. Energy Procedia 2014, 61, 1893–1896. [Google Scholar] [CrossRef]
- Chang, T.-P.; Hu, J.-L. Total-factor energy productivity growth, technical progress, and efficiency change: An empirical study of China. Appl. Energy 2010, 87, 3262–3270. [Google Scholar] [CrossRef]
- Jia, P.; Li, K.; Shao, S. Choice of technological change for China’s low-carbon development: Evidence from three urban agglomerations. J. Environ. Manag. 2018, 206, 1308–1319. [Google Scholar] [CrossRef]
- Meng, M.; Niu, D. Three-dimensional decomposition models for carbon productivity. Energy 2012, 46, 179–187. [Google Scholar] [CrossRef]
- Wang, K.; Xian, Y.; Wei, Y.-M.; Huang, Z. Sources of carbon productivity change: A decomposition and disaggregation analysis based on global Luenberger productivity indicator and endogenous directional distance function. Ecol. Indic. 2016, 66, 545–555. [Google Scholar] [CrossRef]
- Zhang, L.; Xiong, L.; Cheng, B.; Yu, C. How does foreign trade influence China’s carbon productivity? Based on panel spatial lag model analysis. Struct. Change Econ. Dyn. 2018, 47, 171–179. [Google Scholar] [CrossRef]
- Zhang, Y.-J.; Sun, Y.-F.; Huang, J. Energy efficiency, carbon emission performance, and technology gaps: Evidence from CDM project investment. Energy Policy 2018, 115, 119–130. [Google Scholar] [CrossRef]
- Li, S.; Wang, S. Examining the effects of socioeconomic development on China’s carbon productivity: A panel data analysis. Sci. Total Environ. 2019, 659, 681–690. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Yang, S.; Liu, C.; Li, S. how would economic development influence carbon productivity? A case from Hubei in China. Int. J. Environ. Res. Public Health 2018, 15, 1730. [Google Scholar] [CrossRef] [PubMed]
- Qi, W.; Song, C.; Sun, M.; Wang, L.; Han, Y. Sustainable Growth Drivers: Unveiling the Role Played by Carbon Productivity. Int. J. Environ. Res. Public Health 2022, 19, 1374. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Wang, S.; Li, S.; Cai, Q.; Gao, S. Evaluating the energy-environment efficiency and its determinants in Guangdong using a slack-based measure with environmental undesirable outputs and panel data model. Sci. Total Environ. 2019, 663, 878–888. [Google Scholar] [CrossRef]
- Blomstrom, M.; Kokko, A. Foreign direct investment and spillovers of technology. Int. J. Technol. Manag. 2001, 22, 435–454. [Google Scholar] [CrossRef]
- Pan, W.; Chen, X.; Chen, T.; Gu, L. Does Inward FDI Impact on Outward FDI? Evidence from Global Panel Data. China J. Econ 2015, 3, 18–40. [Google Scholar]
- Huang, L.; Liu, D.; Xie, H. Research on the harmonious development of outward foreign direct investment and inward foreign direct investment. China Ind. Econ. 2018, 3, 80–97. Available online: https://kns.cnki.net/kcms/detail/1011.3536.F.20180316.20181341.20180010.html (accessed on 8 November 2023).
- Dong, Y.; Shao, S.; Zhang, Y. Does FDI have energy-saving spillover effect in China? A perspective of energy-biased technical change. J. Clean. Prod. 2019, 234, 436–450. [Google Scholar] [CrossRef]
- Demena, B.A.; Afesorgbor, S.K. The effect of FDI on environmental emissions: Evidence from a meta-analysis. Energy Policy 2020, 138, 111192. [Google Scholar] [CrossRef]
- Huang, Y.; Chen, X.; Zhu, H.; Huang, C.; Tian, Z. The heterogeneous effects of FDI and foreign trade on CO2 emissions: Evidence from China. Math. Probl. Eng. 2019, 2019, 9612492. [Google Scholar] [CrossRef]
- Pan, X.; Li, M.; Wang, M.; Chu, J.; Bo, H. The effects of outward foreign direct investment and reverse technology spillover on China’s carbon productivity. Energy Policy 2020, 145, 111730. [Google Scholar] [CrossRef]
- Zeng, K.; Eastin, J. Do developing countries invest up? The environmental effects of foreign direct investment from less-developed countries. World Dev. 2012, 40, 2221–2233. [Google Scholar] [CrossRef]
- Zhang, W.; Li, G.; Uddin, M.K.; Guo, S. Environmental regulation, foreign investment behavior, and carbon emissions for 30 provinces in China. J. Clean. Prod. 2020, 248, 119208. [Google Scholar] [CrossRef]
- Wang, C.; Zhang, Y.-J. The effect of environmental regulation and skill premium on the inflow of FDI: Evidence from Chinese industrial sectors. Int. Rev. Econ. Financ. 2022, 81, 227–242. [Google Scholar] [CrossRef]
- Hao, Y.; Guo, Y.; Guo, Y.; Wu, H.; Ren, S. Does outward foreign direct investment (OFDI) affect the home country’s environmental quality? The case of China. Struct. Change Econ. Dyn. 2020, 52, 109–119. [Google Scholar] [CrossRef]
- Li, L.; Liu, X.; Yuan, D.; Yu, M. Does outward FDI generate higher productivity for emerging economy MNEs?–Micro-level evidence from Chinese manufacturing firms. Int. Bus. Rev. 2017, 26, 839–854. [Google Scholar] [CrossRef]
- Mahadevan, R.; Sun, Y. Effects of foreign direct investment on carbon emissions: Evidence from China and its Belt and Road countries. J. Environ. Manag. 2020, 276, 111321. [Google Scholar] [CrossRef]
- Grossman, G.M.; Krueger, A.B. Economic growth and the environment. Q. J. Econ. 1995, 110, 353–377. [Google Scholar] [CrossRef]
- Hong, L. Does and how does FDI promote the economic growth? Evidence from dynamic panel data of prefecture city in China. Ieri Procedia 2014, 6, 57–62. [Google Scholar] [CrossRef]
- Hu, X.; Liu, C. Carbon productivity: A case study in the Australian construction industry. J. Clean. Prod. 2016, 112, 2354–2362. [Google Scholar] [CrossRef]
- Yu, Y.; Xu, W. Impact of FDI and R&D on China’s industrial CO2 emissions reduction and trend prediction. Atmos. Pollut. Res. 2019, 10, 1627–1635. [Google Scholar] [CrossRef]
- Long, R.; Gan, X.; Chen, H.; Wang, J.; Li, Q. Spatial econometric analysis of foreign direct investment and carbon productivity in China: Two-tier moderating roles of industrialization development. Resour. Conserv. Recycl. 2020, 155, 104677. [Google Scholar] [CrossRef]
- Lin, B.; Zhou, Y. Does fiscal decentralization improve energy and environmental performance? New perspective on vertical fiscal imbalance. Appl. Energy 2021, 302, 117495. [Google Scholar] [CrossRef]
- Shan, S.; Ahmad, M.; Tan, Z.; Adebayo, T.S.; Li, R.Y.M.; Kirikkaleli, D. The role of energy prices and non-linear fiscal decentralization in limiting carbon emissions: Tracking environmental sustainability. Energy 2021, 234, 121243. [Google Scholar] [CrossRef]
- Zhang, B.; Chen, X.; Guo, H. Does central supervision enhance local environmental enforcement? Quasi-experimental evidence from China. J. Public Econ. 2018, 164, 70–90. [Google Scholar] [CrossRef]
- Cheng, S.; Fan, W.; Chen, J.; Meng, F.; Liu, G.; Song, M.; Yang, Z. The impact of fiscal decentralization on CO2 emissions in China. Energy 2020, 192, 116685. [Google Scholar] [CrossRef]
- Khan, Z.; Ali, S.; Dong, K.; Li, R.Y.M. How does fiscal decentralization affect CO2 emissions? The roles of institutions and human capital. Energy Econ. 2021, 94, 105060. [Google Scholar] [CrossRef]
- Su, C.-W.; Umar, M.; Khan, Z. Does fiscal decentralization and eco-innovation promote renewable energy consumption? Analyzing the role of political risk. Sci. Total Environ. 2021, 751, 142220. [Google Scholar] [CrossRef]
- Wang, Y. Fiscal decentralization, endogenous policies, and foreign direct investment: Theory and evidence from China and India. J. Dev. Econ. 2013, 103, 107–123. [Google Scholar] [CrossRef]
- Iqbal, N.; Abbasi, K.R.; Shinwari, R.; Guangcai, W.; Ahmad, M.; Tang, K. Does exports diversification and environmental innovation achieve carbon neutrality target of OECD economies? J. Environ. Manag. 2021, 291, 112648. [Google Scholar] [CrossRef] [PubMed]
- Feng, G.; Shulian, X.; Renjin, S. Does fiscal decentralization promote or inhibit the improvement of carbon productivity? Empirical analysis based on China’s data. Front. Environ. Sci. 2022, 10, 903434. [Google Scholar] [CrossRef]
- Elheddad, M.; Djellouli, N.; Tiwari, A.K.; Hammoudeh, S. The relationship between energy consumption and fiscal decentralization and the importance of urbanization: Evidence from Chinese provinces. J. Environ. Manag. 2020, 264, 110474. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Li, S. Neighbor-companion or neighbor-beggar? Estimating the spatial spillover effects of fiscal decentralization on China’s carbon emissions based on spatial econometric analysis. Sustainability 2022, 14, 9884. [Google Scholar] [CrossRef]
- Jiang, X.; Zhao, S. Does FDI inhibit carbon emissions from the perspective of dual environmental regulation—An empirical study based on dynamic system GMM estimation and threshold model. J. Int. Trade 2019, 3, 115–130. [Google Scholar]
- Elhorst, J.P. Spatial Econometrics: From Cross-Sectional Data to Spatial Panels; Springer: Berlin/Heidelberg, Germany, 2014; Volume 479. [Google Scholar]
- Cheng, Z. The spatial correlation and interaction between manufacturing agglomeration and environmental pollution. Ecol. Indic. 2016, 61, 1024–1032. [Google Scholar] [CrossRef]
- Cheng, Z.; Li, L.; Liu, J. Industrial structure, technical progress and carbon intensity in China’s provinces. Renew. Sustain. Energy Rev. 2018, 81, 2935–2946. [Google Scholar] [CrossRef]
- Wu, H.; Ren, S.; Yan, G.; Hao, Y. Does China’s outward direct investment improve green total factor productivity in the “Belt and Road” countries? Evidence from dynamic threshold panel model analysis. J. Environ. Manag. 2020, 275, 111295. [Google Scholar] [CrossRef]
- Sun, H.; Du, X. The impact of global value chains’ participation degree and position on industrial carbon productivity. China Popul. Resour. Environ. 2020, 30, 27–37. [Google Scholar]
- Wu, Y.; Heerink, N. Foreign direct investment, fiscal decentralization and land conflicts in China. China Econ. Rev. 2016, 38, 92–107. [Google Scholar] [CrossRef]
- Ridzuan, N.H.A.M.; Marwan, N.F.; Khalid, N.; Ali, M.H.; Tseng, M.-L. Effects of agriculture, renewable energy, and economic growth on carbon dioxide emissions: Evidence of the environmental Kuznets curve. Resour. Conserv. Recycl. 2020, 160, 104879. [Google Scholar] [CrossRef]
- Zhao, J.; Shahbaz, M.; Dong, X.; Dong, K. How does financial risk affect global CO2 emissions? The role of technological innovation. Technol. Forecast. Soc. Change 2021, 168, 120751. [Google Scholar] [CrossRef]
- Zheng, J.; Jiang, P.; Qiao, W.; Zhu, Y.; Kennedy, E. Analysis of air pollution reduction and climate change mitigation in the industry sector of Yangtze River Delta in China. J. Clean. Prod. 2016, 114, 314–322. [Google Scholar] [CrossRef]
- LeSage, J.P. An introduction to spatial econometrics. Rev. Déconomie Ind. 2008, 19–44. [Google Scholar] [CrossRef]
- Zhao, B.; Wang, K.-L.; Xu, R.-Y. Fiscal decentralization, industrial structure upgrading, and carbon emissions: Evidence from China. Environ. Sci. Pollut. Res. 2023, 30, 39210–39222. [Google Scholar] [CrossRef]
- Seo, M.H.; Kim, S.; Kim, Y.-J. Estimation of dynamic panel threshold model using Stata. Stata J. 2019, 19, 685–697. [Google Scholar] [CrossRef]
- Seo, M.H.; Shin, Y. Dynamic panels with threshold effect and endogeneity. J. Econ. 2016, 195, 169–186. [Google Scholar] [CrossRef]
Year | Moran’I | Z | p-Value |
---|---|---|---|
2006 | 0.312 | 2.924 | 0.004 |
2007 | 0.312 | 2.949 | 0.003 |
2008 | 0.306 | 2.854 | 0.004 |
2009 | 0.310 | 2.877 | 0.004 |
2010 | 0.312 | 2.892 | 0.004 |
2011 | 0.305 | 2.830 | 0.005 |
2012 | 0.294 | 2.730 | 0.006 |
2013 | 0.300 | 2.773 | 0.006 |
2014 | 0.295 | 2.732 | 0.006 |
2015 | 0.329 | 3.003 | 0.003 |
2016 | 0.350 | 3.175 | 0.002 |
2017 | 0.368 | 3.317 | 0.001 |
2018 | 0.376 | 3.379 | 0.001 |
2019 | 0.376 | 3.383 | 0.001 |
2020 | 0.379 | 3.397 | 0.001 |
Matrix | Geographic Distance Weighted Matrix | |||
---|---|---|---|---|
Tests | LM | Robust LM | wald | LR |
SEM | 56.872 *** | 36.675 *** | 181.11 *** | 172.79 *** |
SAR | 23.279 *** | 2.082 | 120.44 *** | 114.56 *** |
Hausman test | −57.010 |
Variables | (1) | (2) | (3) | (4) | (5) |
---|---|---|---|---|---|
FE | SEM2 | SEM3 | SEM4 | SEM5 | |
lndfdi | 1.081 *** | 0.516 ** | 1.242 *** | 0.457 ** | 1.114 *** |
(5.279) | (2.520) | (4.299) | (2.301) | (4.955) | |
Fiscal_1 | 0.005 *** | 0.013 *** | |||
(2.771) | (4.528) | ||||
lndfdi × Fiscal_1 | −0.141 *** | ||||
(−3.548) | |||||
Fiscal_2 | 0.048 *** | 0.127 *** | |||
(5.956) | (8.630) | ||||
lndfdi × Fiscal_2 | −0.998 *** | ||||
(−6.270) | |||||
pgdp | 0.070 *** | 0.070 *** | 0.071 *** | 0.072 *** | 0.067 *** |
(13.897) | (14.972) | (15.268) | (15.984) | (15.189) | |
pgdp2 | −0.002 *** | −0.002 *** | −0.002 *** | −0.002 *** | −0.001 *** |
(−7.685) | (−8.005) | (−7.432) | (−8.608) | (−5.844) | |
open | 0.556 | 1.270 *** | 1.233 *** | 1.327 *** | 1.097 *** |
(1.244) | (3.553) | (3.505) | (3.833) | (3.335) | |
pd | −0.144 *** | −0.124 *** | −0.107 *** | −0.131 *** | −0.104 *** |
(−3.105) | (−4.835) | (−4.228) | (−5.406) | (−4.434) | |
hc | 0.218 *** | 0.143 *** | 0.136 *** | 0.142 *** | 0.125 *** |
(12.244) | (8.093) | (7.811) | (8.318) | (7.588) | |
inf | 0.108 *** | 0.124 *** | 0.116 *** | 0.118 *** | 0.103 *** |
(4.246) | (5.923) | (5.604) | (5.831) | (5.348) | |
is | −0.031 *** | 0.006 | 0.009 | 0.010 | 0.021 ** |
(−2.756) | (0.655) | (0.925) | (1.069) | (2.408) | |
es | −0.080 ** | −0.110 *** | −0.099 *** | −0.111 *** | −0.125 *** |
(−2.088) | (−3.277) | (−2.998) | (−3.425) | (−4.039) | |
_cons | 1.418 *** | 1.639 *** | 1.521 *** | 1.650 *** | 1.510 *** |
(5.503) | (10.169) | (9.423) | (10.660) | (10.139) | |
λ | 0.570 *** | 0.579 *** | 0.563 *** | 0.622 *** | |
(11.788) | (12.119) | (11.420) | (13.125) | ||
sigma2_e | 0.001 *** | 0.001 *** | 0.001 *** | 0.001 *** | |
(13.936) | (13.942) | (13.968) | (13.847) | ||
N | 450 | 450 | 450 | 450 | 450 |
R2 | 0.954 | 0.595 | 0.609 | 0.607 | 0.627 |
Variables | Economic Geography Weight Matrix | FDI_flow | CP_DEA | |||
---|---|---|---|---|---|---|
(1) | (2) | (3) | (4) | (5) | (6) | |
lndfdi | 0.825 *** | 0.563 *** | 0.017 *** | 0.014 *** | 0.023 *** | 0.018 *** |
(3.867) | (2.674) | (5.950) | (4.863) | (5.574) | (4.257) | |
Fiscal_1 | 0.004 ** | 0.013 ** | 0.006 *** | |||
(2.147) | (2.417) | (3.028) | ||||
Fiscal_2 | 0.053 *** | 0.037 *** | 0.049 *** | |||
(6.126) | (4.587) | (6.275) | ||||
pgdp | 0.070 *** | 0.070 *** | 0.065 *** | 0.067 *** | 0.070 *** | 0.072 *** |
(13.783) | (14.398) | (14.110) | (14.836) | (14.822) | (15.861) | |
pgdp2 | −0.002 *** | −0.002 *** | −0.002 *** | −0.002 *** | −0.002 *** | −0.002 *** |
(−7.363) | (−7.728) | (−7.400) | (−7.916) | (−7.926) | (−8.572) | |
open | 1.401 *** | 1.471 *** | 1.059 *** | 1.159 *** | 1.295 *** | 1.338 *** |
(3.629) | (3.952) | (3.047) | (3.412) | (3.604) | (3.851) | |
pd | −0.111 *** | −0.119 *** | −0.117 *** | −0.121 *** | −0.125 *** | −0.132 *** |
(−4.319) | (−4.907) | (−4.565) | (−4.978) | (−4.862) | (−5.446) | |
hc | 0.187 *** | 0.183 *** | 0.141 *** | 0.139 *** | 0.143 *** | 0.143 *** |
(11.028) | (11.294) | (8.054) | (8.203) | (8.110) | (8.364) | |
inf | 0.099 *** | 0.097 *** | 0.104 *** | 0.101 *** | 0.129 *** | 0.121 *** |
(4.316) | (4.457) | (5.076) | (5.014) | (6.147) | (5.953) | |
is | −0.013 | −0.007 | 0.010 | 0.012 | 0.006 | 0.010 |
(−1.201) | (−0.692) | (1.038) | (1.321) | (0.635) | (1.034) | |
es | −0.108 *** | −0.115 *** | −0.085 *** | −0.091 *** | −0.108 *** | −0.110 *** |
(−3.122) | (−3.440) | (−2.631) | (−2.888) | (−3.193) | (−3.382) | |
_cons | 1.339 *** | 1.381 *** | 1.519 *** | 1.533 *** | 1.673 *** | 1.672 *** |
(8.058) | (8.692) | (9.464) | (9.867) | (10.396) | (10.838) | |
λ | 0.684 *** | 0.685 *** | 0.578 *** | 0.568 *** | 0.575 *** | 0.561 *** |
(10.360) | (10.562) | (12.016) | (11.567) | (11.874) | (11.175) | |
sigma2_e | 0.001 *** | 0.001 *** | 0.001 *** | 0.001 *** | 0.001 *** | 0.001 *** |
(14.274) | (14.297) | (13.927) | (13.954) | (13.919) | (13.957) | |
N | 450 | 450 | 450 | 450 | 450 | 450 |
R2 | 0.561 | 0.588 | 0.580 | 0.601 | 0.595 | 0.607 |
Variables | IFDI | OFDI | ||
---|---|---|---|---|
(1) | (2) | (3) | (4) | |
IFDI | 0.023 *** | 0.013 * | ||
(3.467) | (1.895) | |||
OFDI | −0.032 *** | −0.039 *** | ||
(−3.002) | (−3.843) | |||
Fiscal_1 | 0.005 *** | 0.007 *** | ||
(2.596) | (3.734) | |||
Fiscal_2 | 0.045 *** | 0.055 *** | ||
(5.367) | (7.148) | |||
pgdp | 0.072 *** | 0.073 *** | 0.071 *** | 0.073 *** |
(15.632) | (16.468) | (15.118) | (16.332) | |
pgdp2 | −0.002 *** | −0.002 *** | −0.002 *** | −0.002 *** |
(−8.431) | (−8.825) | (−7.776) | (−8.453) | |
open | 1.310 *** | 1.356 *** | 0.996 *** | 0.940 *** |
(3.708) | (3.932) | (2.697) | (2.649) | |
pd | −0.131 *** | −0.134 *** | −0.109 *** | −0.112 *** |
(−5.117) | (−5.564) | (−4.218) | (−4.623) | |
hc | 0.147 *** | 0.145 *** | 0.142 *** | 0.141 *** |
(8.371) | (8.505) | (8.133) | (8.372) | |
inf | 0.135 *** | 0.127 *** | 0.120 *** | 0.106 *** |
(6.630) | (6.390) | (5.774) | (5.328) | |
is | 0.007 | 0.010 | 0.011 | 0.016 * |
(0.756) | (1.101) | (1.219) | (1.768) | |
es | −0.088 *** | −0.098 *** | −0.098 *** | −0.103 *** |
(−2.644) | (−2.995) | (−2.999) | (−3.277) | |
_cons | 1.679 *** | 1.676 *** | 1.576 *** | 1.557 *** |
(10.507) | (10.887) | (9.811) | (10.143) | |
λ | 0.576 *** | 0.566 *** | 0.627 *** | 0.616 *** |
(12.241) | (11.648) | (14.051) | (13.171) | |
sigma2_e | 0.001 *** | 0.001 *** | 0.001 *** | 0.001 *** |
(13.962) | (13.983) | (13.858) | (13.878) | |
N | 450 | 450 | 450 | 450 |
R2 | 0.583 | 0.603 | 0.605 | 0.613 |
Lower Regime | Upper Regime | Overall | Post-Estimation Tests | ||
---|---|---|---|---|---|
L(1)lncp | 0.831 *** | 0.129 *** | 0.906 *** | Kink | 0.011 * |
(0.025) | (0.019) | (0.005) | (0.006) | ||
lndfdi | −0.945 ** | 2.061 *** | 0.660 *** | Threshold indicator | 3.926 *** |
(0.396) | (0.493) | (0.105) | (0.651) | ||
Fiscal_1 | 0.020 *** | −0.013 * | −0.013 ** | 95% Conf. Interval | [2.650, 5.202] |
(0.005) | (0.007) | (0.006) | AR(1) (p-value) | 0.006 | |
_cons | −0.312 | AR(2) (p-value) | 0.189 | ||
(0.032) | Hansen J (p-value) | 0.289 | |||
Linearity test (p-value) | 0.000 | ||||
L(1)lncp | 0.987 *** | −0.114 ** | 0.935 *** | Kink | 0.120 *** |
(0.056) | (0.058) | (0.006) | (0.015) | ||
lndfdi | −0.681 ** | 1.125 *** | 1.042 *** | Threshold indicator | 1.114 *** |
(0.326) | (0.383) | (0.102) | (0.098) | ||
Fiscal_2 | −0.791 *** | 0.728 *** | 0.088 *** | 95% Conf. Interval | [0.922, 1.306] |
(0.206) | (0.216) | (0.016) | AR(1) (p-value) | 0.006 | |
_cons | −0.254 ** | AR(2) (p-value) | 0.189 | ||
(0.112) | Hansen J (p-value) | 0.289 | |||
Linearity test (p-value) | 0.000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, X.; Wang, Y. From Investment to the Environment: Exploring the Relationship between the Coordinated Development of Two-Way FDI and Carbon Productivity under Fiscal Decentralization. Sustainability 2024, 16, 182. https://doi.org/10.3390/su16010182
Gao X, Wang Y. From Investment to the Environment: Exploring the Relationship between the Coordinated Development of Two-Way FDI and Carbon Productivity under Fiscal Decentralization. Sustainability. 2024; 16(1):182. https://doi.org/10.3390/su16010182
Chicago/Turabian StyleGao, Xiaodan, and Yinhui Wang. 2024. "From Investment to the Environment: Exploring the Relationship between the Coordinated Development of Two-Way FDI and Carbon Productivity under Fiscal Decentralization" Sustainability 16, no. 1: 182. https://doi.org/10.3390/su16010182
APA StyleGao, X., & Wang, Y. (2024). From Investment to the Environment: Exploring the Relationship between the Coordinated Development of Two-Way FDI and Carbon Productivity under Fiscal Decentralization. Sustainability, 16(1), 182. https://doi.org/10.3390/su16010182