Potential and Constraints of Use of Organic Amendments from Agricultural Residues for Improvement of Soil Properties
Abstract
:1. Introduction
2. Reuse as Soil Amendments
2.1. Direct Application to Soil
2.2. Previous Transformations
2.2.1. Compost
Main Feedstock Category | Composting Process | Feedstock Used for Composting Process | Ratio (v/v) | Effects | Reference |
---|---|---|---|---|---|
Manure | Aerobic reactors | Chicken manure + peanut straw + biochar | 2.5:1:0.1 | Increased temperature of the process after biochar application | [22] |
Piles | Cattle manure + maize straw | 5:1 | Amino acid and carbohydrate metabolism were key metabolism pathways | [23] | |
Aerobic reactors | Pig manure + wheat straw (+ bean dregs and biochar) | 2:1 | Bean dregs and biochar promote the decomposition and humification of compost | [24] | |
Piles | Straw, draff, horse manure, maize silage, loam, and stone powder + biochar co-composting | 1:5:1:5:0.02:1 | Biochar compost performed better than compost alone or synthetic fertilizer | [25] | |
Aerobic reactors + preheating | Swine manure + food waste + corn stalk co-composting | 2:2:0.5 | Initially elevated temperature restricted the rebounding of pathogenic bacteria | [26] | |
Piles | Cow manure + sawdust | 1:1 | Cow manure co-composting reduced pathogenic microbes | [27] | |
Aerobic reactors | Kitchen waste + pig manure + cornstalks | 2.5:2.5:1 | Germination index of the inoculated thermophilic compost was higher | [28] | |
Sewage sludge | Aerobic reactors | Rural sewage sludge and food waste co-composting | 2:0.5 | Agricultural value of sewage sludge can be enhanced through co-composting | [29] |
Aerobic reactors | Sewage sludge + centrate | Improves yield and rice protein and mineral content; high nutrient content | [30] | ||
Aerobic reactors | Sewage sludge from food industry + biochar vermiremediation | 1:0.1 | In vermicomposting of sewage sludge bulking materials can be replaced with biochar | [25] | |
Aerobic reactor | Sewage sludge + straw (1 cm) + aerobic microorganism agent + biochar | 4:1 | Reduction of gas emissions after bacteria and biochar application | [31] | |
Green waste/Food waste/other organic waste or biomass | Windrow composting | Vegetable biomass | - | Compost based on “heavy” materials the most sustainable | [32] |
Windrow composting | Green waste + food waste | 1:1 | Compost designed for tropical horticultural crops | [33] | |
In-vessel | Food waste | - | Can reduce GHG emissions and eutrophication when compared to | [34] | |
Open-air static pile | Food waste + leaves | 4:1 | Substituting chemical fertilizers with organic compost is a viable option | [35] |
2.2.2. Biochar
2.2.3. Anaerobic Digestion
3. Benefits of Organic Soil Amendments
3.1. The Carbon Cycle
3.2. Soil Physical Properties
3.3. Soil Chemical Properties
3.4. Soil Biological Properties
3.5. Soil Health
4. Constraints of Organic Soil Amendments
5. Future Challenges and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fadhil, R.; Maarif, M.S.; Bantacut, T.; Hermawan, A. A review on the development strategies of agro-industrial institutions in Indonesia. Asian J. Appl. Sci. 2017, 5, 747–763. Available online: https://www.ajouronline.com/index.php/AJAS/article/view/4877 (accessed on 19 December 2023).
- F.A.O. Food Wastage Footprint. Impact on Natural Resources; Food and Agriculture Organization of the UN: Rome, Italy, 2013; Available online: https://www.fao.org/3/i3347e/i3347e.pdf (accessed on 19 December 2023).
- Duquennoi, C.; Martinez, J. European Union’s policymaking on sustainable waste management and circularity in agroecosystems: The potential for innovative interactions between science and decision-making. Front. Sustain. Food Syst. 2022, 6, 937802. [Google Scholar] [CrossRef]
- Brichi, L.; Fernandes, J.V.M.; Silva, B.M.; Vizú, J.F.; Junior, J.N.G.; Cherubin, M.R. Organic residues and their impact on soil health, crop production and sustainable agriculture: A review including bibliographic analysis. Soil Use Manag. 2023, 39, 686–706. [Google Scholar] [CrossRef]
- Singh, R.; Das, R.; Sangwan, S.; Rohatgi, B.; Khanam, R.; Pedda Ghouse Peera, S.K.; Das, S.; Lyngdoh, Y.A.; Langyan, S.; Shukla, A.; et al. Utilisation of agro-industrial waste for sustainable green production: A review. Environ. Sustain. 2021, 4, 619–636. [Google Scholar] [CrossRef]
- Gross, A.; Glaser, B. Meta-analysis on how manure application changes soil organic carbon storage. Sci. Rep. 2021, 11, 5516. [Google Scholar] [CrossRef] [PubMed]
- Almendro-Candel, M.B.; Poquet, M.J.; Gómez, I.; Navarro-Pedreño, J.; Mataix-Solera, J. Effect of the application of two plant residues on the density and porosity of soils subjected to compaction. Span. J. Soil Sci. 2020, 10, 233–236. [Google Scholar] [CrossRef]
- Mengqi, Z.; Shi, A.; Ajmal, M.; He, L.; Awais, M. Comprehensive review on agricultural waste utilization and high-temperature fermentation and composting. Biomass Conv. Bioref. 2023, 13, 5445–5468. [Google Scholar] [CrossRef]
- Dahan, O.; Babad, A.; Lazarovitch, N.; Russak, E.E.; Kurtzman, D. Nitrate leaching from intensive organic farms to groundwater. Hydrol. Earth Syst. Sci. 2014, 18, 333–341. [Google Scholar] [CrossRef]
- Haug, R.T. The Practical Handbook of Compost Engineering; Lewis Publishers: Boca Raton, FL, USA, 1993. [Google Scholar]
- Bidlingmaier, W.; Gottschall, R. Biologische Abfallverwertung; Ulmer: Stuttgart, Germany, 2000. [Google Scholar]
- Bernal, M.P.; Alburquerque, J.A.; Moral, R. Composting of animal manures and chemical criteria for compost maturity assessment. A review. Bioresour. Technol. 2009, 100, 5444–5453. [Google Scholar] [CrossRef]
- Li, M.; Li, F.; Zhou, J.; Yuan, Q.; Hu, N. Fallen leaves are superior to tree pruning as bulking agents in aerobic composting disposing kitchen waste. Bioresour. Technol. 2022, 346, 126374. [Google Scholar] [CrossRef]
- Shinde, R.; Shahi, D.K.; Mahapatra, P.; Singh, C.S.; Naik, S.K.; Thombare, N.; Singh, A.K. Management of crop residues with special reference to the on-farm utilization methods: A review. Ind. Crops Prod. 2022, 181, 114772. [Google Scholar] [CrossRef]
- Paradelo, R.; Moldes, A.B.; González, D.; Barral, M.T. Plant tests for determining the suitability of grape marc composts as components of plant growth media. Waste Manag. Res. 2012, 30, 1059–1065. [Google Scholar] [CrossRef] [PubMed]
- Perra, M.; Cuena-Lombraña, A.; Bacchetta, G.; Manca, M.L.; Manconi, M.; Maroun, R.G.; Muntoni, A.; Tuberoso, C.I.G.; Gil, K.A.; De Gioannis, G. Combining different approaches for grape pomace valorization: Polyphenols extraction and composting of the exhausted biomass. Sustainability 2022, 14, 10690. [Google Scholar] [CrossRef]
- Işler, N.; İlay, R.; Kavdir, Y. Temporal variations in soil aggregation following olive pomace and vineyard pruning waste compost applications on clay, loam, and sandy loam soils. Environ. Monit. Assess. 2022, 194, 418. [Google Scholar] [CrossRef] [PubMed]
- Nenciu, F.; Stanciulescu, I.; Vlad, H.; Gabur, A.; Turcu, O.L.; Apostol, T.; Vladut, V.N.; Cocarta, D.M.; Stan, C. Decentralized processing performance of fruit and vegetable waste discarded from retail, using an automated thermophilic composting technology. Sustainability 2022, 14, 2835. [Google Scholar] [CrossRef]
- Park, J.H.; Lamb, D.; Paneerselvam, P.; Choppala, G.; Bolan, N.; Chung, J.-W. Role of organic amendments on enhanced bioremediation of heavy metal(loid) contaminated soils. J. Hazard. Mater. 2011, 185, 549–574. [Google Scholar] [CrossRef] [PubMed]
- Domínguez, J.; Aira, M.; Gómez-Brandón, M. Vermicomposting: Earthworms Enhance the Work of Microbes. In Microbes at Work; Insam, H., Franke-Whittle, I., Goberna, M., Eds.; Springer: Berlin/Heidelberg, Germany, 2010. [Google Scholar] [CrossRef]
- Frederickson, J.; Butt, K.R.; Morris, R.M.; Daniel, C. Combining vermiculture with traditional green waste composting systems. Soil Biol. Biochem. 1997, 29, 725–730. [Google Scholar] [CrossRef]
- Li, Y.; Ma, J.; Yong, X.; Luo, L.; Wong, J.W.; Zhang, Y.; Wu, H.; Zhou, J. Effect of biochar combined with a biotrickling filter on deodorization, nitrogen retention, and microbial community succession during chicken manure composting. Bioresour. Technol. 2022, 343, 126137. [Google Scholar] [CrossRef]
- Bello, A.; Han, Y.; Zhu, H.; Deng, L.; Yang, W.; Meng, Q.; Sun, Y.; Egbeagu, U.U.; Sheng, S.; Wu, X.; et al. Microbial community composition, co-occurrence network pattern and nitrogen transformation genera response to biochar addition in cattle manure-maize straw composting. Sci. Total Environ. 2020, 721, 137759. [Google Scholar] [CrossRef]
- Yang, Y.; Awasthi, M.K.; Bao, H.; Bie, J.; Lei, S.; Lv, J. Exploring the microbial mechanisms of organic matter transformation during pig manure composting amended with bean dregs and biochar. Bioresour. Technol. 2020, 313, 123647. [Google Scholar] [CrossRef]
- Glaser, B.; Wiedner, K.; Seelig, S.; Schmidt, H.P.; Gerber, H. Biochar organic fertilizers from natural resources as substitute for mineral fertilizers. Agron. Sustain. Dev. 2015, 35, 667–678. [Google Scholar] [CrossRef]
- Ahmed, I.; Zhang, Y.; Sun, P.; Xie, Y.; Zhang, B. Sensitive response mechanism of ARGs and MGEs to initial designed temperature during swine manure and food waste co-composting. Environ. Res. 2023, 216, 114513. [Google Scholar] [CrossRef]
- He, Y.; Liu, D.; He, X.; Wang, Y.; Liu, J.; Shi, X.; Chater, C.C.; Yu, F. Characteristics of bacterial and fungal communities and their impact during cow manure and agroforestry biowaste co-composting. J. Environ. Manag. 2022, 324, 116377. [Google Scholar] [CrossRef] [PubMed]
- Liu, G.; Yang, Y.; Ma, R.; Jiang, J.; Li, G.; Wang, J.; Wuyun, D.; Yuan, J. Thermophilic compost inoculating promoted the maturity and mature compost inoculating reduced the gaseous emissions during co-composting of kitchen waste and pig manure. Environ. Technol. Innov. 2023, 32, 103427. [Google Scholar] [CrossRef]
- Zhan, J.; Han, Y.; Xu, S.; Wang, X.; Guo, X. Succession and change of potential pathogens in the co-composting of rural sewage sludge and food waste. Waste Manag. 2022, 149, 248–258. [Google Scholar] [CrossRef] [PubMed]
- Phung, L.D.; Ba, C.A.; Pertiwi, P.A.P.; Ito, A.; Watanabe, T. Unlocking fertilization potential of anaerobically digested sewage sludge centrate for protein-rich rice cultivation with composted sludge amendment. Environ. Res. 2023, 237, 116912. [Google Scholar] [CrossRef] [PubMed]
- Xue, S.; Zhou, L.; Zhong, M.; Awasthi, M.K.; Mao, H. Bacterial agents affected bacterial community structure to mitigate greenhouse gas emissions during sewage sludge composting. Bioresour. Technol. 2021, 337, 125397. [Google Scholar] [CrossRef]
- Pergola, M.; Persiani, A.; Pastore, V.; Palese, A.M.; D’Adamo, C.; De Falco, E.; Celano, G. Sustainability assessment of the green compost production chain from agricultural waste: A case study in southern Italy. Agronomy 2020, 10, 230. [Google Scholar] [CrossRef]
- Lu, H.R.; Qu, X.; El Hanandeh, A. Towards a better environment-the municipal organic waste management in Brisbane: Environmental life cycle and cost perspective. J. Clean. Prod. 2020, 258, 120756. [Google Scholar] [CrossRef]
- Mu, D.; Horowitz, N.; Casey, M.; Jones, K. Environmental and economic analysis of an in-vessel food waste composting system at Kean University in the US. Waste Manag. 2017, 59, 476–486. [Google Scholar] [CrossRef]
- Keng, Z.X.; Chong, S.; Ng, C.G.; Ridzuan, N.I.; Hanson, S.; Pan, G.-T.; Lau, P.L.; Supramaniam, C.V.; Singh, A.; Chin, C.F.; et al. Community-scale composting for food waste: A life-cycle assessment-supported case study. J. Clean. Prod. 2020, 261, 121220. [Google Scholar] [CrossRef]
- Ogawa, M. Symbiosis of people and nature in the Tropics. Farming Jpn. 1994, 28, 10–34. [Google Scholar]
- Glaser, B.; Haumaier, L.; Guggenberger, G.; Zech, W. The ‘Terra Preta’ phenomenon: A model for sustainable agriculture in the humid tropics. Naturwissenschaften 2001, 88, 37–41. [Google Scholar] [CrossRef] [PubMed]
- Jeguirim, M.; Zorpas, A.A.; Navarro-Pedreño, J.; Limousy, L.; Loizia, P.; Stylianou, M.; Agapiou, A. Sustainability assessment for biomass-derived char production and applications. In Char and Carbon Materials Derived from Biomass; Jeguirim, M., Limousy, L., Eds.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 447–479. [Google Scholar] [CrossRef]
- Glaser, B.; Lehmann, J.; Zech, W. Ameliorating physical and chemical properties of highly weathered soils in the tropics with charcoal—A review. Biol. Fert. Soils 2002, 35, 219–230. [Google Scholar] [CrossRef]
- Gross, A.; Bromm, T.; Glaser, B. Soil organic carbon sequestration after biochar application: A global meta-analysis. Agronomy 2021, 11, 2474. [Google Scholar] [CrossRef]
- Woolf, D. Biochar as a Soil Amendment: A Review of the Environmental Implications; School of the Environment and Society, Swansea University: Swansea, UK, 2008; Available online: https://orgprints.org/id/eprint/13268/1/Biochar_as_a_soil_amendment_-_a_review.pdf (accessed on 19 December 2023).
- Wu, D.; Li, L.; Zhao, X.; Peng, Y.; Yang, P.; Peng, X. Anaerobic digestion: A review on process monitoring. Renew. Sustain. Energy Rev. 2019, 103, 1–12. [Google Scholar] [CrossRef]
- Neri, A.; Bernardi, B.; Zimbalatti, G.; Benalia, S. An Overview of Anaerobic Digestion of Agricultural By-Products and Food Waste for Biomethane Production. Energies 2023, 16, 6851. [Google Scholar] [CrossRef]
- Tambone, F.; Terruzzi, L.; Scaglia, B.; Adani, F. Composting of the solid fraction of digestate derived from pig slurry: Biological processes and compost properties. Waste Manag. 2015, 35, 55–61. [Google Scholar] [CrossRef]
- Alburquerque, J.A.; de la Fuente, C.; Campoy, M.; Carrasco, L.; Nájera, I.; Baixauli, C.; Caravaca, F.; Roldán, A.; Cegarra, J.; Bernal, M.P. Agricultural use of digestate for horticultural crop production and improvement of soil properties. Eur. J. Agron. 2012, 43, 119–128. [Google Scholar] [CrossRef]
- Gómez-Brandón, M.; Fernández-Delgado Juárez, M.; Zangerle, M.; Insam, H. Effects of digestate on soil chemical and microbiological properties: A comparative study with compost and vermicompost. J. Hazard. Mater. 2016, 302, 267–274. [Google Scholar] [CrossRef]
- Loisel, J.; Gallego-Sala, A.V.; Amesbury, M.J. Expert assessment of future vulnerability of the global peatland carbon sink. Nat. Clim. Chang. 2021, 11, 70–77. [Google Scholar] [CrossRef]
- Navarro-Pedreño, J.; Almendro-Candel, M.B.; Zorpas, A.A. The increase of soil organic matter reduces Global Warming, myth or reality? Science 2021, 3, 18. [Google Scholar] [CrossRef]
- Wu, F.; Li, F.; Zhao, X.; Bolan, N.S.; Fu, P.; Lam, S.S.; Wang, H. Meet the challenges in the “Carbon Age”. Carbon Res. 2022, 1, 1. [Google Scholar] [CrossRef]
- Lal, R.; Negassa, W.; Lorenz, K. Carbon sequestration in soil. Curr. Opin. Environ. Sustain. 2015, 15, 79–86. [Google Scholar] [CrossRef]
- Klinglmair, M.; Thomsen, M. Using Food Waste in Organic Fertilizer: Modelling Biogenic Carbon Sequestration with Associated Nutrient and Micropollutant Loads. Sustainability 2020, 12, 7399. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhang, J.; Xu, L.; Nadeem, M.Y.; Li, W.; Jiang, Y.; Li, G. Long-term fertilizer postponing promotes soil organic carbon sequestration in paddy soils by accelerating lignin degradation and increasing microbial necromass. Soil Biol. Biochem. 2022, 175, 108839. [Google Scholar] [CrossRef]
- Nayak, N.; Mehrotra, R.; Mehrotra, S. Carbon biosequestration strategies: A review. Carbon Capture Sci. Technol. 2022, 4, 100065. [Google Scholar] [CrossRef]
- Janzen, H.H.; van Groenigen, K.J.; Powlson, D.S.; Schwinghamer, T.; van Groenigen, J.W. Photosynthetic limits on carbon sequestration in croplands. Geoderma 2022, 416, 115810. [Google Scholar] [CrossRef]
- Eid, E.M.; Alrumman, S.A.; El-Bebany, A.F. Evaluation of the potential of sewage sludge as a valuable fertilizer for wheat (Triticum aestivum L.) crops. Environ. Sci. Pollut. Res. 2019, 29, 392–401. [Google Scholar] [CrossRef]
- Urmi, T.A.; Rahman, M.M.; Islam, M.M.; Islam, M.A.; Jahan, N.A.; Mia, M.A.B.; Akhter, S.; Siddiqui, M.H.; Kalaji, H.M. Integrated nutrient management for rice yield, soil fertility, and carbon sequestration. Plants 2022, 11, 138. [Google Scholar] [CrossRef]
- Sarfraz, R.; Hussain, A.; Sabir, A. Role of biochar and plant growth promoting rhizobacteria to enhance soil carbon sequestration—A review. Environ. Monit. Assess. 2019, 191, 251. [Google Scholar] [CrossRef] [PubMed]
- Bai, X.; Huang, Y.; Ren, W.; Coyne, M.; Jacinthe, P.A.; Tao, B.; Matocha, C. Responses of soil carbon sequestration to climate-smart agriculture practices: A meta-analysis. Glob. Change Biol. 2019, 25, 2591–2606. [Google Scholar] [CrossRef] [PubMed]
- Alves, B.S.Q.; Zelakya, K.P.S.; Colen, F.; Frazao, L.A.; Napoli, A.; Parikh, S.J.; Fernandes, L.A. Effect of sewage sludge and sugarcane bagasse biochar on soil properties and sugar beet production. Pedosphere 2021, 31, 572–582. [Google Scholar] [CrossRef]
- Jeong, S.T.; Cho, S.R.; Lee, J.G.; Kim, P.J.; Kim, G.W. Composting and compost application: Trade-off between greenhouse gas emission and soil carbon sequestration in whole rice cropping system. J. Clean. Prod. 2019, 212, 1132–1142. [Google Scholar] [CrossRef]
- Dodor, D.E.; Amanor, Y.J.; Asamoah-Bediako, A.; MacCarthy, D.S.; Dovie, D.B.K. Kinetics of Carbon Mineralization and Sequestration of Sole and/or Co-amended Biochar and Cattle Manure in a Sandy Soil. Commun. Soil Sci. Plant Anal. 2019, 50, 2593–2609. [Google Scholar] [CrossRef]
- Jiang, G.; Zhang, W.; Xu, M.; Kuzyakov, Y.; Zhang, X.; Wang, J.; Murphy, D.V. Manure and Mineral Fertilizer Effects on Crop Yield and Soil Carbon Sequestration: A Meta-Analysis and Modeling Across China. Glob. Biogeochem. Cycles 2018, 32, 1659–1672. [Google Scholar] [CrossRef]
- Bolan, N.S.; Kunhikrishnan, A.; Naidu, R. Carbon storage in a heavy clay soil landfill site after biosolid application. Sci. Tot. Environ. 2013, 465, 216–225. [Google Scholar] [CrossRef]
- Tian, G.; Granato, T.C.; Cox, E.; Pietz, R.I.; Carlson, C.R.; Abedin, Z. Soil carbon sequestration resulting for long-term application of biosolids for land reclamation. J. Environ. Qual. 2009, 38, 61–74. [Google Scholar] [CrossRef]
- Lal, R. Global Potential of Soil Carbon Sequestration to Mitigate the Greenhouse Effect. Crit. Rev. Plant Sci. 2003, 22, 151–184. [Google Scholar] [CrossRef]
- Chen, Z.; Wie, Y.; Zhang, Z.; Wang, G.; Li, J. Organic carbon sequestration in Chinese croplands under compost application and its contribution to carbon neutrality. Environ. Sci. Pollut. Res. 2022, 30, 9022–9035. [Google Scholar] [CrossRef]
- Diacono, M.; Montemurro, F. Long-term effects of organic amendments on soil fertility. A review. Agron. Sustain. Develop. 2010, 30, 410–422. [Google Scholar] [CrossRef]
- Celik, I.; Ortas, I.; Kilic, S. Effects of compost, mycorrhiza, manure and fertilizer on some physical properties of a Chromoxerert soil. Soil Tillage Res. 2004, 78, 59–67. [Google Scholar] [CrossRef]
- Paradelo, R.; Eden, M.; Martínez-González, I.; Keller, T.; Houot, S. Soil physical properties of a Luvisol developed on loess after 15 years of amendment with compost. Soil Tillage Res. 2019, 191, 207–215. [Google Scholar] [CrossRef]
- Tejada, M.; Hernandez, M.T.; Garcia, C. Soil restoration using composted plant residues: Effects on soil properties. Soil Tillage Res. 2009, 102, 109–117. [Google Scholar] [CrossRef]
- Jien, S.-H.; Wang, C.-S. Effects of biochar on soil properties and erosion potential in a highly weathered soil. Catena 2013, 110, 225–233. [Google Scholar] [CrossRef]
- Dorado, J.; Zancada, M.C.; Almendros, G.; Lopez-Fando, C. Changes in soil properties and humic substances after long-term amendments with manure and crop residues in dryland farming systems. J. Plant Nutr. Soil Sci. 2003, 166, 31–38. [Google Scholar] [CrossRef]
- Sodhi, G.P.S.; Beri, V.; Benbi, D.K. Soil aggregation and distribution of carbon and nitrogen in different fractions under long-term application of compost in rice–wheat system. Soil Tillage Res. 2009, 103, 412–418. [Google Scholar] [CrossRef]
- Caravaca, F.; Masciandaro, G.; Ceccanti, B. Land use in relation to soil chemical and biochemical properties in a semiarid Mediterranean environment. Soil Tillage Res. 2002, 68, 23–30. [Google Scholar] [CrossRef]
- Blanco-Canqui, H. Biochar and soil physical properties. Soil Sci. Soc. Am. J. 2007, 81, 687–692. [Google Scholar] [CrossRef]
- Enaime, G.; Lübken, M. Agricultural Waste-Based Biochar for Agronomic Applications. Appl. Sci. 2021, 11, 8914. [Google Scholar] [CrossRef]
- Das, S.K.; Ghosh, G.K. Soil hydro-physical properties affected by biomass-derived biochar and organic manure: A low-cost technology for managing acidic mountain sandy soils of north eastern region of India. Biomass Conv. Bioref. 2022; in press. [Google Scholar] [CrossRef]
- Eden, M.; Gerke, H.H.; Houot, S. Organic waste recycling in agriculture and related effects on soil water retention and plant available water: A review. Agron. Sustain. Dev. 2017, 37, 11. [Google Scholar] [CrossRef]
- Jeffery, S.; Meinders, M.B.J.; Stoof, C.R.; Bezemer, T.M.; van de Voorde, T.F.J.; Mommer, L.; van Groenigen, J.W. Biochar application does not improve the soil hydrological function of a sandy soil. Geoderma 2015, 251–252, 47–54. [Google Scholar] [CrossRef]
- Liu, J.; Schulz, H.; Brandl, S.; Miehtke, H.; Huwe, B.; Glaser, B. Short-term effect of biochar and compost on soil fertility and water status of a Dystric Cambisol in NE Germany under field conditions. J. Plant Nutr. Soil Sci. 2012, 175, 698–707. [Google Scholar] [CrossRef]
- Aluko, O.B.; Oyedele, D.J. Influence of organic waste incorporation on changes in selected soil physical properties during drying of a Nigerian Alfisol. J. Appl. Sci. 2005, 5, 357–362. [Google Scholar] [CrossRef]
- Butler, T.J.; Muir, J.P. Dairy manure compost improves soil and increases tall wheatgrass yield. Agron. J. 2006, 98, 1090–1096. [Google Scholar] [CrossRef]
- Bastida, F.; Kandeler, E.; Hernández, T.; García, C. Long-term effect of municipal solid waste amendment on microbial abundance and humus-associated enzyme activities under semiarid conditions. Microb. Ecol. 2008, 55, 651–661. [Google Scholar] [CrossRef]
- Atkinson, C.; Fitzgerald, J.; Hipps, N. Potential mechanisms for achieving agricultural benefits from biochar application to temperate soils: A review. Plant Soil 2010, 337, 1–18. [Google Scholar] [CrossRef]
- Ritchie, G.; Dolling, P. The role of organic matter in soil acidification. Aus. J. Soil Res. 1985, 23, 569–576. [Google Scholar] [CrossRef]
- Lopes do Carmo, D.; Botelho de Lima, L.; Silva, C.A. Soil fertility and electrical conductivity affected by organic wastes rates and nutrient inputs. Rev. Bras. Ciênc. Solo 2016, 40, 1–17. [Google Scholar] [CrossRef]
- Weber, J.; Kocowicz, A.; Bekier, J.; Jamroz, E.; Tyszka, R.; Debicka, M.; Parylak, D.; Kordas, L. The effect of a sandy soil amendment with municipal solid waste (MSW) compost on nitrogen uptake efficiency by plants. Eur. J. Agron. 2014, 54, 54–60. [Google Scholar] [CrossRef]
- Kaur, T.; Brar, B.S.; Dhillon, N.S. Soil organic matter dynamics as affected by long-term use of organic and inorganic fertilizers under maize–wheat cropping system. Nutr. Cycl. Agroecosys. 2008, 81, 59–69. [Google Scholar] [CrossRef]
- Rayne, N.; Aula, L. Livestock Manure and the Impacts on Soil Health: A Review. Soil Sys. 2020, 4, 64. [Google Scholar] [CrossRef]
- Tittarelli, F.; Petruzzelli, G.; Pezzarossa, B.; Civilini, M.; Benedetti, A.; Sequi, P. Quality and agronomic use of compost. In Compost Science and Technology. Waste Management Series 8; Diaz, L.F., de Bertoldi, M., Bidlingmaier, W., Stentiford, E., Eds.; Elsevier Ltd.: Amsterdam, The Netherlands, 2007; pp. 119–145. [Google Scholar]
- Duong, T.T.T.; Verma, S.L.; Penfold, C.; Marschner, P. Nutrient release from composts into the surrounding soil. Geoderma 2013, 195, 42–47. [Google Scholar] [CrossRef]
- Evanylo, G.; Sherony, C.; Spargo, J.; Starner, D.; Brosius, M.; Haering, K. Soil and water environmental effects of fertilizer-, manure-, and compost-based fertility practices in an organic vegetable cropping system. Agric. Ecosyst. Environ. 2008, 127, 50–58. [Google Scholar] [CrossRef]
- Gil, M.V.; Carballo, M.T.; Calvo, L.F. Fertilization of maize with compost from cattle manure supplemented with additional mineral nutrients. Waste Manag. 2008, 28, 1432–1440. [Google Scholar] [CrossRef]
- Blanchet, G.; Gavazov, K.; Bragazza, L.; Sinaj, S. Responses of soil properties and crop yields to different inorganic and organic amendments in a Swiss conventional farming system. Agric. Ecosyst. Environ. 2016, 230, 116–126. [Google Scholar] [CrossRef]
- Scotti, R.; Pane, C.; Spaccini, R.; Palese, A.S.; Piccolo, A.; Celano, G.; Zaccardelli, M. On-farm compost: A useful tool to improve soil quality under intensive farming systems. App. Soil Ecol. 2016, 107, 13–23. [Google Scholar] [CrossRef]
- Nest, T.V.; Ruysschaert, G.; Vandecasteele, B.; Houot, S.; Baken, S.; Smolders, E.; Cougnon, M.; Reheul, D.; Merckx, R. The long term use of farmyard manure and compost: Effects on P availability, orthophosphate sorption strength and P leaching. Agric. Ecosyst. Environ. 2016, 216, 23–33. [Google Scholar] [CrossRef]
- Schmidt, H.P.; Kammann, C.; Hagemann, N.; Leifeld, J.; Bucheli, T.D.; Sánchez Monedero, M.A.; Cayuela, M.L. Biochar in agriculture—A systematic review of 26 global meta-analyses. GCB-Bionergy 2021, 13, 1708–1730. [Google Scholar] [CrossRef]
- Alvarenga, P.; Mourinha, C.; Farto, M.; Santos, T.; Palma, P.; Sengo, J.; Morais, M.C.; Cunha-Queda, C. Sewage sludge, compost and other representative organic wastes as agricultural soil amendments: Benefits versus limiting factors. Waste Manag. 2015, 40, 44–52. [Google Scholar] [CrossRef] [PubMed]
- Hamdi, H.; Hechmi, S.; Khelil, M.N.; Zoghlami, I.R.; Benzarti, S.; Mokni-Tlili, S.; Hassen, A.; Jedidi, N. Repetitive land application of urban sewage sludge: Effect of amendment rates and soil texture on fertility and degradation parameters. Catena 2019, 172, 11–20. [Google Scholar] [CrossRef]
- de la Fuente, C.; Clemente, R.; Martinez-Alcala, I.; Tortosa, G.; Bernal, M.P. Impact of fresh and composted solid olive husk and their water-soluble fractions on soil heavy metal fractionation; microbial biomass and plant uptake. J. Hazard. Mater. 2011, 186, 1283–1289. [Google Scholar] [CrossRef] [PubMed]
- Placek, A.; Grobelak, A.; Hiller, J.; Stępień, W.; Jelonek, P.; Jaskulak, M.; Kacprzak, M. The role of organic and inorganic amendments in carbon sequestration and immobilization of heavy metals in degraded soils. J. Sustain. Dev. Energy Water Environ. Syst. 2017, 5, 509–517. [Google Scholar] [CrossRef]
- Brussaard, L.; de Ruiter, P.C.; Brown, G.G. Soil biodiversity for agricultural sustainability. Agric. Ecosyst. Environ. 2007, 121, 233–244. [Google Scholar] [CrossRef]
- Wang, H.; Ding, J.; Liu, S.; Bai, X.; Xue, L. Different carbonic supplements induced changes of microflora in two types of compost teas and biocontrol efficiency against Pythium aphanidermatum. Biocontrol Sci. Technol. 2019, 29, 924–939. [Google Scholar] [CrossRef]
- Bulluck, L.R.; Brosius, M.; Evanylo, G.K.; Ristaino, J.B. Organic and synthetic fertility amendments influence soil microbial, physical and chemical properties on organic and conventional farms. Appl. Soil Ecol. 2002, 19, 147–160. [Google Scholar] [CrossRef]
- Borrero, C.; Castillo, S.; Segarra, G.; Trillas, M.I.; Castãno, R.; Avilés, M. Capacity of composts made from agriculture industry residues to suppress different plant diseases. Acta Hort. 2013, 1013, 459–463. [Google Scholar] [CrossRef]
- de Corato, U. Agricultural waste recycling in horticultural intensive farming systems by on-farm composting and compost-based tea application improves soil quality and plant health: A review under the perspective of a circular economy. Sci. Total Environ. 2020, 738, 139840. [Google Scholar] [CrossRef]
- Araujo, A.S.F.; Miranda, A.R.L.; Oliveira, M.L.J.; Santos, V.M.; Nuñes, L.A.P.L.; Melo, W.J. Soil microbial properties after 5 years of consecutive amendment with composted tannery sludge. Environ. Monit. Assess. 2015, 187, 4153. [Google Scholar] [CrossRef]
- García-Gil, J.C.; Plaza, C.; Soler-Rovira, P.; Polo, A. Long-term effects of municipal solid waste compost application on soil enzyme activities and microbial biomass. Soil Biol. Biochem. 2000, 32, 1907–1913. [Google Scholar] [CrossRef]
- Bernard, E.; Larkin, R.P.; Tavantzis, S.; Erich, M.S.; Alyokhin, A.; Sewell, G.; Lannan, A.; Gross, S.D. Compost, rapeseed rotation, and biocontrol agents significantly impact soil microbial communities in organic and conventional potato production systems. Appl. Soil Ecol. 2011, 52, 29–41. [Google Scholar] [CrossRef]
- Nair, A.; Ngouajio, M. Soil microbial biomass, functional microbial diversity, and nematode community structure as affected by cover crops and compost in an organic vegetable production system. Appl. Soil Ecol. 2012, 58, 45–55. [Google Scholar] [CrossRef]
- Martínez-Blanco, J.; Lazcano, C.; Christensen, T.H.; Muñoz, P.; Rieradevall, J.; Møller, J.; Antón, A.; Boldrin, A. Compost benefits for agriculture evaluated by life cycle assessment. A review. Agron. Sustain. Dev. 2013, 33, 721–732. [Google Scholar] [CrossRef]
- Palese, A.M.; Pane, C.; Villecco, D.; Zaccardelli, M.; Altieri, G.; Celano, G. Effects of organic additives on chemical, microbiological and plant pathogen suppressive properties of aerated municipal waste compost teas. Appl. Sci. 2021, 11, 7402. [Google Scholar] [CrossRef]
- Du, J.; Zhang, Y.; Qu, M.; Yin, Y.; Fan, K.; Hu, B.; Ma, C. Effects of biochar on the microbial activity and community structure during sewage sludge composting. Bioresour. Technol. 2019, 272, 171–179. [Google Scholar] [CrossRef]
- Nie, C.; Yang, X.; Niazi, N.K.; Xu, X.; Wen, Y.; Rinklebe, J.; Ok, Y.S.; Xu, S.; Wang, H. Impact of sugarcane bagasse-derived biochar on heavy metal availability and microbial activity: A field study. Chemosphere 2018, 200, 274–282. [Google Scholar] [CrossRef]
- Tang, J.; Zhang, L.; Zhang, J.; Ren, L.; Zhou, Y.; Zheng, Y.; Luo, L.; Yang, Y.; Huang, H.; Chen, A. Physicochemical features, metal availability and enzyme activity in heavy metal-polluted soil remediated by biochar and compost. Sci. Tot. Environ. 2020, 701, 134751. [Google Scholar] [CrossRef]
- Hazrati, S.; Farahbakhsh, M.; Cerdà, A.; Heydarpoor, G. Functionalization of ultrasound enhanced sewage sludge-derived biochar: Physicochemical improvement and its effects on soil enzyme activities and heavy metals availability. Chemosphere 2020, 269, 128767. [Google Scholar] [CrossRef]
- Zoghlami, R.I.; Hamdi, H.; Mokni-Tlili, S.; Khelil, M.N.; Ben Aissa, N.; Jedidi, N. Changes in light-textured soil parameters following two successive annual amendments with urban sewage sludge. Ecol. Eng. 2016, 95, 604–611. [Google Scholar] [CrossRef]
- Bonanomi, G.; De Filippis, F.; Zotti, M.; Idbella, M.; Cesarano, G.; Al-Rowaily, S.; Abd-El-Gawad, A. Repeated applications of organic amendments promote beneficial microbiota, improve soil fertility and increase crop yield. Appl. Soil Ecol. 2020, 156, 103714. [Google Scholar] [CrossRef]
- Legrand, F.; Picot, A.; Cobo-Díaz, J.F.; Carof, M.; Chen, W.; Le Floch, G. Effect of tillage and static abiotic soil properties on microbial diversity. Appl. Soil Ecol. 2018, 132, 135–145. [Google Scholar] [CrossRef]
- Zhang, S.; Sun, L.; Wang, Y. Cow manure application effectively regulates the soil bacterial community in tea plantation. BMC Microbiol. 2020, 20, 190. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Liu, M.; Li, Z.; Jiang, C.; Wu, M. Soil N transformation and microbial community structure as affected by adding biochar to a paddy soil of subtropical China. J. Integr. Agric. 2016, 15, 209–219. [Google Scholar] [CrossRef]
- Liao, H.; Li, Y.; Yao, H. Biochar amendment stimulates utilization of plant-derived carbon by soil bacteria in an intercropping system. Front. Microbiol. 2019, 10, 1361. [Google Scholar] [CrossRef] [PubMed]
- D’Hose, T.; Cougnon, M.; De Vliegher, A.; Vandecasteele, B.; Viaene, N.; Cornelis, W.; Van Bockstaele, E.; Reheul, D. The positive relationship between soil quality and crop production: A case study on the effect of farm compost application. Appl. Soil Ecol. 2014, 75, 189–198. [Google Scholar] [CrossRef]
- Bonilla, N.; Gutiérrez-Barranquero, J.A.; de Vicente, A.; Cazorla, F.M. Enhancing soil quality and plant health through suppressive organic amendments. Diversity 2012, 4, 475–491. [Google Scholar] [CrossRef]
- Avilés, M.; Borrero, C.; Trillas, M.I. Review on compost as an inducer of disease suppression in plants grown in soilless culture. Dyn. Soil Dyn. Plant 2011, 5, 1–11. [Google Scholar]
- Noble, R. Risks and benefits of soil amendment with composts in relation to plant pathogens. Australas. Plant Pathol. 2011, 40, 157–167. [Google Scholar] [CrossRef]
- Pascual, J.A.; Hernandez, T.; García, C.; De Leij, F.A.A.M.; Lynch, J.M. Long-term suppression of Pythium ultimum in arid soils using fresh and composted municipal wastes. Biol. Fert. Soils 2000, 30, 478–484. [Google Scholar] [CrossRef]
- Scheuerell, S.J.; Sullivan, D.M.; Mahaffee, W.F. Suppression of seedling damping-off caused by Pythium ultimum, P. irregulare, and Rhizoctonia solani in container media amended with a diverse range of Pacific Northwest compost sources. Phytopathology 2005, 95, 306–315. [Google Scholar] [CrossRef]
- Widmer, T.L.; Graham, J.H.; Mitchell, D.J. Composted municipal solid wastes promote growth of young citrus trees infested with Phytophthora nicotianae. Compost Sci. Util. 1999, 7, 6–16. [Google Scholar] [CrossRef]
- Termorshuizen, A.J.; Van Rijn, E.; Van der Gaag, D.J.; Alabouvette, C.; Chen, Y.; Lagerlöf, J.; Malandrakis, A.A.; Paplomatas, E.J.; Rämert, B.; Ryckeboer, J.; et al. Suppressiveness of 18 composts against 7 pathosystems: Variability in pathogen response. Soil Biol. Biochem. 2006, 38, 2461–2477. [Google Scholar] [CrossRef]
- Cotxarrera, L.; Trillas, M.I.; Steinberg, C.; Alabouvette, C. Use of sewage sludge compost and Trichoderma asperellum isolates to suppress Fusarium wilt of tomato. Soil Biol. Biochem. 2002, 34, 467–476. [Google Scholar] [CrossRef]
- Castãno, R.; Avilés, M. Factors that affect the capacity of growing media to suppress V. dahliae wilt. Acta Hort. 2013, 1013, 465–471. [Google Scholar] [CrossRef]
- Elad, Y.; David, D.; Harel, Y.M.; Borenshtein, M.; Kalifa, H.B.; Silber, A.; Graber, E. Induction of systemic resistance in plants by biochar, a soil-applied carbon sequestering agent. Phytopathology 2010, 100, 913–921. [Google Scholar] [CrossRef]
- Harel, Y.; Elad, Y.; Rav-David, D.; Borenstein, M.; Shulchani, R.; Lew, B.; Graber, E. Biochar mediates systemic response of strawberry to foliar fungal pathogens. Plant Soil 2012, 357, 245–257. [Google Scholar] [CrossRef]
- Jaiswal, A.; Elad, Y.; Paudel, I.; Graber, E.; Cytryn, E.; Frenkel, O. Linking the belowground microbial composition, diversity and activity to soilborne disease suppression and growth promotion of tomato amended with biochar. Sci. Rep. 2017, 7, 44382. [Google Scholar] [CrossRef]
- Huang, C.; Zeng, G.; Huang, D.; Lai, C.; Xu, P.; Zhang, C.; Cheng, M.; Wan, J.; Hu, L.; Zhang, Y. Effect of Phanerochaete chrysosporium inoculation on bacterial community and metal stabilization in lead-contaminated agricultural waste composting. Bioresour. Technol. 2017, 243, 294–303. [Google Scholar] [CrossRef]
- Lehmann, J.; Bossio, D.A.; Kögel-Knabner, I.; Rillig, M.C. The concept and future prospects of soil health. Nat. Rev. Earth Environ. 2020, 1, 544–553. [Google Scholar] [CrossRef]
- Sharma, B.; Vaish, B.; Monika Singh, U.K.; Singh, P.; Singh, R.P. Recycling of Organic Wastes in Agriculture: An Environmental Perspective. Int. J. Environ. Res. 2019, 13, 409–429. [Google Scholar] [CrossRef]
- Urra, J.; Alkorta, I.; Garbisu, C. Potential Benefits and Risks for Soil Health Derived From the Use of Organic Amendments in Agriculture. Agronomy 2019, 9, 542. [Google Scholar] [CrossRef]
- Zhou, G.; Xu, S.; Ciais, P.; Manzoni, S.; Fang, J.; Yu, G.; Tang, X.; Znou, P.; Wang, W.; Yan, J.; et al. Climate and litter C/N ratio constrain soil organic carbon accumulation. Nat. Sci. Rev. 2019, 6, 746–757. [Google Scholar] [CrossRef] [PubMed]
- Fink-Gremmels, J. Effects on livestock and food safety. In Animal Feed Contamination, 1st ed.; Woodhead Publishing Limited: Cambridge, UK, 2012. [Google Scholar]
- Leclerc, A.; Laurent, A. Framework for estimating toxic releases from the application of manure on agricultural soil: National release inventories for heavy metals in 2000–2014. Sci. Total Environ. 2017, 590–591, 452–460. [Google Scholar] [CrossRef]
- Zhao, B.; Maeda, M.; Zhang, J.; Zhu, A.; Ozaki, Y. Accumulation and chemical fractionation of heavy metals in Andisols after a different, 6-year fertilization management. Environ. Sci. Pollut. Res. 2006, 13, 90–97. [Google Scholar] [CrossRef]
- Zhen, H.; Jia, L.; Huang, C.; Qiao, Y.; Li, J.; Li, H.; Chen, Q.; Wan, Y. Long-term effects of intensive application of manure on heavy metal pollution risk in protected-field vegetable production. Environ. Pollut. 2020, 263, 114552. [Google Scholar] [CrossRef]
- Van Oort, F.; Paradelo, R.; Proix, N.; Delarue, G.; Baize, D.; Monna, F. Centennial fertilization-induced soil processes control trace metal dynamics. Lessons from a long-term bare fallow experiment. Soil Sys. 2018, 2, 23. [Google Scholar] [CrossRef]
- Erhart, E.; Hartl, W.; Putz, B. Total soil heavy-metal concentrations and mobile fractions after 10 years of biowaste-compost fertilization. J. Plant Nutr. Soil Sci. 2008, 171, 378–383. [Google Scholar] [CrossRef]
- Frey, L.; Tanunchai, B.; Glaser, B. Antibiotics residues in pig slurry and manure and its environmental contamination potential. A meta-analysis. Agron. Sustain. Dev. 2022, 42, 31. [Google Scholar] [CrossRef]
Advantages | Disadvantages | |
---|---|---|
Direct application |
|
|
Composting |
|
|
Biocharring |
|
|
Anaerobic digestion |
|
|
Benefit | Risk |
---|---|
C cycle
| Processes related to decomposition: (production of toxic substances, organic acids, O2 consumption)
|
Physical properties
| |
Chemical properties
| N immobilization |
| |
Biological properties
| Potentially toxic trace elements
|
Antibiotics and similar
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Paradelo, R.; Navarro-Pedreño, J.; Glaser, B.; Grobelak, A.; Kowalska, A.; Singh, B.R. Potential and Constraints of Use of Organic Amendments from Agricultural Residues for Improvement of Soil Properties. Sustainability 2024, 16, 158. https://doi.org/10.3390/su16010158
Paradelo R, Navarro-Pedreño J, Glaser B, Grobelak A, Kowalska A, Singh BR. Potential and Constraints of Use of Organic Amendments from Agricultural Residues for Improvement of Soil Properties. Sustainability. 2024; 16(1):158. https://doi.org/10.3390/su16010158
Chicago/Turabian StyleParadelo, Remigio, Jose Navarro-Pedreño, Bruno Glaser, Anna Grobelak, Aneta Kowalska, and Bal Ram Singh. 2024. "Potential and Constraints of Use of Organic Amendments from Agricultural Residues for Improvement of Soil Properties" Sustainability 16, no. 1: 158. https://doi.org/10.3390/su16010158
APA StyleParadelo, R., Navarro-Pedreño, J., Glaser, B., Grobelak, A., Kowalska, A., & Singh, B. R. (2024). Potential and Constraints of Use of Organic Amendments from Agricultural Residues for Improvement of Soil Properties. Sustainability, 16(1), 158. https://doi.org/10.3390/su16010158