Chemically Catalyzed Phytoextraction for Sustainable Cleanup of Soil Lead Contamination in a Community Garden in Jersey City, New Jersey
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. Sample Treatment and Analysis
2.3. Data Analysis
3. Results and Discussion
3.1. Physicochemical Properties of Community Garden Soil
3.2. Lead Concentrations in Soil, Leachate, and Dust Samples
3.3. Effect of EDDS on Geochemical Fractions of Soil Lead
3.4. Lead Uptake by Vetiver and Bermudagrass
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cattle, J.A.; McBratney, A.B.; Minasny, B. Kriging method evaluation for assessing the spatial distribution of urban soil lead contamination. J. Environ. Qual. 2002, 31, 1576–1588. [Google Scholar] [CrossRef] [PubMed]
- Mielke, H.W.; Anderson, J.C.; Berry, K.J.; Mielke, P.W.; Chaney, R.L.; Leech, M. Lead concentrations in inner-city soils as a factor in the child lead problem. Am. J. Public Health 1983, 73, 1366–1369. [Google Scholar] [CrossRef]
- Clark, J.J.; Knudsen, A.C. Extent, characterization, and sources of soil lead contamination in small-urban residential neigh-borhoods. J. Environ. Qual. 2013, 42, 1498–1506. [Google Scholar] [CrossRef] [PubMed]
- Clark, S.; Bornschein, R.; Succop, P.; Roda, S.; Peace, B. Urban Lead Exposures of Children in Cincinnati, Ohio. Chem. Speciat. Bioavailab. 1991, 3, 163–171. [Google Scholar] [CrossRef]
- Abbasi, T.; Abbasi, S.A. Sources of Pollution in Rooftop Rainwater Harvesting Systems and Their Control. Crit. Rev. Environ. Sci. Technol. 2011, 41, 2097–2167. [Google Scholar] [CrossRef]
- Lye, D.J. Rooftop runoff as a source of contamination: A review. Sci. Total Environ. 2009, 407, 5429–5434. [Google Scholar] [CrossRef]
- Davis, A.P.; Burns, M. Evaluation of lead concentration in runoff from painted structures. Water Res. 1999, 33, 2949–2958. [Google Scholar] [CrossRef]
- Zahran, S.; Mielke, H.W.; McElmurry, S.P.; Filippelli, G.M.; Laidlaw, M.A.; Taylor, M.P. Determining the relative importance of soil sample locations to predict risk of child lead exposure. Environ. Int. 2013, 60, 7–14. [Google Scholar] [CrossRef] [PubMed]
- Laidlaw, M.A.; Filippelli, G.M.; Brown, S.; Paz-Ferreiro, J.; Reichman, S.M.; Netherway, P.; Truskewycz, A.; Ball, A.S.; Mielke, H.W. Case studies and evidence-based approaches to addressing urban soil lead contamination. Appl. Geochem. 2017, 83, 14–30. [Google Scholar] [CrossRef]
- Dobrescu, A.-I.; Ebenberger, A.; Harlfinger, J.; Griebler, U.; Klerings, I.; Nußbaumer-Streit, B.; Chapman, A.; Affengruber, L.; Gartlehner, G. Effectiveness of interventions for the remediation of lead-contaminated soil to prevent or reduce lead exposure—A systematic review. Sci. Total Environ. 2021, 806, 150480. [Google Scholar] [CrossRef]
- Etim, E.U. Lead Removal from Contaminated Shooting Range Soil using Acetic Acid Potassium Chloride Washing Solutions and Electrochemical Reduction. J. Health Pollut. 2017, 7, 22–31. [Google Scholar] [CrossRef] [PubMed]
- Hechmi, N.; Aissa, N.B.; Abdennaceur, H.; Jedidi, N. Phytoremediation potential of maize (Zea mays L.) in co-contaminated soils with pentachlorophenol and cadmium. Int. J. Phytoremediation 2013, 15, 703–713. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.W.; Chen, J.; Cunningham, S.D. Phytoextraction of Lead from Contaminated Soils; American Chemical Society: Washington, DC, USA, 1974; Volume 664, pp. 283–298. [Google Scholar] [CrossRef]
- Majumdar, A.; Upadhyay, M.K.; Ojha, M.; Afsal, F.; Giri, B.; Srivastava, S.; Bose, S. Enhanced phytoremediation of Metal(loid)s via spiked ZVI nanoparticles: An urban clean-up strategy with ornamental plants. Chemosphere 2021, 288, 132588. [Google Scholar] [CrossRef] [PubMed]
- Majumdar, A.; Barla, A.; Upadhyay, M.K.; Ghosh, D.; Chaudhuri, P.; Srivastava, S.; Bose, S. Vermiremediation of metal(loid)s via Eichornia crassipes phytomass extraction: A sustainable technique for plant amelioration. J. Environ. Manag. 2018, 220, 118–125. [Google Scholar] [CrossRef]
- Evangelou, M.W.; Ebel, M.; Schaeffer, A. Chelate assisted phytoextraction of heavy metals from soil. Effect, mechanism, toxicity, and fate of chelating agents. Chemosphere 2007, 68, 989–1003. [Google Scholar] [CrossRef]
- Alkorta, I.; Hernández-Allica, J.; Becerril, J.M.; Amezaga, I.; Albizu, I.; Onaindia, M.; Garbisu, C. Chelate-enhanced phy-toremediation of soils polluted with heavy metals. Rev. Environ. Sci. Biotechnol. 2004, 3, 55–70. [Google Scholar] [CrossRef]
- Zhang, Z.; Sarkar, D.; Sidhu, V.; Warke, M.; Datta, R. Impact of EDDS Dosage on Lead Phytoextraction in Contaminated Urban Residential Soils. Front. Sustain. Cities 2022, 3, 773467. [Google Scholar] [CrossRef]
- Attinti, R.; Barrett, K.R.; Datta, R.; Sarkar, D. Ethylenediaminedisuccinic acid (EDDS) enhances phytoextraction of lead by vetiver grass from contaminated residential soils in a panel study in the field. Environ. Pollut. 2017, 225, 524–533. [Google Scholar] [CrossRef]
- Danh, L.T.; Truong, P.; Mammucari, R.; Foster, N. Economic Incentive for Applying Vetiver Grass to Remediate Lead, Copper and Zinc Contaminated Soils. Int. J. Phytoremediation 2010, 13, 47–60. [Google Scholar] [CrossRef]
- Method 3050B Acid Digestion of Sediments, Sludges, and Soils; Revision 2; U.S. EPA: Washington, DC, USA, 1996. Available online: https://www.epa.gov/esam/epa-method-3050b-acid-digestion-sediments-sludges-and-soils (accessed on 8 April 2023).
- Tessier, A.; Campbell, P.G.C.; Bisson, M. Sequential extraction procedure for the speciation of particulate trace metals. Anal. Chem. 1979, 51, 844–851. [Google Scholar] [CrossRef]
- Hagmann, D.F.; Goodey, N.M.; Mathieu, C.; Evans, J.; Aronson, M.F.; Gallagher, F.; Krumins, J.A. Effect of metal contamination on microbial enzymatic activity in soil. Soil Biol. Biochem. 2015, 91, 291–297. [Google Scholar] [CrossRef]
- Sarkar, D.; Andra, S.S.; Saminathan, S.K.; Datta, R. Chelant-aided enhancement of lead mobilization in residential soils. Environ. Pollut. 2008, 156, 1139–1148. [Google Scholar] [CrossRef]
- Kim, C.; Lee, Y.; Ong, S.K. Factors affecting EDTA extraction of lead from lead-contaminated soils. Chemosphere 2003, 51, 845–853. [Google Scholar] [CrossRef] [PubMed]
- Tandy, S.; Bossart, K.; Mueller, R.; Ritschel, J.; Hauser, L.; Schulin, R.; Nowack, B. Extraction of Heavy Metals from Soils Using Biodegradable Chelating Agents. Environ. Sci. Technol. 2003, 38, 937–944. [Google Scholar] [CrossRef] [PubMed]
- Andra, S.S.; Datta, R.; Sarkar, D.; Saminathan, S.K.; Mullens, C.P.; Bach, S.B. Analysis of phytochelatin complexes in the lead tolerant vetiver grass [Vetiveria zizanioides (L.)] using liquid chromatography and mass spectrometry. Environ. Pollut. 2009, 157, 2173–2183. [Google Scholar] [CrossRef] [PubMed]
- Andra, S.S.; Datta, R.; Sarkar, D.; Makris, K.C.; Mullens, C.P.; Sahi, S.V.; Bach, S.B.H. Induction of Lead-Binding Phytochelatins in Vetiver Grass [Vetiveria zizanioides (L.)]. J. Environ. Qual. 2009, 38, 868–877. [Google Scholar] [CrossRef]
- Yang, S.; Liu, J.; Bi, X.; Ning, Y.; Qiao, S.; Yu, Q.; Zhang, J. Risks related to heavy metal pollution in urban construction dust fall of fast-developing Chinese cities. Ecotoxicol. Environ. Saf. 2020, 197, 110628. [Google Scholar] [CrossRef]
- Mielke, H.W. Lead in New Orleans soils: New images of an urban environment. Environ. Geochem. Health 1994, 16, 123–128. [Google Scholar] [CrossRef]
- Xie, C.; Xiong, X.; Huang, Z.; Sun, L.; Ma, J.; Cai, S.; Yu, F.; Zhong, W.; Chen, S.; Li, X. Exogenous melatonin improves lead tolerance of bermudagrass through modulation of the antioxidant defense system. Int. J. Phytoremediation 2018, 20, 1408–1417. [Google Scholar] [CrossRef]
- Wang, G.; Koopmans, G.F.; Song, J.; Temminghoff, E.J.M.; Luo, Y.; Zhao, Q.; Japenga, J. Mobilization of heavy metals from contaminated paddy soil by EDDS, EDTA, and elemental sulfur. Environ. Geochem. Health 2007, 29, 221–235. [Google Scholar] [CrossRef]
- Luo, C.; Shen, Z.; Li, X.; Baker, A.J. Enhanced phytoextraction of Pb and other metals from artificially contaminated soils through the combined application of EDTA and EDDS. Chemosphere 2006, 63, 1773–1784. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Wang, Q.; Cui, Y.; Dong, Y.; Christie, P. Slow release chelate enhancement of lead phytoextraction by corn (Zea mays L.) from contaminated soil—A preliminary study. Sci. Total Environ. 2005, 339, 179–187. [Google Scholar] [CrossRef] [PubMed]
- Yan, D.Y.; Yip, T.C.; Yui, M.M.; Tsang, D.C.; Lo, I.M. Influence of EDDS-to-metal molar ratio, solution pH, and soil-to-solution ratio on metal extraction under EDDS deficiency. J. Hazard. Mater. 2010, 178, 890–894. [Google Scholar] [CrossRef]
- Chen, K.F.; Yeh, T.Y.; Lin, C.F. Phytoextraction of Cu, Zn, and Pb enhanced by chelators with vetiver (Vetiveria zizanioides): Hydroponic and pot experiments. Int. Sch. Res. Not. 2012, 729693. [Google Scholar] [CrossRef]
- Peters, R.W. Chelant extraction of heavy metals from contaminated soils. J. Hazard. Mater. 1999, 66, 151–210. [Google Scholar] [CrossRef]
- Vamerali, T.; Bandiera, M.; Mosca, G. Field crops for phytoremediation of metal-contaminated land. A review. Environ. Chem. Lett. 2009, 8, 1–17. [Google Scholar] [CrossRef]
- Saifullah; Meers, E.; Qadir, M.; de Caritat, P.; Tack, F.; Du Laing, G.; Zia, M. EDTA-assisted Pb phytoextraction. Chemosphere 2009, 74, 1279–1291. [Google Scholar] [CrossRef]
- Andra, S.S.; Sarkar, D.; Saminathan, S.K.M.; Datta, R. Chelant-assisted Phytostabilization of Paint-contaminated Residential Sites. CLEAN—Soil Air Water 2010, 38, 803–811. [Google Scholar] [CrossRef]
- Glińska, S.; Michlewska, S.; Gapińska, M.; Seliger, P.; Bartosiewicz, R. The effect of EDTA and EDDS on lead uptake and lo-calization in hydroponically grown Pisum sativum L. Acta Physiol. Plant. 2014, 36, 399–408. [Google Scholar] [CrossRef]
- Freitas, E.V.; Nascimento, C.W.; Souza, A.; Silva, F.B. Citric acid-assisted phytoextraction of lead: A field experiment. Chemosphere 2013, 92, 213–217. [Google Scholar] [CrossRef]
- Soleimani, M.; Hajabbasi, M.A.; Charkhabi, A.H.; Shariatmadari, H. Bioaccumulation of nickel and lead by Bermuda grass (Cynodon dactylon) and tall fescue (Festuca arundinacea) from two contaminated soils. Casp. J. Environ. Sci. 2009, 7, 59–70. [Google Scholar]
- Beiyuan, J.; Fang, L.; Chen, H.; Li, M.; Liu, D.; Wang, Y. Nitrogen of EDDS enhanced removal of potentially toxic elements and attenuated their oxidative stress in a phytoextraction process. Environ. Pollut. 2020, 268, 115719. [Google Scholar] [CrossRef] [PubMed]
- Neve, S.; Sarkar, D.; Zhang, Z.; Datta, R. Optimized Production of Second-Generation Bioethanol from a Spent C4 Grass: Vetiver (Chrysopogon zizanioides). Energies 2022, 15, 9597. [Google Scholar] [CrossRef]
Time and Sample Types | Vetiver Treatment Plot | Vetiver Control Plot | Bermudagrass Control Plot | |
---|---|---|---|---|
Year 1 | Dust | 0.32 | 0.46 | 0.54 |
Leachate | 0.31 | 0.38 | 0.37 | |
Year 2 | Dust | 0.80 | 0.51 | 0.49 |
Leachate | 0.73 | 0.66 | 0.80 | |
Year 3 | Dust | 0.35 | 0.41 | 0.39 |
Leachate | 0.83 | 0.71 | 0.75 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Z.; Sarkar, D.; Levy, F.; Datta, R. Chemically Catalyzed Phytoextraction for Sustainable Cleanup of Soil Lead Contamination in a Community Garden in Jersey City, New Jersey. Sustainability 2023, 15, 7492. https://doi.org/10.3390/su15097492
Zhang Z, Sarkar D, Levy F, Datta R. Chemically Catalyzed Phytoextraction for Sustainable Cleanup of Soil Lead Contamination in a Community Garden in Jersey City, New Jersey. Sustainability. 2023; 15(9):7492. https://doi.org/10.3390/su15097492
Chicago/Turabian StyleZhang, Zhiming, Dibyendu Sarkar, Frances Levy, and Rupali Datta. 2023. "Chemically Catalyzed Phytoextraction for Sustainable Cleanup of Soil Lead Contamination in a Community Garden in Jersey City, New Jersey" Sustainability 15, no. 9: 7492. https://doi.org/10.3390/su15097492
APA StyleZhang, Z., Sarkar, D., Levy, F., & Datta, R. (2023). Chemically Catalyzed Phytoextraction for Sustainable Cleanup of Soil Lead Contamination in a Community Garden in Jersey City, New Jersey. Sustainability, 15(9), 7492. https://doi.org/10.3390/su15097492