Soil Erosion Status Prediction Using a Novel Random Forest Model Optimized by Random Search Method
Abstract
1. Introduction
2. Related Work
3. Materials and Methods
3.1. Dataset Description
3.2. Machine Learning Models
3.2.1. Random Forest (RF) Model
Algorithm 1 Pseudocode of RF Algorithm |
To construct Ti, randomly sample the training data T using replacement. Generate a root node Ni, that contains containing Ti If N >1, Pick x% at random from the potential dividing features in N. Determine the information gain using Equation (1). Choose the feature F that has the most information gain value. Generate f child nodes of N, N1,…,Nf, where F has f potential values (F1,….,Ff) For i from 1 to f do Put the contents of Ni to Ti, as Ti contains all instances that match Fi in N Repeat steps 3 through 9 for N times to create a forest of N trees. End for End if |
3.2.2. Naïve Bayes (NB) Model
Algorithm 2 Pseudocode of NB Model |
Input: Training sample set N Output: A class of testing dataset.
|
3.2.3. Logistic Regression (LR) Model
3.2.4. K-Nearest Neighbor (KNN) Model
3.2.5. Support Vector Machine (SVM) Model
Algorithm 3 Pseudocode of the SVM Model |
|
3.2.6. Linear Discriminant Analysis (LDA) Model
3.2.7. Stochastic Gradient Descent (SGD) Model
Algorithm 4 Pseudo-code for Stochastic Gradient Descent (SGD) |
3.3. The Proposed RS-RF for Soil Erosion Status Prediction
3.3.1. Data Normalization
3.3.2. Random Search (RS)
3.3.3. Proposed Methodology
Algorithm 5 Pseudocode of the proposed Random Search-Random Forest (RS-RF) |
|
3.4. Evaluation Metrics
4. Results and Discussion
5. Conclusions and Future Work
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Nearing, M.A.; Lane, L.J.; Lopes, V.L. Modeling Soil Erosion. In Soil Erosion Research Methods; Routledge: Oxford, UK, 2017; pp. 127–158. ISBN 0-203-73935-3. [Google Scholar]
- Batista, P.V.; Davies, J.; Silva, M.L.; Quinton, J.N. On the Evaluation of Soil Erosion Models: Are We Doing Enough? Earth-Sci. Rev. 2019, 197, 102898. [Google Scholar] [CrossRef]
- Wang, J.; Zhen, J.; Hu, W.; Chen, S.; Lizaga, I.; Zeraatpisheh, M.; Yang, X. Remote Sensing of Soil Degradation: Progress and Perspective. Int. Soil Water Conserv. Res. 2023; in press. [Google Scholar] [CrossRef]
- AbdelRahman, M.A. An Overview of Land Degradation, Desertification and Sustainable Land Management Using GIS and Remote Sensing Applications. Rend. Lincei. Sci. Fis. Nat. 2023, 1–42. [Google Scholar] [CrossRef]
- Kryuchkov, S.N.; Solonkin, A.V.; Solomentseva, A.S.; Zholobova, O.O. Elements of the Technology of Reproduction of Robinia Pseudoacacia L. for Protective Afforestation under Conditions of Land Degradation and Desertification. Arid Ecosyst. 2023, 13, 83–91. [Google Scholar] [CrossRef]
- Osman, K.T. Soil Degradation, Conservation and Remediation; Springer: Dordrecht, The Netherlands, 2014; Volume 820. [Google Scholar]
- Nosair, A.M.; Shams, M.Y.; AbouElmagd, L.M.; Hassanein, A.E.; Fryar, A.E.; Abu Salem, H.S. Predictive Model for Progressive Salinization in a Coastal Aquifer Using Artificial Intelligence and Hydrogeochemical Techniques: A Case Study of the Nile Delta Aquifer, Egypt. Environ. Sci. Pollut. Res. 2022, 29, 9318–9340. [Google Scholar] [CrossRef]
- Mills, S.C.; Socolar, J.B.; Edwards, F.A.; Parra, E.; Martínez-Revelo, D.E.; Ochoa Quintero, J.M.; Haugaasen, T.; Freckleton, R.P.; Barlow, J.; Edwards, D.P. High Sensitivity of Tropical Forest Birds to Deforestation at Lower Altitudes. Ecology 2023, 104, e3867. [Google Scholar] [CrossRef]
- Tang, H.; Shi, P.; Fu, X. An Analysis of Soil Erosion on Construction Sites in Megacities Using Analytic Hierarchy Process. Sustainability 2023, 15, 1325. [Google Scholar] [CrossRef]
- Mkhize, X.; Mthembu, B.E.; Napier, C. Transforming a Local Food System to Address Food and Nutrition Insecurity in an Urban Informal Settlement Area: A Study in Umlazi Township in Durban, South Africa. J. Agric. Food Res. 2023, 12, 100565. [Google Scholar] [CrossRef]
- Pimentel, D. Soil Erosion: A Food and Environmental Threat. Environ. Dev. Sustain. 2006, 8, 119–137. [Google Scholar] [CrossRef]
- Montgomery, D.R. Soil Erosion and Agricultural Sustainability. Proc. Natl. Acad. Sci. USA 2007, 104, 13268–13272. [Google Scholar] [CrossRef][Green Version]
- Chalise, D.; Kumar, L.; Kristiansen, P. Land Degradation by Soil Erosion in Nepal: A Review. Soil Syst. 2019, 3, 12. [Google Scholar] [CrossRef][Green Version]
- Toy, T.J.; Foster, G.R.; Renard, K.G. Soil Erosion: Processes, Prediction, Measurement, and Control; John Wiley & Sons: Hoboken, NJ, USA, 2002; ISBN 0-471-38369-4. [Google Scholar]
- Lal, R.; Moldenhauer, W.C. Effects of Soil Erosion on Crop Productivity. Crit. Rev. Plant Sci. 1987, 5, 303–367. [Google Scholar] [CrossRef]
- Pimentel, D.; Burgess, M. Soil Erosion Threatens Food Production. Agriculture 2013, 3, 443–463. [Google Scholar] [CrossRef][Green Version]
- Momeni, E.; Armaghani, D.J.; Hajihassani, M.; Amin, M.F.M. Prediction of Uniaxial Compressive Strength of Rock Samples Using Hybrid Particle Swarm Optimization-Based Artificial Neural Networks. Measurement 2015, 60, 50–63. [Google Scholar] [CrossRef]
- Shahin, M.A. State-of-the-Art Review of Some Artificial Intelligence Applications in Pile Foundations. Geosci. Front. 2016, 7, 33–44. [Google Scholar] [CrossRef][Green Version]
- Bunawan, A.R.; Momeni, E.; Armaghani, D.J.; Rashid, A.S.A. Experimental and Intelligent Techniques to Estimate Bearing Capacity of Cohesive Soft Soils Reinforced with Soil-Cement Columns. Measurement 2018, 124, 529–538. [Google Scholar] [CrossRef]
- Mohanty, R.; Suman, S.; Das, S.K. Prediction of Vertical Pile Capacity of Driven Pile in Cohesionless Soil Using Artificial Intelligence Techniques. Int. J. Geotech. Eng. 2018, 12, 209–216. [Google Scholar] [CrossRef]
- Abedini, M.; Ghasemian, B.; Shirzadi, A.; Shahabi, H.; Chapi, K.; Pham, B.T.; Bin Ahmad, B.; Tien Bui, D. A Novel Hybrid Approach of Bayesian Logistic Regression and Its Ensembles for Landslide Susceptibility Assessment. Geocarto Int. 2019, 34, 1427–1457. [Google Scholar] [CrossRef]
- Chan, H.; Chang, C.C.; Chen, P.; Lee, J.T. Using Multinomial Logistic Regression for Prediction of Soil Depth in an Area of Complex Topography in Taiwan. Catena 2019, 176, 419–429. [Google Scholar] [CrossRef]
- Moayedi, H.; Gör, M.; Khari, M.; Foong, L.K.; Bahiraei, M.; Bui, D.T. Hybridizing Four Wise Neural-Metaheuristic Paradigms in Predicting Soil Shear Strength. Measurement 2020, 156, 107576. [Google Scholar] [CrossRef]
- Azizi, A.; Gilandeh, Y.A.; Mesri-Gundoshmian, T.; Saleh-Bigdeli, A.A.; Moghaddam, H.A. Classification of Soil Aggregates: A Novel Approach Based on Deep Learning. Soil Tillage Res. 2020, 199, 104586. [Google Scholar] [CrossRef]
- Licznar, P.; Nearing, M.A. Artificial Neural Networks of Soil Erosion and Runoff Prediction at the Plot Scale. Catena 2003, 51, 89–114. [Google Scholar] [CrossRef]
- Kim, M.; Gilley, J.E. Artificial Neural Network Estimation of Soil Erosion and Nutrient Concentrations in Runoff from Land Application Areas. Comput. Electron. Agric. 2008, 64, 268–275. [Google Scholar] [CrossRef][Green Version]
- Albaradeyia, I.; Hani, A.; Shahrour, I. WEPP and ANN Models for Simulating Soil Loss and Runoff in a Semi-Arid Mediterranean Region. Environ. Monit. Assess. 2011, 180, 537–556. [Google Scholar] [CrossRef] [PubMed]
- Yusof, M.F.; Azamathulla, H.M.; Abdullah, R. Prediction of Soil Erodibility Factor for Peninsular Malaysia Soil Series Using ANN. Neural Comput. Appl. 2014, 24, 383–389. [Google Scholar] [CrossRef]
- de Farias, C.A.S.; Santos, C.A.G. The Use of Kohonen Neural Networks for Runoff–Erosion Modeling. J. Soils Sediments 2014, 14, 1242–1250. [Google Scholar] [CrossRef]
- Rizeei, H.M.; Saharkhiz, M.A.; Pradhan, B.; Ahmad, N. Soil Erosion Prediction Based on Land Cover Dynamics at the Semenyih Watershed in Malaysia Using LTM and USLE Models. Geocarto Int. 2016, 31, 1158–1177. [Google Scholar] [CrossRef]
- Arif, N.; Danoedoro, P. Hartono Analysis of Artificial Neural Network in Erosion Modeling: A Case Study of Serang Watershed. IOP Conf. Ser. Earth Environ. Sci. 2017, 98, 012027. [Google Scholar] [CrossRef][Green Version]
- Ojha, V.K.; Abraham, A.; Snášel, V. Metaheuristic Design of Feedforward Neural Networks: A Review of Two Decades of Research. Eng. Appl. Artif. Intell. 2017, 60, 97–116. [Google Scholar] [CrossRef][Green Version]
- Sadowski, Ł.; Nikoo, M.; Nikoo, M. Hybrid Metaheuristic-Neural Assessment of the Adhesion in Existing Cement Composites. Coatings 2017, 7, 49. [Google Scholar] [CrossRef][Green Version]
- Ngo, P.-T.T.; Hoang, N.-D.; Pradhan, B.; Nguyen, Q.K.; Tran, X.T.; Nguyen, Q.M.; Nguyen, V.N.; Samui, P.; Tien Bui, D. A Novel Hybrid Swarm Optimized Multilayer Neural Network for Spatial Prediction of Flash Floods in Tropical Areas Using Sentinel-1 SAR Imagery and Geospatial Data. Sensors 2018, 18, 3704. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Sadowski, Ł.; Nikoo, M.; Shariq, M.; Joker, E.; Czarnecki, S. The Nature-Inspired Metaheuristic Method for Predicting the Creep Strain of Green Concrete Containing Ground Granulated Blast Furnace Slag. Materials 2019, 12, 293. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Lin, S.-Y.; Guh, R.-S.; Shiue, Y.-R. Effective Recognition of Control Chart Patterns in Autocorrelated Data Using a Support Vector Machine Based Approach. Comput. Ind. Eng. 2011, 61, 1123–1134. [Google Scholar] [CrossRef]
- Vu, D.T.; Tran, X.-L.; Cao, M.-T.; Tran, T.C.; Hoang, N.-D. Machine Learning Based Soil Erosion Susceptibility Prediction Using Social Spider Algorithm Optimized Multivariate Adaptive Regression Spline. Measurement 2020, 164, 108066. [Google Scholar] [CrossRef]
- Alhakami, H.; Kamal, M.; Sulaiman, M.; Alhakami, W.; Baz, A. A Machine Learning Strategy for the Quantitative Analysis of the Global Warming Impact on Marine Ecosystems. Symmetry 2022, 14, 2023. [Google Scholar] [CrossRef]
- Alrayes, F.S.; Maray, M.; Gaddah, A.; Yafoz, A.; Alsini, R.; Alghushairy, O.; Mohsen, H.; Motwakel, A. Modeling of Botnet Detection Using Barnacles Mating Optimizer with Machine Learning Model for Internet of Things Environment. Electronics 2022, 11, 3411. [Google Scholar] [CrossRef]
- Mengash, H.; Alzahrani, J.; Eltahir, M.; Al-Wesabi, F.; Mohamed, A.; Hamza, M.; Marzouk, R. Search and Rescue Optimization with Machine Learning Enabled Cybersecurity Model. Comput. Syst. Sci. Eng. 2022, 45, 1393–1407. [Google Scholar] [CrossRef]
- Rathore, F.A.; Khan, H.S.; Ali, H.M.; Obayya, M.; Rasheed, S.; Hussain, L.; Kazmi, Z.H.; Nour, M.K.; Mohamed, A.; Motwakel, A. Survival Prediction of Glioma Patients from Integrated Radiology and Pathology Images Using Machine Learning Ensemble Regression Methods. Appl. Sci. 2022, 12, 10357. [Google Scholar] [CrossRef]
- Mujeeb, S.; Alghamdi, T.A.; Ullah, S.; Fatima, A.; Javaid, N.; Saba, T. Exploiting Deep Learning for Wind Power Forecasting Based on Big Data Analytics. Appl. Sci. 2019, 9, 4417. [Google Scholar] [CrossRef][Green Version]
- Elshewey, A.M.; Shams, M.Y.; Elhady, A.M.; Shohieb, S.M.; Abdelhamid, A.A.; Ibrahim, A.; Tarek, Z. A Novel WD-SARIMAX Model for Temperature Forecasting Using Daily Delhi Climate Dataset. Sustainability 2023, 15, 757. [Google Scholar] [CrossRef]
- Hassan, N.Y.; Gomaa, W.H.; Khoriba, G.A.; Haggag, M.H. Supervised Learning Approach for Twitter Credibility Detection. In Proceedings of the 2018 13th International Conference on Computer Engineering and Systems (ICCES), Cairo, Egypt, 18–19 December 2018; pp. 196–201. [Google Scholar]
- Shams, M.Y.; Tarek, Z.; Elshewey, A.M.; Hany, M.; Darwish, A.; Hassanien, A.E. A Machine Learning-Based Model for Predicting Temperature Under the Effects of Climate Change. In The Power of Data: Driving Climate Change with Data Science and Artificial Intelligence Innovations; Hassanien, A.E., Darwish, A., Eds.; Studies in Big Data; Springer Nature Switzerland: Cham, Switzerland, 2023; pp. 61–81. ISBN 978-3-031-22456-0. [Google Scholar]
- Lv, Y.; Le, Q.-T.; Bui, H.-B.; Bui, X.-N.; Nguyen, H.; Nguyen-Thoi, T.; Dou, J.; Song, X. A Comparative Study of Different Machine Learning Algorithms in Predicting the Content of Ilmenite in Titanium Placer. Appl. Sci. 2020, 10, 635. [Google Scholar] [CrossRef][Green Version]
- Saputra, M.F.A.; Widiyaningtyas, T.; Wibawa, A.P. Illiteracy Classification Using K Means-Naïve Bayes Algorithm. JOIV Int. J. Inform. Vis. 2018, 2, 153–158. [Google Scholar] [CrossRef][Green Version]
- Wu, W.; Zhang, L. Comparison of Spatial and Non-Spatial Logistic Regression Models for Modeling the Occurrence of Cloud Cover in North-Eastern Puerto Rico. Appl. Geogr. 2013, 37, 52–62. [Google Scholar] [CrossRef]
- Boateng, E.Y.; Abaye, D.A. A Review of the Logistic Regression Model with Emphasis on Medical Research. J. Data Anal. Inf. Process. 2019, 7, 190–207. [Google Scholar] [CrossRef][Green Version]
- Lin, G.; Lin, A.; Gu, D. Using Support Vector Regression and K-Nearest Neighbors for Short-Term Traffic Flow Prediction Based on Maximal Information Coefficient. Inf. Sci. 2022, 608, 517–531. [Google Scholar] [CrossRef]
- Pisner, D.A.; Schnyer, D.M. Support Vector Machine. In Machine Learning; Elsevier: Amsterdam, The Netherlands, 2020; pp. 101–121. [Google Scholar]
- Elshewey, A.M.; Shams, M.Y.; El-Rashidy, N.; Elhady, A.M.; Shohieb, S.M.; Tarek, Z. Bayesian Optimization with Support Vector Machine Model for Parkinson Disease Classification. Sensors 2023, 23, 2085. [Google Scholar] [CrossRef] [PubMed]
- Alloghani, M.; Aljaaf, A.; Hussain, A.; Baker, T.; Mustafina, J.; Al-Jumeily, D.; Khalaf, M. Implementation of Machine Learning Algorithms to Create Diabetic Patient Re-Admission Profiles. BMC Med. Inform. Decis. Mak. 2019, 19, 253. [Google Scholar] [CrossRef][Green Version]
- Hoang, N.-D.; Nguyen, Q.-L.; Tran, X.-L. Automatic Detection of Concrete Spalling Using Piecewise Linear Stochastic Gradient Descent Logistic Regression and Image Texture Analysis. Complexity 2019, 2019, 5910625. [Google Scholar] [CrossRef][Green Version]
- Anyanwu, G.O.; Nwakanma, C.I.; Lee, J.-M.; Kim, D.-S. Falsification Detection System for IoV Using Randomized Search Optimization Ensemble Algorithm. IEEE Trans. Intell. Transp. Syst. 2023, 24, 4158–4172. [Google Scholar] [CrossRef]
- Bettinger, P.; Graetz, D.; Boston, K.; Sessions, J.; Chung, W. Eight Heuristic Planning Techniques Applied to Three Increasingly Difficult Wildlife Planning Problems. Silva Fenn. 2002, 36, 561–584. [Google Scholar] [CrossRef][Green Version]
- Sabanci, K.; Aslan, M.F.; Ropelewska, E.; Unlersen, M.F. A Convolutional Neural Network-based Comparative Study for Pepper Seed Classification: Analysis of Selected Deep Features with Support Vector Machine. J. Food Process Eng. 2022, 45, e13955. [Google Scholar] [CrossRef]
Attributes | Notation | Count | Mean | Std | Min | 50% | Max |
---|---|---|---|---|---|---|---|
EI30 | X1 | 236 | 573.64 | 814.70 | 0 | 144.72 | 3008.93 |
Slope (degree) | X2 | 236 | 29.05 | 2.32 | 24.83 | 28.47 | 34.77 |
Organic carbon top soil (%) | X3 | 236 | 1.75 | 0.58 | 0.89 | 1.53 | 2.79 |
pH top soil | X4 | 236 | 5.87 | 0.58 | 5.13 | 5.83 | 7.06 |
Bulk density (g/cm3) | X5 | 236 | 1.40 | 0.08 | 1.23 | 1.40 | 1.58 |
Total pore volume (%) | X6 | 236 | 52.76 | 3.02 | 46.34 | 52.69 | 59.48 |
Soil texture-silk (%) | X7 | 236 | 33.90 | 1.49 | 31.35 | 33.93 | 37.71 |
Soil texture-clay (%) | X8 | 236 | 29.14 | 4.81 | 18.61 | 30.15 | 38.35 |
Soil texture-sand (%) | X9 | 236 | 36.95 | 4.38 | 29.66 | 36.37 | 46.51 |
Soil cover rate (%) | X10 | 236 | 44.28 | 26.74 | 1.05 | 40.42 | 97.64 |
Label | Label | 236 | 0 | 1 | −1 | 0 | 1 |
Models | Tuning Parameters | Best Parameters |
---|---|---|
RF | N_estimators = [50, 100, 150, 200, 250], criterion = [‘gini’, ‘entropy’]. | N_estimators = 150, criterion = gini. |
KNN | N_neighbors = [5, 10, 15, 20, 25, 30], weights = [‘uniform’, ‘distance’]. | N_neighbors = 15, weights = distance. |
LDA | N_components = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]. | N_components = 1. |
NB | Alpha = [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1]. | Alpha = 0.6. |
LR | Penalty = [l1′, ‘l2′, ‘elasticnet’], solver = [‘lbfgs’, ‘liblinear’, ‘saga’]. | Penalty = l2, solver = lbfgs. |
SGD | Loss = [‘hinge’, ‘log_loss’, ‘log’], penalty = [l1′, ‘l2′, ‘elasticnet’]. | Loss = log, penalty = l1. |
SVM | Kernel = [‘linear’, ‘poly’, ‘rbf’, ‘sigmoid’], regularization parameter (C) = [0.1, 0.2, 0.3, 0.4]. | Kernel = rbf, C = 0.2. |
Models | Accuracy | MCC | F1 Score | Recall | Precision | AUC |
---|---|---|---|---|---|---|
RS-KNN | 81.60% | 63.20% | 81.70% | 81.60% | 81.70% | 0.8577 |
RS-LDA | 83.10% | 66.60% | 82.80% | 83.10% | 83.80% | 0.9418 |
RS-NB | 84.50% | 68.90% | 84.50% | 84.50% | 84.60% | 0.925 |
RS-LR | 91.50% | 83.40% | 91.40% | 91.50% | 92.00% | 0.9609 |
RS-SGD | 92.90% | 85.90% | 92.90% | 92.90% | 93.00% | 0.9689 |
RS-SVM | 90.10% | 80.30% | 90.10% | 90.10% | 90.30% | 0.9697 |
RS-RF | 97.40% | 95.10% | 97.30% | 97.30% | 97.50% | 0.9829 |
Studies | Model | Accuracy |
---|---|---|
Ref. [37] | SSAO-MARS | 96.00% |
Proposed RS-RF | Random search with random forest | 97.40% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tarek, Z.; Elshewey, A.M.; Shohieb, S.M.; Elhady, A.M.; El-Attar, N.E.; Elseuofi, S.; Shams, M.Y. Soil Erosion Status Prediction Using a Novel Random Forest Model Optimized by Random Search Method. Sustainability 2023, 15, 7114. https://doi.org/10.3390/su15097114
Tarek Z, Elshewey AM, Shohieb SM, Elhady AM, El-Attar NE, Elseuofi S, Shams MY. Soil Erosion Status Prediction Using a Novel Random Forest Model Optimized by Random Search Method. Sustainability. 2023; 15(9):7114. https://doi.org/10.3390/su15097114
Chicago/Turabian StyleTarek, Zahraa, Ahmed M. Elshewey, Samaa M. Shohieb, Abdelghafar M. Elhady, Noha E. El-Attar, Sherif Elseuofi, and Mahmoud Y. Shams. 2023. "Soil Erosion Status Prediction Using a Novel Random Forest Model Optimized by Random Search Method" Sustainability 15, no. 9: 7114. https://doi.org/10.3390/su15097114
APA StyleTarek, Z., Elshewey, A. M., Shohieb, S. M., Elhady, A. M., El-Attar, N. E., Elseuofi, S., & Shams, M. Y. (2023). Soil Erosion Status Prediction Using a Novel Random Forest Model Optimized by Random Search Method. Sustainability, 15(9), 7114. https://doi.org/10.3390/su15097114