Parameter Estimation of Fuel Cells Using a Hybrid Optimization Algorithm
Abstract
:1. Introduction
- A novel hybrid algorithm, i.e., HPSOPF based on Particle Swarm Optimization and Puffer Fish, is proposed for estimating the PEMFC parameters.
- For justification of the proposed hybrid algorithm, the mean and standard deviation (SD) are calculated using 10 benchmark functions.
- The Sum of Square Error (SSE) objective function is used for the performance evaluation and efficiency of the proposed algorithm for the parameter estimation of PEMFC.
- Ballard Mark V and Avista SR-12 models are the two datasheets used in order to estimate the PEMFC parameters.
- To check the performance and accuracy of the proposed algorithm, the computation time for both of the fuel cell models is calculated.
- To check the consistency and robustness of the proposed algorithm, the convergence curve, I–V, P–I curve, different operating temperature, and different pressure results are obtained.
- Non-parametric statistical test, i.e., Friedman Ranking Test, is done for finding the significance of the parameter estimation of PEMFC.
2. Materials and Methods
2.1. PEMFC Mathematical Modelling
2.2. Problem Formulation
2.3. Proposed Algorithm (HPSOPF)
3. Results
3.1. Benchmark Test Function
3.2. PEMFC Parameter Estimation
3.3. Solution Accuracy Analysis
3.4. Convergence Analysis
3.5. Statistical Analysis
4. Conclusions
- Firstly, the proposed algorithm is applied on the 10 benchmark test functions to justify the algorithm. The mean and standard deviation values are calculated and it is seen that the proposed algorithm achieved better results than the other metaheuristic algorithms considered.
- Parameter estimation of PEMFC for both the models is done and the SSE and computation time are calculated. The SSE of the proposed algorithm for the Ballard Mark V model is 6.621 × 10−9 and for the Avista SR-12 model it is 5.65 × 10−8.
- The computation time for both models is also calculated. The computation time of the Ballard Mark V model is 2 s and for the Avista SR-12 model it is 2.12 s. It is clearly indicated that the proposed algorithm is better than the other metaheuristic algorithms considered.
- It is clearly demonstrated that hybrid algorithms have a faster pace of convergence when compared with other metaheuristic algorithms using convergence graphs, P−I and V−I curves, different operating temperatures, and different pressure.
- Furthermore, a non-parametric test is carried out, i.e., Friedman Ranking Test. From this test, the first rank is secured by HPSOPF and then continued by PSOGWO, GWOCS, PF, GWO, and PSO, respectively. This test is conducted to check the efficiency, robustness, and performance of the proposed algorithm.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Singla, M.K.; Nijhawan, P.; Oberoi, A.S. Parameter estimation of proton exchange membrane fuel cell using a novel meta-heuristic algorithm. Environ. Sci. Pollut. Res. 2021, 28, 34511–34526. [Google Scholar] [CrossRef] [PubMed]
- Gupta, J.; Nijhawan, P.; Ganguli, S. Optimal parameter estimation of PEM fuel cell using slime mould algorithm. Int. J. Energy Res. 2021, 45, 14732–14744. [Google Scholar] [CrossRef]
- Yuan, Z.; Wang, W.; Wang, H. Optimal parameter estimation for PEMFC using modified monarch butterfly optimization. Int. J. Energy Res. 2020, 44, 8427–8441. [Google Scholar] [CrossRef]
- Wilberforce, T.; Olabi, A.G.; Rezk, H.; Abdelaziz, A.Y.; Abdelkareem, M.A.; Sayed, E.T. Boosting the output power of PEM fuel cells by identifying best-operating conditions. Energy Convers. Manag. 2022, 270, 116205. [Google Scholar] [CrossRef]
- Li, Q.; Yin, L.; Yang, H.; Wang, T.; Qiu, Y.; Chen, W. Multiobjective Optimization and Data-Driven Constraint Adaptive Predictive Control for Efficient and Stable Operation of PEMFC System. IEEE Trans. Ind. Electron. 2020, 68, 12418–12429. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, N. An adaptive RNA genetic algorithm for modeling of proton exchange membrane fuel cells. Int. J. Hydrogen Energy 2013, 38, 219–228. [Google Scholar] [CrossRef]
- Cheng, J.; Zhang, G. Parameter fitting of PEMFC models based on adaptive differential evolution. Int. J. Electr. Power Energy Syst. 2014, 62, 189–198. [Google Scholar] [CrossRef]
- El-Fergany, A.A. Electrical characterisation of proton exchange membrane fuel cells stack using grasshopper optimiser. IET Renew. Power Gener. 2018, 12, 9–17. [Google Scholar] [CrossRef]
- Hamal, N.S.; Isa, Z.M.; Nayan, N.M.; Arshad, M.H.; Kajaan, N.A.M. Optimizing PEMFC Model Parameters Using Dragonfly Algorithm: A Performance Study; IET: London, UK, 2018. [Google Scholar]
- Han, W.; Li, D.; Yu, D.; Ebrahimian, H. Optimal parameters of PEM fuel cells using chaotic binary shark smell optimizer. Energy Sources Part A Recover. Util. Environ. Eff. 2019, 1–15. [Google Scholar] [CrossRef]
- Sun, Z.; Wang, N.; Bi, Y.; Srinivasan, D. Parameter identification of PEMFC model based on hybrid adaptive differential evolution algorithm. Energy 2015, 90, 1334–1341. [Google Scholar] [CrossRef]
- Askarzadeh, A.; Rezazadeh, A. A grouping-based global harmony search algorithm for modeling of proton exchange membrane fuel cell. Int. J. Hydrogen Energy 2011, 36, 5047–5053. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, N. Cuckoo search algorithm with explosion operator for modeling proton exchange membrane fuel cells. Int. J. Hydrogen Energy 2019, 44, 3075–3087. [Google Scholar] [CrossRef]
- Turgut, O.E.; Coban, M.T. Optimal proton exchange membrane fuel cell modelling based on hybrid Teaching Learning Based Optimization – Differential Evolution algorithm. Ain Shams Eng. J. 2016, 7, 347–360. [Google Scholar] [CrossRef]
- Ye, M.; Wang, X.; Xu, Y. Parameter identification for proton exchange membrane fuel cell model using particle swarm optimization. Int. J. Hydrogen Energy 2009, 34, 981–989. [Google Scholar] [CrossRef]
- Mohamed, I.; Jenkins, N. Proton exchange membrane (PEM) fuel cell stack configuration using genetic algorithms. J. Power Sources 2004, 131, 142–146. [Google Scholar] [CrossRef]
- Gupta, J.; Nijhawan, P.; Ganguli, S. Parameter Estimation of Fuel Cell Using Chaotic Mayflies Optimization Algorithm. Adv. Theory Simulations 2021, 4, 2100183. [Google Scholar] [CrossRef]
- Diab, A.A.Z.; Abdul-Ghaffar, H.I.; Ahmed, A.A.; Ramadan, H.A. An effective model parameter estimation of PEMFCs using GWO algorithm and its variants. IET Renew. Power Gener. 2022, 16, 1380–1400. [Google Scholar] [CrossRef]
- El-Fergany, A.A.; Hasanien, H.M.; Agwa, A.M. Semi-empirical PEM fuel cells model using whale optimization algorithm. Energy Convers. Manag. 2019, 201, 112197. [Google Scholar] [CrossRef]
- El-Fergany, A.A. Extracting optimal parameters of PEM fuel cells using Salp Swarm Optimizer. Renew. Energy 2018, 119, 641–648. [Google Scholar] [CrossRef]
- Li, Q.; Chen, W.; Wang, Y.; Liu, S.; Jia, J. Parameter Identification for PEM Fuel-Cell Mechanism Model Based on Effective Informed Adaptive Particle Swarm Optimization. IEEE Trans. Ind. Electron. 2010, 58, 2410–2419. [Google Scholar] [CrossRef]
- Mahato, D.P.; Sandhu, J.K.; Singh, N.P.; Kaushal, V. On scheduling transaction in grid computing using cuckoo search-ant colony optimization considering load. Clust. Comput. 2020, 23, 1483–1504. [Google Scholar] [CrossRef]
- Rani, S.; Babbar, H.; Kaur, P.; Alshehri, M.D.; Shah, S.H.A. An Optimized Approach of Dynamic Target Nodes in Wireless Sensor Network Using Bio Inspired Algorithms for Maritime Rescue. IEEE Trans. Intell. Transp. Syst. 2022, 24, 2548–2555. [Google Scholar] [CrossRef]
- Sedighizadeh, M.; Farhangian Kashanib, M. A tribe particle swarm optimization for parameter identification of proton exchange membrane fuel cell. Fuel Cells 2014, 1, 2. [Google Scholar]
- Chen, Y.; Pi, D.; Wang, B.; Chen, J.; Xu, Y. Bi-subgroup optimization algorithm for parameter estimation of a PEMFC model. Expert Syst. Appl. 2022, 196, 116646. [Google Scholar] [CrossRef]
- Chen, H.; Jiao, S.; Heidari, A.A.; Wang, M.; Chen, X.; Zhao, X. An opposition-based sine cosine approach with local search for parameter estimation of photovoltaic models. Energy Convers. Manag. 2019, 195, 927–942. [Google Scholar] [CrossRef]
- Lai, G.; Li, L.; Zeng, Q.; Yousefi, N. Developed owl search algorithm for parameter estimation of PEMFCs. Int. J. Ambient. Energy 2020, 43, 3676–3685. [Google Scholar] [CrossRef]
- Catalbas, M.C.; Gulten, A. Circular structures of puffer fish: A new metaheuristic optimization algorithm. In Proceedings of the 2018 Third International Conference on Electrical and Biomedical Engineering, Clean Energy and Green Computing (EBECEGC), Beirut, Lebanon, 25–27 April 2018. [Google Scholar]
- Singh, N.; Singh, S.B. Hybrid Algorithm of Particle Swarm Optimization and Grey Wolf Optimizer for Improving Convergence Performance. J. Appl. Math. 2017, 2017, 1–15. [Google Scholar] [CrossRef]
- Bai, Q.; Li, H. The application of hybrid cuckoo search-grey wolf optimization algorithm in optimal parameters identification of solid oxide fuel cell. Int. J. Hydrogen Energy 2021, 47, 6200–6216. [Google Scholar] [CrossRef]
- Al-Baghdadi, M.A.S. Modelling of proton exchange membrane fuel cell performance based on semi-empirical equations. Renew. Energy 2005, 30, 1587–1599. [Google Scholar] [CrossRef]
- Mansour, A.M.; Saad, N.H.; Sattar, A.A. Maximum power point tracking of ten parameter fuel cell model. J. Am. Sci. 2012, 8, 8. [Google Scholar]
- Avelar, H.J.; Coelho, E.A.A.; Camacho, J.R.; Junior, J.B.V.; Freitas, L.C.; Wu, M. PEM fuel cell dynamic model for electronic circuit simulator. In Proceedings of the 2009 IEEE Electrical Power & Energy Conference (EPEC), Montreal, QC, Canada, 22–23 October 2009. [Google Scholar]
- Mo, Z.-J.; Zhu, X.-J.; Wei, L.-Y.; Cao, G.-Y. Parameter optimization for a PEMFC model with a hybrid genetic algorithm. Int. J. Energy Res. 2006, 30, 585–597. [Google Scholar] [CrossRef]
- Barbir, F. PEM Fuel Cells: Theory and Practice; Academic Press: Cambridge, MA, USA, 2012. [Google Scholar]
- Ezugwu, A.E.; Adeleke, O.J.; Akinyelu, A.A.; Viriri, S. A conceptual comparison of several metaheuristic algorithms on continuous optimisation problems. Neural Comput. Appl. 2020, 32, 6207–6251. [Google Scholar] [CrossRef]
- Gupta, J.; Nijhawan, P.; Ganguli, S. Optimal sizing of different configuration of photovoltaic, fuel cell, and biomass-based hybrid energy system. Environ. Sci. Pollut. Res. 2022, 29, 17425–17440. [Google Scholar] [CrossRef] [PubMed]
- Singla, M.K.; Nijhawan, P.; Oberoi, A.S. A novel hybrid particle swarm optimization rat search algorithm for parameter estimation of solar PV and fuel cell model. COMPEL-Int. J. Comput. Math. Electr. Electron. Eng. 2022, 41, 1505–1527. [Google Scholar] [CrossRef]
- Gupta, J.; Hussain, A.; Singla, M.K.; Nijhawan, P.; Haider, W.; Kotb, H.; AboRas, K.M. Parameter Estimation of Different Photovoltaic Models Using Hybrid Particle Swarm Optimization and Gravitational Search Algorithm. Appl. Sci. 2022, 13, 249. [Google Scholar] [CrossRef]
- Singla, M.K.; Gupta, J.; Nijhawan, P.; Alsharif, M.H.; Kim, M.-K. Sustainable development of fuel cell using enhanced weighted mean of vectors algorithm. Heliyon 2023, 9, e14578. [Google Scholar] [CrossRef]
- Zhao, H.; Zhang, C. An online-learning-based evolutionary many-objective algorithm. Inf. Sci. 2020, 509, 1–21. [Google Scholar] [CrossRef]
- Dulebenets, M.A. An Adaptive Polyploid Memetic Algorithm for scheduling trucks at a cross-docking terminal. Inf. Sci. 2021, 565, 390–421. [Google Scholar] [CrossRef]
- Kavoosi, M.; Dulebenets, M.A.; Abioye, O.; Pasha, J.; Theophilus, O.; Wang, H.; Raphael, K.; Mikijeljević, M. Berth scheduling at marine container terminals: A universal island-based metaheuristic approach. Marit. Bus. Rev. 2019, 5, 30–66. [Google Scholar] [CrossRef]
- Pasha, J.; Nwodu, A.L.; Fathollahi-Fard, A.M.; Tian, G.; Li, Z.; Wang, H.; Dulebenets, M.A. Exact and metaheuristic algorithms for the vehicle routing problem with a factory-in-a-box in multi-objective settings. Adv. Eng. Inform. 2022, 52. [Google Scholar] [CrossRef]
- Dulebenets, M.A. A novel memetic algorithm with a deterministic parameter control for efficient berth scheduling at marine container terminals. Marit. Bus. Rev. 2017, 2, 302–330. [Google Scholar] [CrossRef] [Green Version]
- Rabbani, M.; Oladzad-Abbasabady, N.; Akbarian-Saravi, N. Ambulance routing in disaster response considering variable patient condition: NSGA-II and MOPSO algorithms. J. Ind. Manag. Optim. 2022, 18, 1035. [Google Scholar] [CrossRef]
- Singla, M.K.; Hassan, M.H.; Gupta, J.; Jurado, F.; Nijhawan, P.; Kamel, S. An enhanced efficient optimization algorithm (EINFO) for accurate extraction of proton exchange membrane fuel cell parameters. Soft Comput. 2023, 1–20. [Google Scholar] [CrossRef]
Function | Range |
---|---|
[−100, 100] | |
[−10, 10] | |
[−100, 100] | |
[−100, 100] | |
[−30, 30] | |
[−100, 100] | |
[−1.28, 1.28] | |
[−500, 500] | |
[−5.12, 5.12] | |
[−32, 32] |
Algorithms | F1 | F2 | F3 | F4 | F5 | F6 | F7 | F8 | F9 | F10 | |
---|---|---|---|---|---|---|---|---|---|---|---|
PSO | mean | 1.43 × 104 | 6.54 × 107 | 8.78 × 104 | 86.84 | 6.15 × 107 | 1.82 × 104 | 23.01 | −4.32 × 103 | 4.33 × 102 | 16.95 |
SD | 5.29 × 103 | 2.11 × 108 | 1.26 × 104 | 4.84 | 3.44 × 107 | 4.64 × 103 | 6.78 | 3.66 × 102 | 22.61 | 2.62 | |
GWO | mean | 4.09 × 103 | 37.50 | 1.40 × 104 | 7.65 | 9.36 × 104 | 6.55 × 103 | 1.50 × 10−1 | -5.05 × 103 | 1.76 × 102 | 7.61 |
SD | 1.15 × 104 | 8.35 | 2.84× 104 | 15.96 | 2.81 × 105 | 1.72 × 104 | 1.77 × 10−1 | 2.88 × 103 | 1.74 × 102 | 8.91 | |
PF | mean | 4.85 × 10−9 | 9.43 × 10−7 | 7.39 × 103 | 2.22 × 10−1 | 36.25 | 3.87 | 8.90 × 10−3 | −7.89 × 104 | 8.28 | 1.20 × 10−5 |
SD | 6.96 × 10−9 | 5.92 × 10−7 | 7.13 × 103 | 2.45 × 10−1 | 8.35 × 10−1 | 2.84 × 10−1 | 3.80 × 10−3 | 9.22 × 102 | 13.44 | 8.12 × 10−6 | |
GWOCS | mean | 1.10 × 10−27 | 8.48 × 10−17 | 5.95 × 10−5 | 1.72 × 10−6 | 37.02 | 2.51 | 2.20 × 10−3 | -8.48 × 103 | 1.59 | 1.20 × 10−13 |
SD | 1.13 × 10−27 | 3.47 × 10−17 | 1.56 × 10−4 | 1.87 × 10−6 | 5.66 × 10−1 | 6.16 × 10−1 | 1.16 × 10−3 | 2.39 × 103 | 4.9 | 1.84 × 10−14 | |
PSOGWO | mean | 1.45 × 10−28 | 4.13 × 10−17 | 1.35 × 10−5 | 6.44 × 10−7 | 27.52 | 9.78 × 10−1 | 1.55 × 10−3 | -1.48 × 104 | 9.89 × 10−1 | 8.32 × 10−14 |
SD | 1.15 × 10−28 | 2.45 × 10−17 | 2.39 × 10−5 | 6.89 × 10−7 | 4.19 × 10−1 | 4.10 × 10−1 | 5.90 × 10−4 | 1.66 × 103 | 2.25 | 1.05 × 10−14 | |
HPSOPF | mean | 4.03 × 10−72 | 7.88 × 10−38 | 1.33 × 10−131 | 1.93 × 10−16 | 0 | 8.60 × 10−1 | 8.62 × 10−5 | -1.73 × 105 | 8.21 × 10−8 | 4.74 × 10−15 |
SD | 9.96 × 10−72 | 2.45 × 10−37 | 3.70 × 10−131 | 4.69 × 10−16 | 0 | 4.62 × 10−1 | 4.20 × 10−5 | 3.20 × 102 | 2.88 × 10−15 | 4.79 × 10−14 |
Parameters | Upper Bound | Lower Bound |
---|---|---|
−0.08532 | −1.1997 | |
6.00 | 0.8 | |
9080 | 3.60 | |
−0.954 | −2.60 | |
24.00 | 10.00 | |
8.00 | 1.00 | |
b | 0.5 | 0.0136 |
Model | Ballard Mark V Model | Avista SR-12 Model |
---|---|---|
35 | 48 | |
178 | 25 | |
50.6 | 62.5 | |
1.5 | 0.672 | |
[bar] | 1 | 1.476 |
[bar] | 1 | 0.209 |
Power [W] | 1000 | 500 |
[K] | 343.15 | 323.15 |
Parameter/Algorithms | b | SSE | Comp Time (s) | ||||||
---|---|---|---|---|---|---|---|---|---|
PSO | −1.0701 | 0.0026 | 5.5241 × 10−5 | −1.8076 × 10−4 | 15.6439 | 0.00043 | 0.2249 | 2.4324 × 10−4 | 4.97 |
GWO | −1.0390 | 0.0024 | 6.9452 × 10−5 | −1.9387 × 10−4 | 16.8429 | 0.00038 | 0.2925 | 3.1629 × 10−5 | 4.85 |
PF | −1.0651 | 0.0024 | 6.7059 × 10−5 | −1.4820 × 10−4 | 18.9925 | 0.00044 | 0.2451 | 2.7562 × 10−5 | 2.71 |
GWOCS | −1.0539 | 0.0027 | 5.1428 × 10−5 | −1.7231 × 10−4 | 14.6350 | 0.00034 | 0.1957 | 6.5922 × 10−8 | 2.64 |
PSOGWO | −1.0727 | 0.0022 | 6.3245 × 10−5 | −1.8235 × 10−4 | 15.1396 | 0.00047 | 0.2682 | 4.8720 × 10−8 | 2.42 |
HPSOPF | −1.0059 | 0.0016 | 3.4698 × 10−5 | −1.6129 × 10−4 | 14.6827 | 0.00031 | 0.2156 | 6.6216 × 10−9 | 2 |
Parameter/Algorithms | b | SSE | Comp Time (s) | ||||||
---|---|---|---|---|---|---|---|---|---|
PSO | −0.9645 | 0.0012 | 8.4215 × 10−5 | −1.2348 × 10−4 | 13.0845 | 0.00031 | 0.2869 | 3.12 × 10−3 | 4.89 |
GWO | −0.9128 | 0.0022 | 8.2682 × 10−5 | −1.4452 × 10−4 | 15.3653 | 0.00034 | 0.3566 | 2.99 × 10−4 | 4.74 |
PF | −0.8796 | 0.0014 | 9.7458 × 10−5 | −2.0712 × 10−4 | 11.0000 | 0.00021 | 0.1800 | 1.88 × 10−4 | 2.76 |
GWOCS | −0.9212 | 0.0012 | 9.5168 × 10−5 | −2.5841 × 10−4 | 17.4133 | 0.00042 | 0.2195 | 6.33 × 10−7 | 2.68 |
PSOGWO | −1.0617 | 0.0023 | 9.6387 × 10−5 | −1.2701 × 10−4 | 15.8417 | 0.00046 | 0.2511 | 5.29 × 10−7 | 2.40 |
HPSOPF | −1.0432 | 0.0014 | 7.8963 × 10−5 | −1.0965 × 10−4 | 14.8896 | 0.00044 | 0.2416 | 5.65 × 10−8 | 2.12 |
Current Measured (A) | Voltage Measured (V) | Voltage Calculated (V) | Voltage Absolute Error | Power Measured (W) | Power Calculated (W) | Power Absolute Error |
---|---|---|---|---|---|---|
5.4 | 0.92 | 0.9211 | 1.19 × 10−3 | 4.97 | 4.97394 | 7.92 × 10−4 |
10.8 | 0.88 | 0.8721 | 9.06 × 10−3 | 9.50 | 9.41868 | 8.63 × 10−3 |
16.2 | 0.85 | 0.8451 | 5.80 × 10−3 | 13.77 | 13.69062 | 5.80 × 10−3 |
21.6 | 0.82 | 0.8176 | 2.94 × 10−3 | 17.71 | 17.66016 | 2.82 × 10−3 |
27.0 | 0.79 | 0.7858 | 5.34 × 10−3 | 21.96 | 21.2166 | 3.50 × 10−2 |
32.4 | 0.77 | 0.7682 | 2.34 × 10−3 | 24.95 | 24.88968 | 2.42 × 10−3 |
37.8 | 0.74 | 0.7361 | 5.30 × 10−3 | 27.97 | 27.82458 | 5.23 × 10−3 |
43.2 | 0.72 | 0.7112 | 1.24 × 10−2 | 31.10 | 30.72384 | 1.22 × 10−2 |
48.6 | 0.69 | 0.6887 | 1.89 × 10−3 | 33.53 | 33.47082 | 1.77 × 10−3 |
54.0 | 0.66 | 0.6562 | 5.79 × 10−3 | 35.64 | 35.4348 | 5.79 × 10−3 |
59.4 | 0.62 | 0.6175 | 4.05 × 10−3 | 36.83 | 36.6795 | 4.10 × 10−3 |
64.8 | 0.60 | 0.5918 | 1.39 × 10−2 | 38.88 | 38.34864 | 1.39 × 10−2 |
70.2 | 0.55 | 0.5507 | 1.27 × 10−3 | 38.61 | 38.65914 | 1.27 × 10−3 |
Sum of AE | 7.12 × 10−2 | 9.98 × 10−2 |
Current Measured (A) | Voltage Measured (V) | Voltage Calculated (V) | Voltage Absolute Error | Power Measured (W) | Power Calculated (W) | Power Absolute Error |
---|---|---|---|---|---|---|
1.004 | 43.17 | 43.04 | 3.02 × 10−3 | 43.36 | 43.21216 | 3.42 × 10−3 |
3.166 | 41.14 | 41.17 | 7.29 × 10−4 | 130.25 | 130.34422 | 7.23 × 10−4 |
5.019 | 40.09 | 40.04 | 1.25 × 10−3 | 201.21 | 200.96076 | 1.24 × 10−3 |
7.027 | 39.04 | 39.03 | 2.56 × 10−4 | 274.33 | 274.26381 | 2.41 × 10−4 |
8.958 | 37.99 | 37.98 | 2.63 × 10−4 | 340.31 | 340.22484 | 2.50 × 10−4 |
10.97 | 37.08 | 37.1 | 5.39 × 10−4 | 406.77 | 406.987 | 5.33 × 10−4 |
13.05 | 36.03 | 36.05 | 5.55 × 10−4 | 470.19 | 470.4525 | 5.58 × 10−4 |
15.06 | 35.19 | 35.20 | 2.84 × 10−4 | 529.96 | 530.112 | 2.87 × 10−4 |
17.07 | 34.07 | 34.09 | 5.87 × 10−4 | 581.57 | 581.9163 | 5.95 × 10−4 |
19.07 | 33.02 | 33.04 | 6.05 × 10−4 | 629.69 | 630.0728 | 6.08 × 10−4 |
21.08 | 32.04 | 32.06 | 6.24 × 10−4 | 675.40 | 675.8248 | 6.29 × 10−4 |
23.01 | 31.20 | 31.24 | 1.28 × 10−3 | 717.91 | 718.8324 | 1.28 × 10−3 |
24.94 | 29.80 | 29.84 | 1.34 × 10−3 | 743.21 | 744.2096 | 1.34 × 10−3 |
26.87 | 28.96 | 28.99 | 1.03 × 10−3 | 778.16 | 778.9613 | 1.03 × 10−3 |
28.96 | 28.12 | 28.17 | 1.77 × 10−3 | 814.36 | 815.8032 | 1.77 × 10−3 |
30.81 | 26.3 | 26.32 | 7.60 × 10−4 | 810.30 | 810.9192 | 7.64 × 10−4 |
32.97 | 24.06 | 24.12 | 2.49 × 10−3 | 793.26 | 795.2364 | 2.49 × 10−3 |
34.90 | 21.40 | 21.44 | 1.87 × 10−3 | 746.86 | 748.256 | 1.87 × 10−3 |
Sum of AE | 1.93 × 10−2 | 1.96 × 10−2 |
Temperature (Kelvin) | Parameter/Algorithms | PSO | GWO | PF | GWOCS | PSOGWO | HPSOPF |
---|---|---|---|---|---|---|---|
293.15 | −1.1326 | −1.0216 | −1.0633 | −1.1343 | −1.0241 | −1.0137 | |
0.0012 | 0.0010 | 0.0023 | 0.0026 | 0.00034 | 0.0014 | ||
4.2570 × 10−5 | 5.4195 × 10−5 | 6.4659 × 10−5 | 5.7921 × 10−5 | 5.1986 × 10−5 | 6.8914 × 10−5 | ||
−1.7265 × 10−4 | −1.9506 × 10−4 | −1.5468 × 10−4 | −1.6315 × 10−4 | −1.5499 × 10−4 | −1.8425 × 10−4 | ||
17.5144 | 16.5712 | 15 | 12.6258 | 14.1545 | 14.2584 | ||
0.00041 | 0.00032 | 0.00045 | 0.00040 | 0.00026 | 0.00024 | ||
b | 0.2546 | 0.2488 | 0.3421 | 0.1965 | 0.3785 | 0.3697 | |
SSE | 2.5925 × 10−4 | 2.8137 × 10−5 | 2.7437 × 10−5 | 7.0130 × 10−8 | 6.5215 × 10−8 | 5.8921 × 10−9 | |
393.15 | −1.0686 | −1.0844 | −1.0158 | −1.0352 | −1.1436 | −1.0496 | |
0.0033 | 0.0013 | 0.0027 | 0.0034 | 0.0031 | 0.0020 | ||
5.6819 × 10−5 | 5.1894 × 10−5 | 6.7859 × 10−5 | 6.8406 × 10−5 | 5.7629 × 10−5 | 6.8941 × 10−5 | ||
−1.4625 × 10−4 | −1.8152 × 10−4 | −1.9255 × 10−4 | −1.9135 × 10−4 | −1.7365 × 10−4 | −1.5625 × 10−4 | ||
14 | 12.9558 | 13.5158 | 14.4154 | 14.6215 | 15.5815 | ||
0.00028 | 0.00046 | 0.00047 | 0.00035 | 0.00040 | 0.00034 | ||
b | 0.3427 | 0.1327 | 0.3251 | 0.2055 | 0.3963 | 0.2453 | |
SSE | 3.4633 × 10−4 | 2.1255 × 10−5 | 2.0181 × 10−5 | 6.9857 × 10−8 | 6.4140 × 10−8 | 6.2395 × 10−9 | |
443.15 | −1.1425 | −1.0542 | −1.0365 | −1.0154 | −1.0453 | −1.0280 | |
0.0022 | 0.0030 | 0.0015 | 0.0010 | 0.0028 | 0.0036 | ||
6.8921 × 10−5 | 6.7470 × 10−5 | 5.6289 × 10−5 | 6.6953 × 10−5 | 6.4636 × 10−5 | 6.4270 × 10−5 | ||
−1.5146 × 10−4 | −1.7266 × 10−4 | −1.6420 × 10−4 | −1.8250 × 10−4 | −1.8942 × 10−4 | −1.9562 × 10−4 | ||
13.6547 | 14.6889 | 13.8487 | 15.4126 | 17.4995 | 14.5146 | ||
0.00039 | 0.00041 | 0.00029 | 0.00030 | 0.00025 | 0.00036 | ||
b | 0.2066 | 0.3542 | 0.3285 | 0.2040 | 0.3546 | 0.1565 | |
SSE | 2.7841 × 10−4 | 3.0326 × 10−5 | 2.9713 × 10−5 | 6.8570 × 10−8 | 5.5521 × 10−8 | 5.2563 × 10−9 |
Temperature (Kelvin) | Parameter/Algorithms | PSO | GWO | PF | GWOCS | PSOGWO | HPSOPF |
---|---|---|---|---|---|---|---|
273.15 | −0.9125 | −0.8813 | −0.9236 | −1.0155 | −1.0792 | −1.0285 | |
0.0010 | 0.0013 | 0.0016 | 0.0027 | 0.0018 | 0.0021 | ||
9.3255 × 10−5 | 9.4699 × 10−5 | 9.1652 × 10−5 | 7.9745 × 10−5 | 8.1145 × 10−5 | 7.7626 × 10−5 | ||
−2.6185 × 10−4 | −1.2152× 10−4 | −1.9128 × 10−4 | −2.7016 × 10−4 | −2.4216 × 10−4 | −2.4236 × 10−4 | ||
17 | 18.2674 | 12.8591 | 14.2577 | 15 | 16.9778 | ||
0.00031 | 0.00046 | 0.00048 | 0.00034 | 0.00030 | 0.00040 | ||
b | 0.1359 | 0.2413 | 0.3239 | 0.3616 | 0.2463 | 0.3798 | |
SSE | 2.4595 × 10−3 | 3.5955 × 10−4 | 2.5790 × 10−4 | 6.1246 × 10−7 | 5.6329 × 10−7 | 5.8517 × 10−8 | |
373.15 | −1.0158 | −1.0265 | −0.9615 | −0.9281 | −0.8299 | −1.0523 | |
0.002 | 0.0032 | 0.0028 | 0.0014 | 0.0026 | 0.0015 | ||
9.84 × 10−5 | 7.13 × 10−5 | 8.42 × 10−5 | 9.28 × 10−5 | 9.43 × 10−5 | 9.79 × 10−5 | ||
−1.43 × 10−4 | −2.82 × 10−4 | −2.40 × 10−4 | −2.64 × 10−4 | −1.12 × 10−4 | −1.72 × 10−4 | ||
15 | 16.8412 | 11 | 17.1963 | 16.987 | 15 | ||
0.00041 | 0.00022 | 0.00040 | 0.00035 | 0.00026 | 0.00043 | ||
b | 0.3241 | 0.3658 | 0.1492 | 0.2810 | 0.2615 | 0.3958 | |
SSE | 3.1358 × 10−3 | 2.5189 × 10−4 | 2.0126 × 10−4 | 5.6585 × 10−7 | 4.9952 × 10−7 | 6.4166 × 10−8 | |
423.15 | −0.9357 | −1.0875 | −1.0413 | −0.8137 | −0.9013 | −0.8594 | |
0.0011 | 0.0032 | 0.0010 | 0.0016 | 0.0021 | 0.0023 | ||
7.9897 × 10−5 | 9.4056 × 10−5 | 9.5378 × 10−5 | 8.7902 × 10−5 | 9.1288 × 10−5 | 9.6525 × 10−5 | ||
−2.8125 × 10−4 | −2.3413 × 10−4 | −1.2846 × 10−4 | −1.3153 × 10−4 | −2.9711 × 10−4 | −2.1987 × 10−4 | ||
16.6125 | 17.5142 | 13.5845 | 13.1278 | 11.9254 | 14.8014 | ||
0.00030 | 0.00026 | 0.00027 | 0.00034 | 0.00040 | 0.00046 | ||
b | 0.1325 | 0.2472 | 0.1240 | 0.0348 | 0.3188 | 0.1576 | |
SSE | 2.7827 × 10−3 | 3.9142 × 10−4 | 2.4783 × 10−4 | 5.7463 × 10−7 | 4.8362 × 10−7 | 5.7366 × 10−8 |
Pressure (atm) | Parameter/Algorithms | PSO | GWO | PF | GWOCS | PSOGWO | HPSOPF |
---|---|---|---|---|---|---|---|
1 | −1.13658 | −1.02874 | −1.03658 | −1.14963 | −0.9745 | −1.02458 | |
0.0011 | 0.0016 | 0.0032 | 0.0022 | 0.0025 | 0.0034 | ||
4.6148 × 10−5 | 5.0545 × 10−5 | 5.6188 × 10−5 | 6.8424 × 10−5 | 6.1637 × 10−5 | 5.4198 × 10−5 | ||
−1.5846 × 10−4 | −1.8246 × 10−4 | −1.9216 × 10−4 | −1.6226 × 10−4 | −1.5125 × 10−4 | −1.7182 × 10−4 | ||
12 | 14.2541 | 15.4692 | 16.5045 | 14.1278 | 13.0585 | ||
0.00024 | 0.00035 | 0.00034 | 0.00026 | 0.00041 | 0.00027 | ||
b | 0.2347 | 0.2463 | 0.3622 | 0.2379 | 0.1643 | 0.2125 | |
SSE | 3.2641E-04 | 3.6246 × 10−5 | 2.9236 × 10−5 | 6.6745 × 10−8 | 6.3326 × 10−8 | 5.6146 × 10−9 | |
2 | −1.168102 | −1.15487 | −1.1442 | −1.01578 | −1.05146 | −1.136214 | |
0.0031 | 0.0024 | 0.0025 | 0.0034 | 0.0012 | 0.0014 | ||
6.2972 × 10−5 | 6.2841 × 10−5 | 5.7941 × 10−5 | 5.4348 × 10−5 | 6.1688 × 10−5 | 4.8153 × 10−5 | ||
−1.4298 × 10−4 | −1.5969 × 10−4 | −1.7124 × 10−4 | −1.5874 × 10−4 | −1.7137 × 10−4 | 1.6385 × 10−4 | ||
13.0955 | 15.9810 | 15.2151 | 12.4322 | 15.0453 | 16.7446 | ||
0.00027 | 0.00042 | 0.00030 | 0.00046 | 0.00033 | 0.00024 | ||
b | 0.1459 | 0.2695 | 0.2156 | 0.3879 | 0.3413 | 0.2712 | |
SSE | 2.7463 × 10−4 | 3.1965 × 10−5 | 2.1259 × 10−5 | 6.2893 × 10−8 | 5.6385 × 10−8 | 6.4692 × 10−9 | |
3 | −1.02545 | −1.054281 | −1.04748 | −1.0695158 | −1.13545 | −1.08745 | |
0.0031 | 0.0034 | 0.0025 | 0.0030 | 0.0017 | 0.0011 | ||
4.5628 × 10−5 | 5.2482 × 10−5 | 6.2782 × 10−5 | 6.4955 × 10−5 | 5.1898 × 10−5 | 6.4819 × 10−5 | ||
−1.6843 × 10−4 | −1.8463 × 10−4 | −1.7365 × 10−4 | −1.6513 × 10−4 | −1.7365 × 10−4 | −1.5179 × 10−4 | ||
16.5421 | 16.2484 | 14.6987 | 15.5584 | 15.1364 | 15.4589 | ||
0.00045 | 0.00034 | 0.00028 | 0.00025 | 0.00043 | 0.00040 | ||
b | 0.2812 | 0.3425 | 0.3125 | 0.2821 | 0.2165 | 0.4137 | |
SSE | 3.1562E-04 | 2.9770 × 10−5 | 2.8236 × 10−5 | 5.8146 × 10−8 | 5.4628 × 10−8 | 6.0326 × 10−9 |
Pressure (atm) | Parameter/Algorithms | PSO | GWO | PF | GWOCS | PSOGWO | HPSOPF |
---|---|---|---|---|---|---|---|
1 | −0.9857 | −0.9264 | −0.8552 | −0.9112 | −0.8499 | −1.02614 | |
0.0027 | 0.0020 | 0.0024 | 0.0014 | 0.0016 | 0.0028 | ||
9.1365 × 10−5 | 9.8987 × 10−5 | 8.6987 × 10−5 | 9.4370 × 10−5 | 7.9187 × 10−5 | 8.5897 × 10−5 | ||
−2.1928 × 10−4 | −1.2973 × 10−4 | −1.9121 × 10−4 | −2.7905 × 10−4 | −2.9240 × 10−4 | −1.0156 × 10−4 | ||
17.2367 | 15.6904 | 11.0012 | 16.5977 | 15 | 13.5196 | ||
0.00025 | 0.00035 | 0.00021 | 0.00042 | 0.00043 | 0.00031 | ||
b | 0.30547 | 0.2647 | 0.39712 | 0.20452 | 0.1684 | 0.2326 | |
SSE | 2.9813 × 10−3 | 3.1246 × 10−4 | 2.8562 × 10−4 | 5.1025 × 10−7 | 4.9968 × 10−7 | 6.4516 × 10−8 | |
2 | −0.9645 | −0.9054 | −0.953978 | −0.81236 | −1.0499 | −1.09536 | |
0.0020 | 0.0026 | 0.0013 | 0.0027 | 0.0019 | 0.0017 | ||
7.1968 × 10−5 | 9.3655 × 10−5 | 9.2417 × 10−5 | 8.9058 × 10−5 | 7.5962 × 10−5 | 8.6045 × 10−5 | ||
−2.5584 × 10−4 | −2.9578 × 10−4 | −1.3221 × 10−4 | −1.8778 × 10−4 | −2.8763 × 10−4 | −1.4896 × 10−4 | ||
18.2212 | 17.2971 | 16 | 16.9248 | 11.2301 | 12.0596 | ||
0.00031 | 0.00026 | 0.00030 | 0.00043 | 0.00037 | 0.00041 | ||
b | 0.1842 | 0.2793 | 0.1204 | 0.3126 | 0.3427 | 0.2168 | |
SSE | 2.8845 × 10−3 | 2.5953 × 10−4 | 2.1563 × 10−4 | 6.4328 × 10−7 | 5.9246 × 10−7 | 6.2235 × 10−8 | |
3 | −0.8037 | −0.9364 | −0.9625 | −0.8297 | −1.0242 | −0.9987 | |
0.0011 | 0.0023 | 0.0016 | 0.0024 | 0.0020 | 0.0013 | ||
8.1369 × 10−5 | 8.8969 × 10−5 | 9.4963 × 10−5 | 7.2674 × 10−5 | 9.1757 × 10−5 | 8.1479 × 10−5 | ||
−1.7458 × 10−4 | −1.4369 × 10−4 | −2.6549 × 10−4 | −2.8666 × 10−4 | −1.2879 × 10−4 | 2.6934 × 10−4 | ||
11 | 10.6584 | 12.7251 | 13 | 16.8796 | 17.3274 | ||
0.00045 | 0.00040 | 0.00038 | 0.00027 | 0.0003 | 0.00046 | ||
b | 0.3613 | 0.2987 | 0.1254 | 0.1626 | 0.2842 | 0.3165 | |
SSE | 3.0636 × 10−3 | 3.5413 × 10−4 | 2.7846 × 10−4 | 5.5648 × 10−7 | 5.1872 × 10−7 | 5.2982 × 10−8 |
Algorithm | Friedman Ranking |
---|---|
HPSOPF | 1 |
PSOGWO | 2 |
GWOCS | 3 |
PF | 4 |
GWO | 5 |
PSO | 6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Singla, M.K.; Gupta, J.; Singh, B.; Nijhawan, P.; Abdelaziz, A.Y.; El-Shahat, A. Parameter Estimation of Fuel Cells Using a Hybrid Optimization Algorithm. Sustainability 2023, 15, 6676. https://doi.org/10.3390/su15086676
Singla MK, Gupta J, Singh B, Nijhawan P, Abdelaziz AY, El-Shahat A. Parameter Estimation of Fuel Cells Using a Hybrid Optimization Algorithm. Sustainability. 2023; 15(8):6676. https://doi.org/10.3390/su15086676
Chicago/Turabian StyleSingla, Manish Kumar, Jyoti Gupta, Beant Singh, Parag Nijhawan, Almoataz Y. Abdelaziz, and Adel El-Shahat. 2023. "Parameter Estimation of Fuel Cells Using a Hybrid Optimization Algorithm" Sustainability 15, no. 8: 6676. https://doi.org/10.3390/su15086676
APA StyleSingla, M. K., Gupta, J., Singh, B., Nijhawan, P., Abdelaziz, A. Y., & El-Shahat, A. (2023). Parameter Estimation of Fuel Cells Using a Hybrid Optimization Algorithm. Sustainability, 15(8), 6676. https://doi.org/10.3390/su15086676