Energy Sufficiency in the Passenger Transport of Lithuania
Abstract
:1. Introduction
2. Literature Review
2.1. Impact of Energy Sufficient Behaviour during the COVID-19 Pandemic Period
2.2. Impact of Possible Energy Sufficient Behaviour
3. Energy Consumption and Travelling Trends
4. Methodology
4.1. The Calculation of Fuel-Saving Potential
4.2. Sufficient Levels of Indicators during 2025–2050
4.3. Scenarios and Modelling
5. Results and Their Discussion
5.1. Impact on Energy Consumption
5.2. Impacts on the PEC
5.3. Impacts on the Electricity Production Mix
5.4. Impacts on Greenhouse Gas Emissions
5.5. Consideration of Results
6. Conclusions
- -
- Quantifying the impact on energy consumption revealed that wider use of public transportation and bicycles, as well as slowing the growth rate of passenger car travel will have an impact on better management of pkm in the passenger transport sector. This could result in final energy savings and thus slow the growth of energy consumption in the sector, which is the country’s largest energy consumer. As a result, in 2050, it is possible to save 550 ktoe of energy, equivalent to an 8.2% reduction in FEC. Furthermore, between 2021 and 2050, 10 Mtoe of energy could be saved in transportation.
- -
- Estimating the impact on PEC revealed that ES-driven behaviour change, such as increase in pkm by buses, trolleybuses, trains, and bikes, as well as by passenger cars but at a lower than historical rate, could contribute to a halving of PEC growth. However, changes favourable to the use of RES are anticipated in the long term. It is estimated that the proportion of RES will increase to 67% in 2050, up from 25% in 2017. 6.9 TWh of primary energy savings could be realised in 2050.
- -
- Calculating the impact on electricity production and consumption revealed that electricity consumption could increase by 65% to 17.77 TWh by 2050. This is due to an increase in travelling by electric vehicles. The nation could be self-sufficient in electricity by the 2030s, and net imports could reach 6% by 2050. Nearly 90% of electricity could be generated by RES in 2050, contributing significantly to the achievement of RES goals.
- -
- Evaluating the impact on GHG emissions demonstrated annually increasing (by 3.8% to 20.8%) reductions in GHG emissions, resulting in 20 MtCO2eq. savings over the period. For this objective, policy measures are indispensable. They could be directed toward demand control and the transition to non-motorised and less polluting modes of transportation. This should be done in conjunction with education and awareness campaigns.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Parliament of Lithuanian Republic. National Energy Independence Strategy of Lithuania. Available online: https://enmin.lrv.lt/uploads/enmin/documents/files/Nacionaline%20energetines%20nepriklausomybes%20strategija_2018_LT.pdf (accessed on 21 June 2022).
- Parliament of Lithuanian Republic. Agenda for National Climate Change Management of Lithuania. Available online: http://e-seimas.lrs.lt/portal/legalAct/lt/TAD/7eb37fc0db3311eb866fe2e083228059?positionInSearchResul (accessed on 30 June 2021).
- Government of Lithuanian Republic. National Progress Plan for 2021–2030. Available online: https://e-seimas.lrs.lt/portal/legalAct/lt/TAD/c1259440f7dd11eab72ddb4a109da1b5?jfwid=i3h7wm1wn (accessed on 21 June 2022).
- Parliament of Lithuanian Republic. National Energy and Climate Action Plan of Lithuania. Available online: https://enmin.lrv.lt/uploads/enmin/documents/files/Teisin%C4%97%20informacija/Teis%C4%97s%20aktai/Bendrieji%20energetikos%20strateginiai%20dokumentai/NECP/Lietuvos_Respublikos_nacionalinis_energetikos_ir_klimato_srities_veiksmu_planas.pdf (accessed on 31 December 2022).
- Association NegaWatt. NegaWatt Scenario 2017–2050: A Blueprint for a Successful Energy Transition in France. 2022. Available online: https://negawatt.org/IMG/pdf/181128_negawatt-scenario_eng_12p.pdf (accessed on 15 September 2022).
- Linnanen, L.; Nyfors, T.; Heininen, T.; Liimatainen, H.; Nissinen, A.; Regina, K.; Saarinen, M.; Seppala, J.; Viri, R.; The Sufficiency Perspective in Climate Policy: How to Recompose Consumption. The Finish Climate Change Panel. 2020. Available online: https://www.ilmastopaneeli.fi/wp-content/uploads/2020/09/Sufficiency-in-climate-policy_2020-09-25.pdf (accessed on 25 November 2022).
- Darby, S.; Fawcett, T.; Energy Sufficiency—An Introduction: A Concept Paper for ECEEE. October 2018. Available online: 10.13140/RG.2.2.31198.08006 (accessed on 28 October 2022).
- United Nations. Paris Agreement. 2015. Available online: https://unfccc.int/files/essential_background/convention/application/pdf/english_paris_agreement.pdf (accessed on 20 October 2022).
- ENGIE. Energy Sufficiency: The Other Side of the Energy Transition. 2020. Available online: https://www.engie.com/en/news/energy-sufficiency-dashboard (accessed on 16 November 2022).
- CACTUS Project. Publications. Available online: https://cactus-energy-sufficiency.eu/publications/ (accessed on 16 July 2022).
- Bagheri, M.; Durand, A.; Marignac, Y.; Djelali, M.; Bourgeois, S.; Konstantinaviciute, I.; Bobinaite, V.; Galinis, A.; Neniskis, E.; Bartek-Lesi, M.; et al. Understanding the gaps and addressing the potentials of energy sufficiency in “catching-up” European economies. In Proceedings of the ECEEE Summer Study Proceedings, Hyères, France, 6–10 June 2022. [Google Scholar]
- Bobinaite, V.; Konstantinaviciute, I.; Galinis, A.; Bartek-Lesi, M.; Rácz, V.; Dézsi, B. Energy Sufficiency in the Household Sector of Lithuania and Hungary: The Case of Heated Floor Area. Sustainability 2022, 14, 16162. [Google Scholar] [CrossRef]
- Millard-Ball, A.; Schipper, L. Are we reaching peak travel? Trends in passenger transport in eight industrialized countries. Transp. Rev. 2011, 31, 357–378. [Google Scholar] [CrossRef]
- Herring, H. Energy efficiency—A critical view. Energy 2006, 31, 10–20. [Google Scholar] [CrossRef]
- Dimitropoulos, A.; Oueslati, W.; Sintek, C. The rebound effect in road transport: A meta-analysis of empirical studies. Energy Econ. 2018, 75, 163–179. [Google Scholar] [CrossRef]
- Llorca, M.; Jamasb, T. Energy efficiency and rebound effect in European road freight transport. Transp. Res. Part A Policy Pract. 2017, 101, 98–110. [Google Scholar] [CrossRef] [Green Version]
- Zheng, Y.; Xu, H.; Jia, R. Endogenous energy efficiency and rebound effect in the transportation sector: Evidence from China. J. Clean. Prod. 2022, 335, 130310. [Google Scholar] [CrossRef]
- Samadi, S.; Gröne, M.C.; Schneidewind, U.; Luhmann, H.J.; Venjakob, J.; Best, B. Sufficiency in energy scenario studies: Taking the potential benefits of lifestyle changes into account. Technol. Forecast. Soc. Chang. 2017, 124, 126–134. [Google Scholar] [CrossRef] [Green Version]
- Jiang, P.; Fan, Y.V.; Klemeš, J.J. Impacts of COVID-19 on energy demand and consumption: Challenges, lessons and emerging opportunities. Appl. Energy 2021, 285, 116441. [Google Scholar] [CrossRef]
- Panteia, M.; Rodrigues, T.; Teoh, C.; Ramos, T.; de Winter, L.; Knezevic, L.; Marcucci, E.; Lozzi, G.; Gatta, V.; Antonucci, B.; et al. Relaunching Transport and Tourism in the EU after COVID-19. Part I: Overview. 2021. Available online: https://www.europarl.europa.eu/RegData/etudes/STUD/2021/652235/IPOL_STU(2021)652235_EN.pdf (accessed on 7 March 2022).
- Habib, M.A.; Anik, M.A.H. Impacts of COVID-19 on Transport Modes and Mobility Behavior: Analysis of Public Discourse in Twitter. Transp. Res. Rec. 2021. [Google Scholar] [CrossRef]
- Berger, R. How COVID-19 Has Disrupted the Future of Long-Distance Mobility. 2021. Available online: https://www.tourmag.com/attachment/2243501/ (accessed on 16 July 2022).
- Kellermann, R.; Sivizaca Conde, D.; Rößler, D.; Kliewer, N.; Dienel, H.L. Mobility in pandemic times: Exploring changes and long-term effects of COVID-19 on urban mobility behavior. Transp. Res. Interdiscip. Perspect. 2022, 15, 100668. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Li, Z.; Wang, J. Impact of COVID-19 pandemic on energy consumption and carbon dioxide emissions in China’s transportation sector. Case Stud. Therm. Eng. 2021, 26, 101091. [Google Scholar] [CrossRef]
- de Lang, B. Vehicle Mileage Not Yet Back at Pre-Pandemic Level. 2022. Available online: https://www.cbs.nl/en-gb/news/2022/45/vehicle-mileage-not-yet-back-at-pre-pandemic-level (accessed on 16 July 2022).
- Eurostat Impact of COVID-19 on Air Passenger Transport. 2020. Available online: https://ec.europa.eu/eurostat/web/products-eurostat-news/-/ddn-20200616-2 (accessed on 12 September 2022).
- Independent Regulators’ Group—Rail Tenth Annual Market Monitoring Report. 2022. Available online: //Https://Www.Irg-Rail.Eu/Irg/Documents/Market-Monitoring/363,2022.Html (accessed on 16 July 2022).
- International Energy Agency Changes in Transport Behaviour during the COVID-19 Crisis. 2020. Available online: https://www.iea.org/articles/changes-in-transport-behaviour-during-the-covid-19-crisis (accessed on 16 July 2022).
- Gkiotsalitis, K.; Cats, O. Public transport planning adaption under the COVID-19 pandemic crisis: Literature review of research needs and directions. Transp. Rev. 2021, 41, 374–392. [Google Scholar] [CrossRef]
- Jenelius, E.; Cebecauer, M. Impacts of COVID-19 on public transport ridership in Sweden: Analysis of ticket validations, sales and passenger counts. Transp. Res. Interdiscip. Perspect. 2020, 8, 100242. [Google Scholar] [CrossRef]
- Wilbur, M.; Ayman, A.; Ouyang, A.; Poon, V.; Kabir, R.; Vadali, A.; Pugliese, P.; Freudberg, D.; Laszka, A.; Dubey, A. Impact of COVID-19 on Public Transit Accessibility and Ridership. arXiv 2020, arXiv:2008.02413. Available online: https://arxiv.org/pdf/2008.02413.pdf (accessed on 28 July 2022).
- Wielechowski, M.; Czech, K.; Grzęda, L. Decline in Mobility: Public Transport in Poland in the time of the COVID-19 Pandemic. Economies 2020, 8, 78. [Google Scholar] [CrossRef]
- Bucsky, P. Modal share changes due to COVID-19: The case of Budapest. Transp. Res. Interdiscip. Perspect. 2020, 8, 100141. [Google Scholar] [CrossRef]
- Abdullah, M.; Ali, N.; Ashraf Javid, M.; Dias, C.; Campisi, T. Public transport versus solo travel mode choices during the COVID-19 pandemic: Self-reported evidence from a developing country. Transp. Eng. 2021, 5, 100078. [Google Scholar] [CrossRef]
- Aloi, A.; Alonso, B.; Benavente, J.; Cordera, R.; Echániz, E.; González, F.; Ladisa, C.; Lezama-Romanelli, R.; López-Parra, V.; Mazzei, V. Effects of the COVID-19 Lockdown on Urban Mobility: Empirical Evidence from the City of Santander (Spain). Sustainability 2020, 12, 3870. [Google Scholar] [CrossRef]
- Moslem, S.; Campisi, T.; Szmelter-Jarosz, A.; Duleba, S.; Nahiduzzaman, K.M.; Tesoriere, G. Best–Worst. Method for Modelling Mobility Choice after COVID-19: Evidence from Italy. Sustainability 2020, 12, 6824. [Google Scholar] [CrossRef]
- Marra, A.D.; Sun, L.; Corman, F. The impact of COVID-19 pandemic on public transport usage and route choice: Evidences from a long-term tracking study in urban area. Transp. Policy 2022, 116, 258–268. [Google Scholar] [CrossRef] [PubMed]
- Eisenmann, C.; Nobis, C.; Kolarova, V.; Lenz, B.; Winkler, C. Transport mode use during the COVID-19 lockdown period in Germany: The car became more important, public transport lost ground. Transp. Policy 2021, 103, 60–67. [Google Scholar] [CrossRef] [PubMed]
- Molloy, J.; Schatzmann, T.; Schoeman, B.; Tchervenkov, C.; Hintermann, B.; Axhausen, K.W. Observed impacts of the Covid-19 first wave on travel behaviour in Switzerland based on a large GPS panel. Transp. Policy 2021, 104, 43–51. [Google Scholar] [CrossRef] [PubMed]
- Das, S.; Boruah, A.; Banerjee, A.; Raoniar, R.; Nama, S.; Kumar Maurya, S. Impact of COVID-19: A radical modal shift from public to private transport mode. Transp. Policy 2021, 109, 1–11. [Google Scholar] [CrossRef]
- Eurostat Railway Passenger Transport Statistics—Quarterly and Annual Data. 2022. Available online: https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Railway_passenger_transport_statistics_-_quarterly_and_annual_data (accessed on 10 July 2022).
- ICAO Effects of Novel Coronovirus (COVID-19) on Civil Aviation: Economic Impact Analysis. 2022. Available online: https://www.icao.int/sustainability/Documents/COVID-19/ICAO_Coronavirus_Econ_Impact.pdf (accessed on 6 November 2022).
- Bao, X.; Ji, P.; Lin, W.; Perc, M.; Kurths, J. The impact of COVID-19 on the worldwide air transportation network. R. Soc. Open Sci. 2021, 8, 210682. [Google Scholar] [CrossRef]
- Michelmann, J.; Schmalz, U.; Becker, A.; Stroh, F.; Behnke, S.; Hornung, M. Influence of COVID-19 on air travel—A scenario study toward future trusted aviation. J. Air Transp. Manag. 2023, 106, 102325. [Google Scholar] [CrossRef]
- Central Commission for the Navigation of the Rhine. Market Observation Annual Report 2021. Available online: https://inland-navigation-market.org/chapitre/7-passenger-transport/?lang=en (accessed on 9 October 2022).
- Borca, B.; Putz, L.-M. Impacts of the COVID-19 crisis on inland navigation. In Adapting to the Future: How Digitalization Shapes Sustainable Logistics and Resilient Supply Chain Management, Proceedings of the Hamburg International Conference of Logistics (HICL), Hamburg, Germany, 23–24 September 2021; Kersten, W.R., Christian, M., Blecker, T., Eds.; Epubli GmbH: Berlin, Germany, 2021; Volume 31, pp. 879–898. ISBN 978-3-7549-2770-0. [Google Scholar] [CrossRef]
- Rérat, P.; Haldimann, L.; Widmer, H. Cycling in the era of Covid-19: The effects of the pandemic and pop-up cycle lanes on cycling practices. Transp. Res. Interdiscip. Perspect. 2022, 15, 100677. [Google Scholar] [CrossRef] [PubMed]
- Meena, S. Impact of novel Coronavirus (COVID-19) pandemic on travel pattern: A case study of India. Indian J. Sci. Technol. 2020, 13, 2491–2501. [Google Scholar] [CrossRef]
- Buehler, R.; Pucher, J. COVID-19 Impacts on Cycling, 2019–2020. Transp. Rev. 2021, 41, 393–400. [Google Scholar] [CrossRef]
- Moriarty, P.; Honnery, D. Greening passenger transport: A review. J. Clean. Prod. 2013, 54, 14–22. [Google Scholar] [CrossRef]
- Alvik, S.; Irvine, M. The Impact of COVID-19 on the Energy Transition. 2020. Available online: https://www.dnv.com/energy-transition/impact-of-covid19-on-the-energy-transition.html (accessed on 25 October 2022).
- Brand, C.; Götschi, T.; Dons, E.; Gerike, R.; Anaya-Boig, E.; Avila-Palencia, I.; de Nazelle, A.; Gascon, M.; Gaupp-Berghausen, M.; Iacorossi, F.; et al. The climate change mitigation impacts of active travel: Evidence from a longitudinal panel study in seven European cities. Glob. Environ. Chang. 2021, 67, 102224. [Google Scholar] [CrossRef]
- Duarte, R.; Feng, K.; Hubacek, K.; Sánchez-Chóliz, J.; Sarasa, C.; Sun, L. Modeling the Carbon Consequences of Pro-Environmental Consumer Behavior. Appl. Energy 2016, 184, 1207–1216. Available online: http://linkinghub.elsevier.com/retrieve/pii/S0306261915012271 (accessed on 10 October 2022). [CrossRef]
- Neves, A.; Brand, C. Assessing the potential for carbon emissions savings from replacing short car trips with walking and cycling using a mixed GPS-travel diary approach. Transp. Res. Part A Policy Pract. 2019, 123, 130–146. [Google Scholar] [CrossRef]
- Vita, G.; Lundström, J.R.; Hertwich, E.G.; Quist, J.; Ivanova, D.; Stadler, K.; Wood, R. The Environmental Impact of Green Consumption and Sufficiency Lifestyles Scenarios in Europe: Connecting Local Sustainability Visions to Global Consequences. Ecol. Econ. 2019, 164, 106322. [Google Scholar] [CrossRef]
- EUROSTAT. Complete Energy Balances. 16 January 2023. Available online: https://ec.europa.eu/eurostat/databrowser/view/nrg_bal_c/default/table?lang=en (accessed on 17 January 2023).
- ADEME. Enerdata and Fraunhofer. Database of Odyssee-Mure Project. Available online: https://www.odyssee-mure.eu/ (accessed on 10 January 2022).
- Lithuanian Statistics. Database of Energy Consumption in Transport. Available online: https://osp.stat.gov.lt/statistiniu-rodikliu-analize#/ (accessed on 16 July 2022).
- Lithuanian Statistics. Database of Passenger Turnover by All Transport Modes. Available online: https://osp.stat.gov.lt/statistiniu-rodikliu-analize#/ (accessed on 16 July 2022).
- Galinis, A.; Miškinis, V.; Lekavicius, V.; Konstantinaviciute, I.; Štreimikiene, D.; Pažeraite, A.; Gatautis, R.; Norvaiša, E.; Neniškis, E.; Alebaite, I. Assessment of Energy Policy Directions of Lithuanian Energy Independence Strategy; Laboratory for Energy Systems Research of Lithuanian Energy Institute: Kaunas, Lithuania, 2017. [Google Scholar]
- EUROSTAT. Population on 1st January by Age, Sex and Type of Projection. 8 February 2021. Available online: https://appsso.eurostat.ec.europa.eu/nui/show.do?dataset=proj_19np&lang=en (accessed on 15 August 2022).
- Grubler, A.; Wilson, C.; Bento, N.; Boza-Kiss, B.; Krey, V.; McCollum, D.L.; Rao, N.D.; Riahi, K.; Rogelj, J.; de Stercke, S.; et al. A low energy demand scenario for meeting the 1.5 °C target and sustainable development goals without negative emission technologies. Nat. Energy 2018, 3, 515–527. [Google Scholar] [CrossRef] [Green Version]
- Kuhnhenn, K.; Costa, L.; Mahnke, E.; Schneider, L.; Lange, S. A Societal Transformation Scenario for Staying below 1.5 °C; Economic + Social Issues; Heinrich Böll Stiftung: Berlin, Germany, 2020. [Google Scholar]
- Konstantinaviciute, I. Energy consumption trends and sufficiency potential for the passenger transport in Lithuania. In Proceedings of the CACTUS Lithuanian Policy Workshop Vilnius, Vilnius, Lithuania, 10 November 2021. [Google Scholar]
- European Commission Transport in the EU: Current Trends and Issues. 2019. Available online: https://www.amt-autoridade.pt/media/1934/2019-transport-in-the-eu-current-trends-and-issues.pdf (accessed on 16 July 2022).
- Neniškis, E.; Galinis, A.; Norvaiša, E. Improving Transport Modeling in MESSAGE Energy Planning Model: Vehicle Age Distributions. Energies 2021, 14, 7279. [Google Scholar] [CrossRef]
- International Institute for Applied Systems Analysis MESSAGE: Model for Energy Supply Strategy Alternatives and Their General Environmental Impact. 2012. Available online: https://webarchive.iiasa.ac.at/Research/ENE/model/message.html (accessed on 15 November 2022).
- Sandberg, M. Sufficiency transitions: A review of consumption changes for environmental sustainability. J. Clean. Prod. 2021, 293, 126097. [Google Scholar] [CrossRef]
- Eerma, M.H.; Manning, D.; Økland, G.L.; Rodriguez del Angel, C.; Seifert, P.E.; Winkler, J.; Zamora Blaumann, A.; Zozmann, E.; Hosseinioun, S.S.; Göke, L.; et al. The potential of behavioral changes to achieve a fully renewable energy system—A case study for Germany. Renew. Sustain. Energy Transit. 2022, 2, 100028. [Google Scholar] [CrossRef]
- Sukarno, I.; Matsumoto, H.; Susanti, L. Transportation energy consumption and emissions—A view from city of Indonesia. Future Cities Environ. 2016, 2, 6. [Google Scholar] [CrossRef]
- Kenworthy, J.R.; Svensson, H. Exploring the Energy Saving Potential in Private, Public and Non-Motorized Transport for Ten Swedish Cities. Sustainability 2022, 14, 954. [Google Scholar] [CrossRef]
- Best, B.; Christ, M.; Santarius, T.; Wiese, F. Exploring Energy Sufficiency: New Challenges and Options in Times of Crisis. Special Topic: Energy Sufficiency: Conceptual Considerations, Modeling, and Scenarios for Less Energy Consumption. Available online: https://www.tatup.de/index.php/tatup/article/view/6984/11724 (accessed on 16 July 2022).
- Nord Pool AS. Day-Ahead Prices: Yearly. Available online: https://www.nordpoolgroup.com/en/Market-data1/Dayahead/Area-Prices/ALL1/Yearly/?view=table (accessed on 20 July 2022).
- Shortall, R.; Mouter, N.; Van Wee, B. COVID-19 passenger transport measures and their impacts. Transp. Rev. 2022, 42, 441–466. [Google Scholar] [CrossRef]
- Best, B.; Thema, J.; Zell-Ziegler, C.; Wiese, F.; Barth, J.; Breidenbach, S.; Nascimento, L.; Wilke, H. Building a Database for Energy Sufficiency Policies. F1000Research 2022, 11, 229. [Google Scholar] [CrossRef] [PubMed]
Indicator | Abbreviation | Theoretical ES Level from the Literature [62,63] | Base-Year Data (2017) [59] | Assumed Level * | |||||
---|---|---|---|---|---|---|---|---|---|
2025 | 2030 | 2035 | 2040 | 2045 | 2050 | ||||
Pkm by car per capita | 8674 | 11,088 | 11,190 | 11,250 | 11,310 | 11,370 | 11,440 | 11,500 | |
Pkm by bus and trolleybus per capita | 1968 | 969 | 1113 | 1233 | 1328 | 1381 | 1435 | 1500 | |
Pkm by rail per capita | 1366 | 150 | 299 | 664 | 664 | 664 | 664 | 700 | |
Pkm by navigation per capita | n/a | 67 | 80 | 92 | 103 | 115 | 126 | 150 | |
Pkm by air per capita | 581–1841 | 628 | 613 | 682 | 748 | 812 | 874 | 1000 | |
Pkm by soft mobility per capita | n/a | 80 | 97 | 113 | 131 | 152 | 175 | 200 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bobinaite, V.; Konstantinaviciute, I.; Galinis, A.; Pazeraite, A.; Miskinis, V.; Cesnavicius, M. Energy Sufficiency in the Passenger Transport of Lithuania. Sustainability 2023, 15, 5951. https://doi.org/10.3390/su15075951
Bobinaite V, Konstantinaviciute I, Galinis A, Pazeraite A, Miskinis V, Cesnavicius M. Energy Sufficiency in the Passenger Transport of Lithuania. Sustainability. 2023; 15(7):5951. https://doi.org/10.3390/su15075951
Chicago/Turabian StyleBobinaite, Viktorija, Inga Konstantinaviciute, Arvydas Galinis, Ausra Pazeraite, Vaclovas Miskinis, and Mindaugas Cesnavicius. 2023. "Energy Sufficiency in the Passenger Transport of Lithuania" Sustainability 15, no. 7: 5951. https://doi.org/10.3390/su15075951