Seismic Signal Characteristics and Numerical Modeling Analysis of the Xinmo Landslide
Abstract
:1. Introduction
2. Site Overview
2.1. Landslide Event
2.2. Seismic Signals
3. Methodology
3.1. Ensemble Empirical Mode Decomposition
3.2. Fourier Transformation
3.3. Time-Frequency Signal Analysis
3.4. Numerical Analysis
4. Results and Analysis
4.1. EEMD Characteristic Analysis
4.2. Spectral Analysis and Time History Analysis
4.3. Analysis of Numerical Simulation Results
5. Discussion
- (1)
- Rapid start zone
- (2)
- Impact loading zone
- (3)
- Fragmentation and migration zone
- (4)
- Scattered accumulation zone
6. Conclusions
- (1)
- In the seismic signal analysis, the Xinmo landslide vibration signal was decomposed into 13 modal eigenfunctions and one remainder via ensemble empirical mode analysis, and the energy proportion of each modal eigenfunction was calculated. Through spectrum analysis, it was found that the frequency of the landslide vibration signal was mainly low, the vibration signal was mainly located at low frequencies of 0–10 Hz, and the dominant frequency range was 2–8 Hz. This provides a method for the preliminary identification of landslide seismic signals.
- (2)
- According to the discrete element calculation results, when the 101 × 104 m3 sliding mass was loaded on the old landslide accumulation, the old landslide mass became unstable and was reactivated. At a horizontal distance of 1175 m, the maximum speed of the sliding body was 69.93 m/s. By comparing the continuum method and the sled model, it was determined that the discrete element method can better describe the kinetic impact behavior of high-level landslides.
- (3)
- Regarding high-level landslide kinetic disaster zoning, in this study, seismic signal analysis and discrete element calculation analysis were combined and the traditional zoning method based on the spatial relationships of the landslide sections was replaced with a new zoning method based on the kinetic behavior of the landslide. The proposed landslide division includes rapid start, impact loading, fragmentation and migration, and scattered accumulation zones. We also preliminarily analyzed the kinetic characteristics and geomorphic characteristics of each region. The results of this study have important guiding significance for risk assessment of high-level landslides. And these also provide a basis for the formulation of land use planning in mountainous areas, and promote economic construction and sustainable development in mountainous areas.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yin, Y.; Li, B.; Gao, Y.; Wang, W.; Zhang, S.; Zhang, N. Geostructures, dynamics and risk mitigation of high-altitude and long-runout rockslides. J. Rock Mech. Geotech. Eng. 2023, 15, 66–101. [Google Scholar] [CrossRef]
- Liu, S.; Wang, L.; Zhang, W.; He, Y.; Pijush, S. A comprehensive review of machine learning-based methods in landslide susceptibility mapping. Geol. J. 2023, 1–19. [Google Scholar] [CrossRef]
- Hungr, O.; Leroueil, S.; Picarelli, L. The Varnes classification of landslide types, an update. Landslides 2013, 11, 167–194. [Google Scholar] [CrossRef]
- Fan, X.; Yunus, A.P.; Scaringi, G.; Catani, F.; Subramanian, S.S.; Xu, Q.; Huang, R. Rapidly evolving controls of landslides after a strong earthquake and implications for hazard assessments. Geophys. Res. Lett. 2020, 1, 48. [Google Scholar] [CrossRef]
- Allstadt, K. Extracting source characteristics and dynamics of the August 2010 Mount Meager landslide from broadband seismograms. J. Geophys. Res. Earth Surf. 2013, 118, 1472–1490. [Google Scholar] [CrossRef]
- Ekstrom, G.; Stark, C.P. Simple Scaling of Catastrophic Landslide Dynamics. Science 2013, 339, 1416–1419. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; He, S. Analysis of broadband seismic recordings of landslide using empirical Green’s function. Geophys. Res. Lett. 2019, 46, 4628–4635. [Google Scholar] [CrossRef]
- Fan, X.; Xu, Q.; Alonso-Rodriguez, A.; Subramanian, S.S.; Li, W.; Zheng, G.; Dong, X.; Huang, R. Successive landsliding and damming of the Jinsha River in eastern Tibet, China: Prime investigation, early warning, and emergency response. Landslides 2019, 16, 1003–1020. [Google Scholar] [CrossRef]
- Zhuang, Y.; Xing, A.; Leng, Y.; Bilal, M.; Zhang, Y.; Jin, K.; He, J. Investigation of Characteristics of Long Runout Landslides Based on the Multi-Source Data Collaboration: A Case Study of the Shuicheng Basalt Landslide in Guizhou, China. Rock Mech. Rock Eng. 2021, 54, 3783–3798. [Google Scholar] [CrossRef]
- Zhang, C.; Yin, Y.; Yan, H.; Zhu, S.; Li, B.; Hou, X.; Yang, Y. Centrifuge modeling of multi-row stabilizing piles reinforced reservoir landslide with different row spacings. Landslides 2022, 20, 559–577. [Google Scholar] [CrossRef]
- Suriñach, E.; Vilajosana, I.; Khazaradze, G.; Biescas, B.; Furdada, G.; Vilaplana, J.M. Seismic detection and characterization of landslides and other mass movements. Nat. Hazards Earth Syst. Sci. 2005, 5, 791–798. [Google Scholar] [CrossRef] [Green Version]
- Yamada, M.; Kumagai, H.; Matsushi, Y.; Matsuzawa, T. Dynamic landslide processes revealed by broadband seismic records. Geophys. Res. Lett. 2013, 40, 2998–3002. [Google Scholar] [CrossRef]
- Helmstetter, A.; Garambois, S. Seismic monitoring of Sechilienne rockslide (FrenchAlps): Analysis of seismic signals and their correlation with rainfalls. J. Geophys. Res.-Earth Surf. 2010, 115, 03016. [Google Scholar] [CrossRef]
- Yan, Y.; Cui, Y.; Tian, X.; Hu, S.; Guo, J.; Wang, Z.; Yin, S.; Liao, L. Seismic signal recognition and interpretation of the (2019) 7.23. Shuicheng Landslide by Seismogram Stations. Landslides 2020, 17, 1191–1206. [Google Scholar] [CrossRef]
- Dammeier, F.; Moore, J.R.; Haslinger, F.; Loew, S. Automatic detection of alpine rockslides in continuous seismic data using hidden Markov models. J. Geophys. Res.-Earth Surf. 2016, 121, 351–371. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.-Y.; Huang, X.-H.; Yu, D.; Su, J.-R.; Xu, Q. Broadband-seismic analysis of a massive landslide in southwestern China: Dynamics and fragmentation implications. Geomorphology 2019, 336, 31–39. [Google Scholar] [CrossRef]
- An, H.; Ouyang, C.; Zhou, S. Dynamic process analysis of the Baige landslide by the combination of DEM and long-period seismic waves. Landslides 2021, 18, 1625–1639. [Google Scholar] [CrossRef]
- Wang, L.Q.; Xiao, T.; Liu, S.L.; Zhang, W.G.; Yang, B.B.; Chen, L.C. Quantification of model uncertainty and variability for landslide displacement prediction based on Monte Carlo simulation. Gondwana Res. 2023, 1–43. [Google Scholar] [CrossRef]
- Mancarella, D.; Hungr, O. Analysis of run-up of granular avalanches against steep, adverse slopes and protective barriers. Can. Geotech. J. 2010, 47, 827–841. [Google Scholar] [CrossRef]
- Liu, G.; Ma, F.; Zhang, M.; Guo, J.; Jia, J. Y-Mat: An improved hybrid finite-discrete element code for addressing geotechnical and geological engineering problems. Eng. Comput. 2022, 39, 1962–1983. [Google Scholar] [CrossRef]
- Carrión-Mero, P.; Montalván-Burbano, N.; Morante-Carballo, F.; Quesada-Román, A.; Apolo-Masache, B. Worldwide Research Trends in Landslide Science. Int. J. Environ. Res. Public Health 2021, 18, 9445. [Google Scholar] [CrossRef] [PubMed]
- Yin, Y.; Wang, W.; Zhang, N.; Yan, J.; Wei, Y. The June 2017 Maoxian landslide: Geological disaster in an earthquake area after the Wenchuan Ms 8.0 earthquake. Sci. China Technol. Sci. 2017, 60, 1762–1766. [Google Scholar] [CrossRef]
- Fan, X.; Xu, Q.; Scaringi, G.; Dai, L.; Li, W.; Dong, X.; Zhu, X.; Pei, X.; Dai, K.; Havenith, H.-B. Failure mechanism and kinematics of the deadly June 24 2017 Xinmo landslide, Maoxian, Sichuan, China. Landslides 2017, 14, 2129–2146. [Google Scholar] [CrossRef]
- Scaringi, G.; Fan, X.; Xu, Q.; Liu, C.; Ouyang, C.; Domènech, G.; Yang, F.; Dai, L. Some considerations on the use of numerical methods to simulate past landslides and possible new failures: The case of the recent Xinmo landslide (Sichuan, China). Landslides 2018, 15, 1359–1375. [Google Scholar] [CrossRef]
- Wang, Y.; Zhao, B.; Li, J. Mechanism of the catastrophic June 2017 landslide at Xinmo Village, Songping River, Sichuan province, china. Landslides 2017, 15, 333–345. [Google Scholar] [CrossRef]
- Wang, W.; Yin, Y.; Yang, L.; Zhang, N.; Wei, Y. Investigation and dynamic analysis of the catastrophic rockslide avalanche at Xinmo, Maoxian, after the Wenchuan Ms 8.0 earthquake. Bull. Eng. Geol. Environ. 2019, 79, 495–512. [Google Scholar] [CrossRef]
- Meng, W.; Xu, Y.; Cheng, W.C.; Arulrajah, A. Landslide hazards on June 24 in Sichuan province, China: Preliminary investigation and analysis. Geosciences 2018, 8, 39. [Google Scholar] [CrossRef] [Green Version]
- Yang, L.; Wang, W.; Zhang, N.; Wei, Y. Characteristics and numerical runout modeling analysis of the Xinmo landslide in Sichuan, China. Earth Sci. Res. J. 2020, 24, 167–179. [Google Scholar] [CrossRef]
- Wu, Z.; Huang, N.E. Ensemble empirical mode decomposition: A noise-assisted data analysis method. Adv. Adapt. Data Anal. 2009, 1, 1–41. [Google Scholar] [CrossRef]
- Huang, N.E.; Wu, C.M.-L.; Long, S.R.; Shen, S.S.P.; Ou, W.; Gloersen, P.; Fan, K.L. A confidence limit for the empirical mode decomposition and Hilbert spectral analysis. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 2003, 459, 2317–2345. [Google Scholar] [CrossRef]
- Wang, W.-C.; Chau, K.-W.; Xu, D.-M.; Chen, X.-Y. Improving Forecasting Accuracy of Annual Runoff Time Series Using ARIMA Based on EEMD Decomposition. Water Resour. Manag. 2015, 29, 2655–2675. [Google Scholar] [CrossRef]
- Wang, S.; Zhang, N.; Wu, L.; Wang, Y. Wind speed forecasting based on the hybrid ensemble empirical mode decomposition and GA-BP neural network method. Renew. Energy 2016, 94, 629–636. [Google Scholar] [CrossRef]
- Auslander, L.; Grunbaum, F.A. The Fourier transform and the discrete Fourier transform. Inverse Probl. 1989, 5, 149. [Google Scholar] [CrossRef]
- Cohen, L. Time–frequency distributions: A review. Proc. IEEE 1989, 7, 941–981. [Google Scholar] [CrossRef] [Green Version]
- Fonollosa, J.R.; Nikias, C.L. Wigner higher-order moment spectra: Definitions, properties, computation and application to transient signaldetection. IEEE Trans. SP 1993, 7, 842–853. [Google Scholar] [CrossRef]
- Mallat, S. A theory for multi-resolution signal representation: The wavelet transform. IEEE Trans. PAM I 1989, 11, 674–693. [Google Scholar] [CrossRef] [Green Version]
- Marple, L. A new autoregressive spectrum analysis algorithm. IEEE Trans. ASSP 1990, 8, 441–450. [Google Scholar] [CrossRef]
- Assous, S.; Boashash, B. Evaluation of the modified S-transform for time-frequency synchrony analysis and source localization. EURASIP J. Adv. Signal Process. 2012, 49, 1–18. [Google Scholar]
- Cundall, P.A.; Strack, O.D.L. A discrete numerical model for granular assemblies. Geotechnique 1979, 29, 47–65. [Google Scholar] [CrossRef]
- Wang, W.; Yin, Y.; Zhu, S.; Wang, L.; Zhang, N.; Zhao, R. Investigation and numerical modeling of the overloading-induced catastrophic rockslide avalanche in Baige, Tibet, China. Bull. Eng. Geol. Environ. 2020, 79, 1765–1779. [Google Scholar] [CrossRef]
- EDEM 2.4. Theory Reference Guide; DEM Solutions: Edinburgh, UK, 2011.
- Luo, H.; Xing, A.; Jin, K.; Xu, S.; Zhuang, Y. Discrete Element Modeling of the Nayong Rock Avalanche, Guizhou, China Constrained by Dynamic Parameters from Seismic Signal Inversion. Rock Mech. Rock Eng. 2021, 54, 1629–1645. [Google Scholar] [CrossRef]
- Wang, W.; Yin, Y.; Wei, Y.; Zhu, S.; Li, J.; Meng, H.; Zhao, R. Investigation and characteristic analysis of a high-position rockslide avalanche in Fangshan District, Beijing, China. Bull. Eng. Geol. Environ. 2021, 80, 2069–2084. [Google Scholar] [CrossRef]
- Zhang, S.-L.; Yin, Y.-P.; Hu, X.-W.; Wang, W.-P.; Zhang, N.; Zhu, S.-N.; Wang, L.-Q. Dynamics and emplacement mechanisms of the successive Baige landslides on the Upper Reaches of the Jinsha River China. Eng. Geol. 2020, 278, 105819. [Google Scholar] [CrossRef]
- Mitchell, A.; McDougall, S.; Aaron, J.; Brideau, M.-A. Rock Avalanche-Generated Sediment Mass Flows: Definitions and Hazard. Front. Earth Sci. 2020, 8, 543937. [Google Scholar] [CrossRef]
- Knapp, S.; Krautblatter, M. Conceptual Framework of Energy Dissipation During Disintegration in Rock Avalanches. Front. Earth Sci. 2020, 8, 263. [Google Scholar] [CrossRef]
- Guo, Z.; Chen, L.; Yin, K.; Shrestha, D.P.; Zhang, L. Quantitative risk assessment of slow-moving landslides from the viewpoint of decision-making: A case study of the Three Gorges Reservoir in China. Eng. Geol. 2020, 273, 105667. [Google Scholar] [CrossRef]
- Guo, Z.; Ferrer, J.V.; Hürlimann, M.; Medina, V.; Puig-Polo, C.; Yin, K.; Huang, D. Shallow landslide susceptibility assessment under future climate and land cover changes: A case study from southwest China. Geosci. Front. 2023, 14, 101542. [Google Scholar] [CrossRef]
- Zhang, T.; Yin, Y.; Li, B.; Liu, X.; Wang, M.; Gao, Y.; Wan, J.; Gnyawali, K.R. Characteristics and dynamic analysis of the February 2021 long-runout disaster chain triggered by massive rock and ice avalanche at Chamoli, Indian Himalaya. J. Rock Mech. Geotech. Eng. 2023, 15, 296–308. [Google Scholar] [CrossRef]
- Medina, V.; Hürlimann, M.; Guo, Z.; Lloret, A.; Vaunat, J. Fast physically-based model for rainfall-induced landslide susceptibility assessment at regional scale. Catena 2021, 201, 105213. [Google Scholar] [CrossRef]
- Shao, C.; Li, Y.; Lan, H.; Li, P.; Zhou, R.; Ding, H.; Yan, Z.; Dong, S.; Yan, L.; Deng, T. The role of active faults and sliding mechanism analysis of the 2017 Maoxian postseismic landslide in Sichuan, China. Bull. Eng. Geol. Environ. 2019, 78, 5635–5651. [Google Scholar] [CrossRef]
- Hungr, O.; Evans, S.G. Entrainment of debris in rock avalanches: An analysis of a long run-out mechanism. Geol. Soc. Am. Bull. 2004, 116, 1240–1252. [Google Scholar] [CrossRef] [Green Version]
- Huang, R.Q. Large-scale Landslides and Their Sliding Mechanisms in China Since the 20th Century. China J. Rock Mech. Eng. 2007, 26, 433–454. [Google Scholar]
- Dai, F.; Lee, C.; Deng, J.; Tham, L. The 1786 earthquake-triggered landslide dam and subsequent dam-break flood on the Dadu River, southwestern China. Geomorphology 2005, 73, 277–278. [Google Scholar] [CrossRef]
- Barla, G.; Debernardi, D.; Perino, A. Lessons learned from deep-seated landslides activated by tunnel excavation. Geomech. Tunn. 2015, 8, 394–401. [Google Scholar] [CrossRef]
- Weidinger, J.T.; Korup, O.; Munack, H.; Altenberger, U.; Dunning, S.A.; Tippelt, G.; Lottermoser, W. Giant rockslides from the inside. Earth Planet. Sci. Lett. 2014, 389, 62–73. [Google Scholar] [CrossRef]
- Wang, Y.-F.; Cheng, Q.-G.; Lin, Q.-W.; Li, K.; Yang, H.-F. Insights into the kinematics and dynamics of the Luanshibao rock avalanche (Tibetan Plateau, China) based on its complex surface landforms. Geomorphology 2018, 317, 170–183. [Google Scholar] [CrossRef]
- Chang, W.; Xu, Q.; Dong, X.; Zhuang, Y.; Xing, A.; Wang, Q.; Kong, X. Dynamic process analysis of the Xinmo landslide via seismic signal and numerical simulation. Landslides 2022, 19, 1463–1478. [Google Scholar] [CrossRef]
- Jin, K.; Xing, A.; Chang, W.; He, J.; Gao, G.; Bilal, M.; Zhang, Y.; Zhuang, Y. Inferring Dynamic Fragmentation Through the Particle Size and Shape Distribution of a Rock Avalanche. J. Geophys. Res. Earth Surf. 2022, 127, e2022JF006784. [Google Scholar] [CrossRef]
- Yang, L.; Wei, Y.; Wang, W.; Zhu, S. Numerical Runout Modeling Analysis of the Loess Landslide at Yining, Xinjiang, China. Water 2019, 11, 1324. [Google Scholar] [CrossRef] [Green Version]
Parameter | Value |
---|---|
Particle/slide bed parameters | |
Density (kg/m3) | 2600/2600 (particle/slide bed) |
Poisson’s ratio | 0.2/0.35 (particle/slide bed) |
Shear deformation modulus (GPa) | 21/7 (particle/slide bed) |
Contact parameters | |
Coefficient of static friction between particles | 0.5 |
Coefficient of rolling friction between particles | 0.03 |
Particle recovery coefficient | 0.5 |
Coefficient of static friction between particles and slide bed | 0.8 |
Coefficient of rolling friction between particles and slide bed | 0.05 |
Recovery coefficient of friction between particles and slide bed | 0.35 |
Order | Stage | Start Time | Stop Time | Duration (s) | Distance (m) | Average Speed (m/s) | Main Frequency Range (Hz) |
---|---|---|---|---|---|---|---|
a | Rapid start | 05:39:00 | 05:39:29 | 29/120 | 380 | 13.1 | 2.6–4.6 |
b | Impact loading | 05:39:29 | 05:39:47 | 18/120 | 350 | 19.4 | 3.2–5.7 |
c | Fragmentation and migration | 05:39:47 | 05:40:26 | 39/120 | 1150 | 29.4 | 2.8–8.5 |
d | Scattered accumulation | 05:40:26 | 05:41:00 | 34/120 | 850 | 25.0 | 2.1–5.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, L.; Xu, Y.; Wang, L.; Jiang, Q. Seismic Signal Characteristics and Numerical Modeling Analysis of the Xinmo Landslide. Sustainability 2023, 15, 5851. https://doi.org/10.3390/su15075851
Yang L, Xu Y, Wang L, Jiang Q. Seismic Signal Characteristics and Numerical Modeling Analysis of the Xinmo Landslide. Sustainability. 2023; 15(7):5851. https://doi.org/10.3390/su15075851
Chicago/Turabian StyleYang, Longwei, Yangqing Xu, Luqi Wang, and Qiangqiang Jiang. 2023. "Seismic Signal Characteristics and Numerical Modeling Analysis of the Xinmo Landslide" Sustainability 15, no. 7: 5851. https://doi.org/10.3390/su15075851