Implications of the Interrelations between the (Waste)Water Sector and Hydrogen Production for Arid Countries Using the Example of Jordan
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design of the Workshops
- The purpose refers to the involvement of the different disciplines of energy, hydrogen, water, and wastewater of the two countries. The Why results from the necessity: It was necessary to be able to illuminate the problem from the different perspectives and to enable mutual problem awareness. This was the basis for the second P: partnerships.
- Partnerships describe the Who and include aspects of incorporating country-specific problems and approaches to solutions. The conceptualization of the workshops therefore involved careful selection of workshop participants based on their expertise.
- The process outlines How the dialogue process was conducted, its scope, and its objectives. Geographical specifics, technical capabilities, and cultural characteristics had to be taken into account.
- Products clarify the What and are outcomes, both in terms of technical solutions and social outcomes (e.g., in terms of the political regulatory framework or in terms of specific management tasks). Products can thus refer to the complete socio-technical regime [76].
2.1.1. Purpose
2.1.2. Partnerships
2.1.3. Process
2.1.4. Products
2.2. Organization of the Workshops
3. Results
3.1. Mapping Water- and Wastewater-Related Hydrogen Issues
3.1.1. Water as an Input for Electrolysis-Based Hydrogen
3.1.2. Other Feedstocks from the Wastewater Sector for Hydrogen Production
3.1.3. Water Needs for Operating Auxiliary Technologies
3.1.4. The Role of Water in Downstream and Co-Processes
3.1.5. Indirect Water Needs for Equipment Production
3.1.6. End-Uses of Hydrogen and Hydrogen-Related Products
3.1.7. Benefits of Hydrogen and Its By-Products Applied in the Water and Wastewater Sectors
3.1.8. Water-Related Impacts
3.2. Transferring Results to the Case of Jordan
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Adisorn, T.; Venjakob, M.; Pössinger, J. Deutsch-Jordanischer Wasser-Wasserstoff-Dialog—Zusammenhänge Zwischen der Ressource Wasser und der Wasserstoffproduktion und -nutzung (Forthcoming); Wuppertal Institut: Wuppertal, Germany, 2023. [Google Scholar]
- European Commission European Climate Law. Available online: https://climate.ec.europa.eu/eu-action/european-green-deal/european-climate-law_en (accessed on 24 January 2023).
- Federal Government of Germany Generationenvertrag für das Klima. Available online: https://www.bundesregierung.de/breg-de/themen/klimaschutz/klimaschutzgesetz-2021-1913672 (accessed on 24 January 2023).
- European Commission. A Hydrogen Strategy for a Climate-Neutral Europe; European Commission: Brussels, Belgium, 2020. [Google Scholar]
- Federal Government of Germany. Nationale Wasserstoffstrategie; Federal Government of Germany: Berlin, Germany, 2020. [Google Scholar]
- Cheng, W.; Lee, S. How Green Are the National Hydrogen Strategies? Sustainability 2022, 14, 1930. [Google Scholar] [CrossRef]
- Wasserstoff im Klimaschutz: Klasse Statt Masse; Sachverständigenrat für Umweltfragen (SRU): Berlin, Germany, 2021.
- International Energy Agency. The Future of Hydrogen. Seizing Today’s Opportunities; International Energy Agency: Paris, France, 2019; Volume 203. [Google Scholar]
- Deutscher Industrie- und Handelskammertag. DIHK-Faktenpapier Wasserstoff; Deutscher Industrie- und Handelskammertag: Berlin, Germany, 2020. [Google Scholar]
- Agarwal, R. Transition to a Hydrogen-Based Economy: Possibilities and Challenges. Sustainability 2022, 14, 15975. [Google Scholar] [CrossRef]
- Office of Energy Efficiency & Renewable Energy Hydrogen Production: Natural Gas Reforming. Available online: https://www.energy.gov/eere/fuelcells/hydrogen-production-natural-gas-reforming (accessed on 26 January 2023).
- Ministerium für Wirtschaft, Industrie, Klimaschutz und Energie. Hydrogen Roadmap—North Rhine-Westphalia; Ministerium für Wirtschaft, Industrie, Klimaschutz und Energie: Düsseldorf, Germany, 2020; p. 76. [Google Scholar]
- Wuppertal Institut; DIW Econ. Bewertung der Vor- und Nachteile von Wasserstoffimporten im Vergleich zur heimischen Erzeugung; Wuppertal Institut: Wuppertal, Germany, 2020; p. 131. [Google Scholar]
- Sadik-Zada, E.R. Political Economy of Green Hydrogen Rollout: A Global Perspective. Sustainability 2021, 13, 13464. [Google Scholar] [CrossRef]
- Research Network Bioenergy. Biomasse Und Bioenergie Als Teil Der Wasserstoffwirtschaft; Research Network Bioenergy: Leipzig, Germany, 2021. [Google Scholar]
- Roeb, M.; Brendelberger, S.; Rosenstiel, A. Wasserstoff Als Ein Fundament Der Energiewende Teil 1: Technologien Und Perspektiven Für Eine Nachhaltige Und Ökonomische Wasserstoffversorgung; DLR Portal: Köln-Porz, Germany, 2020. [Google Scholar]
- Agora Energiewende. Stromspeicher in Der Energiewende; Agora Energiewende: Berlin, Germany, 2014. [Google Scholar]
- Ausfelder, F.; Dura, H. Optionen Für Ein Nachhaltiges Energiesystem Mit Power-to-X-Technologien. 2021. Available online: https://wupperinst.org/fa/redaktion/downloads/projects/P2X_Roadmap_1-0.pdf (accessed on 14 March 2023).
- Oeko-Institut. Die Bedeutung Strombasierter Stoffe Für Den Klimaschutz in Deutschland; Oeko-Institut: Berlin, Germany, 2019. [Google Scholar]
- Adisorn, T.; Kobayashi, Y. Decarbonization of the Steel Sector; Wuppertal Institute for Climate, Environment, and Energy: Wuppertal, Germany; The Institute of Energy Economics Japan Inui Bldg: Tokyo, Japan, 2022. [Google Scholar]
- The World Bank. The Potential of Zero-Carbon Bunker Fuels in Developing Countries; The World Bank: Washington, DC, USA, 2021. [Google Scholar]
- Ueckerdt, F.; Bauer, C.; Dirnaichner, A.; Everall, J.; Sacchi, R.; Luderer, G. Potential and Risks of Hydrogen-Based e-Fuels in Climate Change Mitigation. Nat. Clim. Chang. 2021, 11, 384–393. [Google Scholar] [CrossRef]
- Hebling, C.; Ragwitz, M.; Fleiter, T.; Groos, U.; Härle, D.; Held, A.; Jahn, M.; Müller, N.; Pfeifer, T.; Plötz, P.; et al. Eine Wasserstoff-Roadmap für Deutschland; Fraunhofer Society: Karlsruhe, Germany, 2019; p. 51. [Google Scholar]
- International Energy Agency Hydrogen—Analysis. Available online: https://www.iea.org/reports/hydrogen (accessed on 25 January 2023).
- Agora Energiewende; Wuppertal Institut. Klimaneutrale Industrie—Schlüsseltechnologien und Politikoptionen für Stahl, Chemie und Zement; Wuppertal Institut: Wuppertal, Germany, 2019; p. 236. [Google Scholar]
- Bundesverband der Energie- und Wasserwirtschaft. Roadmap Gas; Bundesverband der Energie- und Wasserwirtschaft: Berlin, Germany, 2020. [Google Scholar]
- Tholen, L.; Leipprand, A.; Kiyar, D.; Maier, S.; Küper, M.; Adisorn, T.; Fischer, A. The Green Hydrogen Puzzle: Towards a German Policy Framework for Industry. Sustainability 2021, 13, 12626. [Google Scholar] [CrossRef]
- Rosenow, J. Is Heating Homes with Hydrogen All but a Pipe Dream? An Evidence Review. Joule 2022, 6, 2225–2228. [Google Scholar] [CrossRef]
- Rockström, J. Leading the Charge through Earth’s New Normal; Plenary Presentation at the World Economic Forum Annual Meeting 2023; Davos: Cologny, Switzerland, 2023. [Google Scholar]
- The World Bank. Middle East and North Africa Climate—Roadmap; The World Bank: Washington, DC, USA, 2020. [Google Scholar]
- Wietschel, M.; Eckstein, J.; Riemer, M.; Zheng, L.; Lux, B.; Neuner, F.; Breitschopf, B.; Fragoso, J.; Kleinschmitt, C.; Pieton, N.; et al. Import von Wasserstoff Und Wasserstoffderivaten: Von Kosten Zu Preisen; HYPAT: Karlsruhe, Germany, 2021. [Google Scholar]
- Wilke, S. Wasserressourcen und ihre Nutzung. Available online: https://www.umweltbundesamt.de/daten/wasser/wasserressourcen-ihre-nutzung (accessed on 25 January 2023).
- Neumann-Silkow, F.; Hussein, H.; Hamdam, I.; Abu-Ashour, J. Tapped out The Costs of Water Stress in Jordan; UNICEF: New York, NY, USA, 2022. [Google Scholar]
- Bünemann, A.; Musharbash, N.; Haufe, N.; Keggenhoff, I. Länderprofil Zur Kreislauf- Und Wasserwirtschaft in Jordanien; RETech: Berlin, Germany, 2017. [Google Scholar]
- Whitman, E. A Land without Water: The Scramble to Stop Jordan from Running Dry. Nature 2019, 573, 20–23. [Google Scholar] [CrossRef] [Green Version]
- International Trade Administration Jordan—Environment and Water Sector. Available online: https://www.trade.gov/country-commercial-guides/jordan-environment-and-water-sector (accessed on 23 January 2023).
- The Jordan Times Jordan’s Energy Ministry Launches Strategy to Produce Green Hydrogen. Available online: https://www.zawya.com/en/projects/jordans-energy-ministry-launches-strategy-to-produce-green-hydrogen-hxowdats (accessed on 19 May 2022).
- Ivanova, A. Fortescue to Explore Green Hydrogen Production in Jordan. Available online: https://renewablesnow.com/news/fortescue-to-explore-green-hydrogen-production-in-jordan-760299/ (accessed on 23 January 2023).
- Khaberni-News H2V in Jordan 2019. Available online: http://h2vproduct.net/wp-content/uploads/2019/09/Khabrni-News-%E2%80%93-Press-Release-Translated-in-English-.pdf (accessed on 9 March 2022).
- Agora Verkehrswende; Agora Energiewende; Frontier Economics. The Future Cost of Electricity-Based Synthetic Fuels; IAEA: Vienna, Austria, 2017. [Google Scholar]
- Bierkandt, T.; Severin, M.; Ehrenberger, S.; Köhler, M. Klimaneutrale synthetische Kraftstoffe im Verkehr Potenziale und Handlungsempfehlungen; DLR: London, UK, 2018; p. 41. [Google Scholar]
- Fritsch, M.; Puls, T.; Schäfer, T. IW-Gutachten Synthetische Kraftstoffe: Potenziale Für Europa; EconStor: Berlin, Germany, 2021. [Google Scholar]
- Glenk, G.; Reichelstein, S. Economics of Converting Renewable Power to Hydrogen. Nat. Energy 2019, 4, 216–222. [Google Scholar] [CrossRef] [Green Version]
- Luderer, G.; Kost, C. Dominika Deutschland auf dem Weg zur Klimaneutralität 2045—Szenarien und Pfade im Modellvergleich; Potsdam Institute for Climate Impact Research: Potsdam, Germany, 2021; 359p. [Google Scholar]
- Hobohm, J.; Auf der Maur, A.; Dambeck, H.; Kemmler, A.; Koziel, S.; Kreidelmeyer, S.; Piegsa, A.; Wendring, P.; Meyer, B.; Apfelbacher, A.; et al. Status Und Perspektiven Flüssiger Energieträger Für Die Energiewende; Prognos AG: Basel, Switzerland, 2018. [Google Scholar]
- Ludwig Bölkow Systemtechnik. Requirements for the Production and Export of Green-Sustainable Hydrogen; ILF Ingenieria Chile Limitada: Santiago, Chile, 2021. [Google Scholar]
- Heinemann, C. Sustainability Dimensions of Imported Hydrogen-Working Paper 8/2021; Policy Commons: Luxembourg, 2021. [Google Scholar]
- Warwick, N.; Griffiths, P.; Archibald, A.; Pyle, J. Atmospheric Implications of Increased Hydrogen Use. Available online: https://www.gov.uk/government/publications/atmospheric-implications-of-increased-hydrogen-use (accessed on 14 March 2023).
- Clausen, J.; Huber, M.; Linow, S.; Gerhards, C.; Ehrhardt, H.; Seifert, T. Wasserstoff in Der Energiewende—Unverzichtbar, Aber Keine Universallösung; Scientists for Future: Berlin, Germany, 2022. [Google Scholar]
- Altgelt, F. Water Consumption of Powerfuels. 2021, p. 14. Available online: https://www.powerfuels.org/fileadmin/powerfuels.org/Dokumente/Water_Consumption_of_Powerfuels/20211025_GAP_Discussion_Paper_Water_consumption_final.pdf (accessed on 14 March 2023).
- Barbir, F. PEM Electrolysis for Production of Hydrogen from Renewable Energy Sources. Sol. Energy 2005, 78, 661–669. [Google Scholar] [CrossRef]
- Mehmeti, A.; Angelis-Dimakis, A.; Arampatzis, G.; McPhail, S.; Ulgiati, S. Life Cycle Assessment and Water Footprint of Hydrogen Production Methods: From Conventional to Emerging Technologies. Environments 2018, 5, 24. [Google Scholar] [CrossRef] [Green Version]
- Energy Sector Management Assistance Program. Green Hydrogen in Developing Countries; World Bank: Washington, DC, USA, 2020. [Google Scholar]
- IRENA. Green Hydrogen Cost Reduction: Scaling up Electrolysers to Meet the 1.5C Climate Goal; IRENA: Masdar City, United Arab Emirates, 2020. [Google Scholar]
- Coertzen, R.; Potts, K.; Brannock, M.; Dagg, B. Water for Hydrogen. Available online: https://www.ghd.com/en/perspectives/water-for-hydrogen.aspx (accessed on 25 January 2023).
- Hydrogen Europe. Hydrogen Production and Water Consumption. Available online: https://hydrogeneurope.eu/wp-content/uploads/2022/02/Hydrogen-production-water-consumption_fin.pdf (accessed on 14 March 2023).
- Ludwig Bölkow Systemtechnik. Hydrogen Decarbonization Pathways A Life-Cycle Assessment; Hydrogen Council: Brussels Belgium, 2021. [Google Scholar]
- Freund, M.; Swisher, H.; Prunster, S.; Millar, R.; Honeyman, M.; Gerardi, W.; Pamminger, F.; Poon, J. Towards a Zero Carbon Future—The Role of Wastewater Treatment Plants in Accelerating the Development of Australia’s Hydrogen Industry; Jacobs: Dallas, TX, USA; Yarra Valley Water: Mitcham, VIC, Australia, 2020. [Google Scholar]
- Woods, P.; Bustamante, H.; Aguey-Zinsou, K.-F. The Hydrogen Economy—Where Is the Water? Energy Nexus 2022, 7, 100123. [Google Scholar] [CrossRef]
- Liu, Y.; Lin, R.; Man, Y.; Ren, J. Recent Developments of Hydrogen Production from Sewage Sludge by Biological and Thermochemical Process. Int. J. Hydrog. Energy 2019, 44, 19676–19697. [Google Scholar] [CrossRef]
- Forschungsinstitut für Wasser- und Abfallwirtschaft WaStraK NRW—Wasserstofftechnologie in Der Abwasserbeseitigung. Available online: https://www.fiw.rwth-aachen.de/referenzen/wastrak (accessed on 22 April 2022).
- Fraunhofer UMSICHT Elektrochemische Abwasserreinigung erzeugt Wasserstoff. Available online: https://www.umsicht-suro.fraunhofer.de/de/presse/pressemitteilungen/2020/Elektrochemische_Abwasserreinigung_erzeugt_Wasserstoff.html (accessed on 18 May 2022).
- Jentsch, M.F.; Büttner, S. Dezentrale Umsetzung der Energie- und Verkehrswende mit Wasserstoffsystemen auf Kläranlagen; gwf Gas + Energie: Lucerne, Switzerland, 2019; p. 12. [Google Scholar]
- Niederste-Hollenberg, J.; Winkler, J.; Fritz, M.; Zheng, L.; Hillenbrand, T.; Kolisch, G.; Schirmer, G.; Borger, J.; Doderer, H.; Dörrfuß, I. Klimaschutz- und Energieeffizienzpotenziale in der Abwasserwirtschaft—Aktueller Stand und Perspektiven; Umweltbundesamt: Dessau-Roßlau, Germany, 2021; p. 195. [Google Scholar]
- Deutsches Luft- und Raumfahrtzentrum; Institut für ZukunftsEnergie und Stoffstromsysteme; Wuppertal Institut. Multikriterielle Bewertung von Bereitstellungstechnologien synthetischer Kraftstoffe; Wuppertal Institut: Wuppertal, Germany, 2021; p. 264. [Google Scholar]
- Shi, X.; Liao, X.; Li, Y. Quantification of Fresh Water Consumption and Scarcity Footprints of Hydrogen from Water Electrolysis: A Methodology Framework. Renew. Energy 2020, 154, 786–796. [Google Scholar] [CrossRef]
- Kwan, T.H.; Shen, Y.; Pei, G. Recycling Fuel Cell Waste Heat to the Thermoelectric Cooler for Enhanced Combined Heat, Power and Water Production. Energy 2021, 223, 119922. [Google Scholar] [CrossRef]
- Tibaquirá, J.E.; Hristovski, K.D.; Westerhoff, P.; Posner, J.D. Recovery and Quality of Water Produced by Commercial Fuel Cells. Int. J. Hydrog. Energy 2011, 36, 4022–4028. [Google Scholar] [CrossRef]
- Yao, J.; Guo, L.; Zhu, P.; Yang, F.; Yan, H.; Kurko, S.; Yartys, V.A.; Zhang, Z.; Wu, Z. A Multi-Function Desalination System Based on Hydrolysis Reaction of Hydride and Fuel Cell Water Recovery. Energy Convers. Manag. 2021, 247, 114728. [Google Scholar] [CrossRef]
- Yao, J.; Wu, Z.; Wang, H.; Yang, F.; Xuan, J.; Xing, L.; Ren, J.; Zhang, Z. Design and Multi-Objective Optimization of Low-Temperature Proton Exchange Membrane Fuel Cells with Efficient Water Recovery and High Electrochemical Performance. Appl. Energy 2022, 324, 119667. [Google Scholar] [CrossRef]
- Federal Government of Germany. Nationale Wasserstrategie (Draft); Federal Government of Germany: Berlin, Germany, 2022. [Google Scholar]
- NOW GmbH Deutsch-Jordanischer Wasser-Wasserstoff-Dialog (GJWHD). Available online: https://www.now-gmbh.de/projektfinder/deutsch-jordanischer-wasser-wasserstoff-dialog-gjwhd/ (accessed on 14 March 2023).
- Projektträger Jülich EnArgus. Available online: https://www.enargus.de/ (accessed on 25 January 2023).
- Gray, S.; Voinov, A.; Paolisso, M.; Jordan, R.; BenDor, T.; Bommel, P.; Glynn, P.; Hedelin, B.; Hubacek, K.; Introne, J.; et al. Purpose, Processes, Partnerships, and Products: Four Ps to Advance Participatory Socio-Environmental Modeling. Ecol. Appl. 2018, 28, 46–61. [Google Scholar] [CrossRef] [Green Version]
- Zellner, M.; Massey, D.; Rozhkov, A.; Murphy, J.T. Exploring the Barriers to and Potential for Sustainable Transitions in Urban–Rural Systems through Participatory Causal Loop Diagramming of the Food–Energy–Water Nexus. Land 2023, 12, 551. [Google Scholar] [CrossRef]
- Geels, F.W. Technological Transitions as Evolutionary Reconfiguration Processes: A Multi-Level Perspective and a Case-Study. Res. Policy 2002, 31, 1257–1274. [Google Scholar] [CrossRef] [Green Version]
- Wikipedia 6-3-5 Brainwriting. Available online: https://en.wikipedia.org/wiki/6-3-5_Brainwriting (accessed on 14 March 2023).
- Beswick, R.R.; Oliveira, A.M.; Yan, Y. Does the Green Hydrogen Economy Have a Water Problem? ACS Energy Lett. 2021, 6, 3167–3169. [Google Scholar] [CrossRef]
- Saulnier, R.; Minnich, K.; Sturgess, P.K. Water for the Hydrogen Economy. Available online: https://watersmartsolutions.ca/wp-content/uploads/2020/12/Water-for-the-Hydrogen-Economy_WaterSMART-Whitepaper_November-2020.pdf (accessed on 14 March 2023).
- Wiedemann, K. Wasserstoff direkt aus dem Windrad. Available online: https://www.energate-messenger.de/news/222455/wasserstoff-direkt-aus-dem-windrad (accessed on 26 January 2023).
- Tong, W.; Forster, M.; Dionigi, F.; Dresp, S.; Sadeghi Erami, R.; Strasser, P.; Cowan, A.J.; Farràs, P. Electrolysis of Low-Grade and Saline Surface Water. Nat. Energy 2020, 5, 367–377. [Google Scholar] [CrossRef]
- Kuang, Y.; Kenney, M.J.; Meng, Y.; Hung, W.-H.; Liu, Y.; Huang, J.E.; Prasanna, R.; Li, P.; Li, Y.; Wang, L.; et al. Solar-Driven, Highly Sustained Splitting of Seawater into Hydrogen and Oxygen Fuels. Proc. Natl. Acad. Sci. USA 2019, 116, 6624–6629. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xie, H.; Zhao, Z.; Liu, T.; Wu, Y.; Lan, C.; Jiang, W.; Zhu, L.; Wang, Y.; Yang, D.; Shao, Z. A Membrane-Based Seawater Electrolyser for Hydrogen Generation. Nature 2022, 612, 673–678. [Google Scholar] [CrossRef]
- Stoll, J. Abwasser. Available online: https://www.umweltbundesamt.de/themen/wasser/abwasser (accessed on 26 January 2023).
- Hubner, B. LocalHy—Wasserstoff im kommunalen Raum, Hydrogen in communal space. In Proceedings of the German-Jordanian Water-Hydrogen-Dialogue, Wuppertal, Germany, September 2022. [Google Scholar]
- Barghash, H.; Al Farsi, A.; Okedu, K.E.; Al-Wahaibi, B.M. Cost Benefit Analysis for Green Hydrogen Production from Treated Effluent: The Case Study of Oman. Front. Bioeng. Biotechnol. 2022, 10, 1–13. [Google Scholar] [CrossRef]
- Hydrogen Central. Plug—California Green Hydrogen Plant Saves Water, Creates New Energy Source. Available online: https://hydrogen-central.com/plug-california-green-hydrogen-plant-saves-water-creates-new-energy-source/ (accessed on 14 March 2023).
- Bolle, F.-W.; Genzowsky, K.; Gredigk-Hoffmann, S.; Reinders, M.; Riße, H.; Schröder, M.; Steinke, M.; Wöffen, B.; Illing, F. WaStraK NRW “Einsatz Der Wasserstofftechnologie in Der Abwasserbeseitigung“—Phase I; Im Auftrag des Ministeriums für Klimaschutz, Landwirtschaft, Natur- und Verbraucherschutz des Landes Nordrhein-Westfalen: Aachen, Germany, 2012. [Google Scholar]
- Projekträger Jülich Verbundvorhaben: Sludge2P ’ Energieautarke Rückgewinnung von Phosphaten Durch Ganzheitliche Klärschlammverwertung Mit Integrierter Wasserstoffgewinnung; Teilvorhaben: Projektleitung, Entwicklung Der Brennstofflieferung, Prozesstechnik Des IPV-Reaktors Und Betrieb Der Gesamtanlage. Available online: https://www.enargus.de/pub/bscw.cgi/?op=enargus.eps2&q=i-autonomous&v=10&p=2&s=6&id=1370605 (accessed on 30 January 2023).
- Yuspin, A. Technology for Hydrogen from Sewage Sludge of the Production of “Green” Water Treatment Plants. In German-Jordanian Water-Hydrogen-Dialog in Wuppertal; Wuppertal Institut: Wuppertal, Germany, 2022. [Google Scholar]
- GRAFORCE Herstellung von Wasserstoff Durch Plasmalyse. Available online: https://www.graforce.com/ (accessed on 22 April 2022).
- Scientific Services of the Geman Parliament. Oranger Wasserstoff: Herstellung von Wasserstoff aus Abfall; Scientific Services of the German Parliament: Berlin, Germany, 2021. [Google Scholar]
- Riße, H.; Lenis, A.; Ooms, K.; Jagemann, P.; Schulte, P.; Klein, D.; Gramlich, E.; Schröder, M.; Illing, F. WaStraK_II; Forschungsinstitut für Wasserwirtschaft und Klimazukunft an der RWTH Aachen (FiW) e.V.: Aachen, Germany, 2018. [Google Scholar]
- Ersoy, S.R.; Terrapon-Pfaff, J.; Ribbe, L.; Alami Merrouni, A. Water Scenarios Modelling for Renewable Energy Development in Southern Morocco. J. Sustain. Dev. Energy Water Environ. Syst. 2021, 9, 1080335. [Google Scholar] [CrossRef]
- IEF-3 Report 2007: Von Grundlagen bis zum System; Jülich, F. (Ed.) Schriften des Forschungszentrums Jülich. Reihe Energietechnik/Energy technology; Forschungszentrum Jülich GmbH: Jülich, Germany, 2007; ISBN 978-3-89336-479-4. [Google Scholar]
- Burke, K. Fuel Cells for Space Science Applications. In Proceedings of the 1st International Energy Conversion Engineering Conference (IECEC), Portsmouth, Virginia, 17–21 August 2003; American Institute of Aeronautics and Astronautics: Portsmouth, VA, USA, 2003. [Google Scholar]
- Stoll, J. FAQs zu Nitrat im Grund- und Trinkwasser. Available online: https://www.umweltbundesamt.de/themen/wasser/grundwasser/nutzung-belastungen/faqs-zu-nitrat-im-grund-trinkwasser (accessed on 18 May 2022).
- Carboni, M.F.; Florentino, A.P.; Costa, R.B.; Zhan, X.; Lens, P.N.L. Enrichment of Autotrophic Denitrifiers From Anaerobic Sludge Using Sulfurous Electron Donors. Front. Microbiol. 2021, 12, 678323. [Google Scholar] [CrossRef]
- Gerlach, D. Hydrogen in the Region. In German-Jordanian Water-Hydrogen-Dialogue; Wuppertal Institut: Wuppertal, Germany, 2022. [Google Scholar]
- Winter, W. Offensive für Wasserstoff: Besuch in der AVG Aschaffenburg bei Dieter Gerlach. Available online: https://www.meine-news.de/sulzbach-amain/c-energie-und-umwelt/besuch-in-der-avg-aschaffenburg-bei-dieter-gerlach_a77627 (accessed on 11 May 2022).
- Methanol Institute. Methanol Use in Denitrification—Importance of Denitrification 2015. Available online: https://www.methanol.org/wp-content/uploads/2020/04/Methanol-Use-in-Denitrification-Importance-of-Denitrification.pdf (accessed on 2 February 2023).
- Lim, S.; Shi, J.L.; von Gunten, U.; McCurry, D.L. Ozonation of Organic Compounds in Water and Wastewater: A Critical Review. Water Res. 2022, 213, 118053. [Google Scholar] [CrossRef]
- Jonsson, F.; Miljanovic, A. Utilization of Waste Heat from Hydrogen Production; DIVA: Luleå, Sweden, 2022. [Google Scholar]
- Haberkern, B.; Maier, W.; Schneider, U. Steigerung Der Energieeffizienz Auf Kommunalen Kläranlagen. 2008. Available online: https://www.umweltbundesamt.de/sites/default/files/medien/publikation/long/3347.pdf (accessed on 2 February 2023).
- European Environmental Agency Water Resources—European Environment Agency. Available online: https://www.eea.europa.eu/help/glossary/eea-glossary/water-resources (accessed on 1 February 2023).
- Ministry of Water and Irrigation. National Water Strategy—2016–2025; Ministry of Water and Irrigation: Amman, Jordan, 2015. [Google Scholar]
- Ministry of Water and Irrigation. Jordan Water Sector—Facts and Figures; Ministry of Water and Irrigation: Amman, Jordan, 2015. [Google Scholar]
- Winkler, D. Wastewater Treatment, Reuse and Water Supply; GLZ: Amman, Jordan, 2022. [Google Scholar]
- Statista Jordan—Statista Country Report 2021. Available online: https://de.statista.com/statistik/studie/id/48600/dokument/jordanien/ (accessed on 2 May 2022).
- Marar, Y. Energy Sector in Jordan. In Proceedings of the German-Jordanian Water-Hydrogen-Dialogue, Amman, Jordan, October 2022. [Google Scholar]
- Engicon; Tetra Tech. AAWDC Project: Executive Summary of the ESIA; Engicon: Amman, Jordan, 2022. [Google Scholar]
- Deutsche Gesellschaft für Internationale Zusammenarbeit Unlocking the Potential of Using Sludge as a Resource in Jordan. Available online: https://www.giz.de/en/worldwide/101691.html (accessed on 19 May 2022).
- Saffouri, O. 2. Energy Sector in Jordan and Utilization of Hydrogen 3. GH2 Applications 4. GH2 Challenges 5. Recommendations for PtX Implementation in Jordan; Friedrich Ebert Foundation: Amman, Jordan, 2022. [Google Scholar]
- IRENA. Renewables Readiness Assessment: The Hashemite Kingdom of Jordan; IRENA: Masdar City, United Arab Emirates, 2021. [Google Scholar]
- Aldohni, A.N. Electricity Sector in Jordan; National Electric Power Company: Amman, Jordan, 2022. [Google Scholar]
- International Energy Agency Jordan—Countries & Regions. Available online: https://www.iea.org/countries/jordan (accessed on 1 February 2023).
- Hristovski, K.D.; Dhanasekaran, B.; Tibaquirá, J.E.; Posner, J.D.; Westerhoff, P.K. Producing Drinking Water from Hydrogen Fuel Cells. J. Water Supply Res. Technol.—AQUA 2009, 58, 327. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Adisorn, T.; Venjakob, M.; Pössinger, J.; Ersoy, S.R.; Wagner, O.; Moser, R. Implications of the Interrelations between the (Waste)Water Sector and Hydrogen Production for Arid Countries Using the Example of Jordan. Sustainability 2023, 15, 5447. https://doi.org/10.3390/su15065447
Adisorn T, Venjakob M, Pössinger J, Ersoy SR, Wagner O, Moser R. Implications of the Interrelations between the (Waste)Water Sector and Hydrogen Production for Arid Countries Using the Example of Jordan. Sustainability. 2023; 15(6):5447. https://doi.org/10.3390/su15065447
Chicago/Turabian StyleAdisorn, Thomas, Maike Venjakob, Julia Pössinger, Sibel Raquel Ersoy, Oliver Wagner, and Raphael Moser. 2023. "Implications of the Interrelations between the (Waste)Water Sector and Hydrogen Production for Arid Countries Using the Example of Jordan" Sustainability 15, no. 6: 5447. https://doi.org/10.3390/su15065447
APA StyleAdisorn, T., Venjakob, M., Pössinger, J., Ersoy, S. R., Wagner, O., & Moser, R. (2023). Implications of the Interrelations between the (Waste)Water Sector and Hydrogen Production for Arid Countries Using the Example of Jordan. Sustainability, 15(6), 5447. https://doi.org/10.3390/su15065447