The Impact of Economic Policy Uncertainty on Enterprise Green Innovation: A Study on the Moderating Effect of Carbon Information Disclosure
Abstract
:1. Introduction
2. Literature Review
3. Research Hypotheses
3.1. Economic Policy Uncertainty and Enterprise Green Innovation
3.2. Carbon Information Disclosure and Enterprise Green Innovation
3.3. Economic Policy Uncertainty, Carbon Information Disclosure, and Enterprise Green Innovation
4. Study Design
4.1. Data Source
4.2. Declaration of Variables
4.2.1. Measurement of Economic Policy Uncertainty
4.2.2. Measurement of Carbon Disclosure
4.2.3. Measurement of Enterprise Green Innovation
4.2.4. Measurement of Control Variables
4.3. Model Construction and Empirical Techniques
5. Empirical Test and Result Analysis
5.1. Description of Statistics
5.2. Collinearity Verification
5.3. Regression Results
5.3.1. Economic Policy Uncertainty and Enterprise Green Innovation Analysis
5.3.2. Analysis of Carbon Information Disclosure and Enterprise Green Innovation
5.3.3. Analysis of Carbon Information Disclosure on the Relationship between Economic Policy Uncertainty and Enterprise Green Innovation
5.3.4. Test for Robustness
6. Conclusions and Prospects
- (1)
- A strong inverse relationship exists between enterprise green innovation and economic policy uncertainty. This is in line with both real option theory and the information asymmetry hypothesis. Investments in green innovations become riskier as economic policy uncertainty grows, and management is more willing to wait and watch [45,46]. Decision-making also becomes more challenging. Enterprises in the external environment lack judgment and understanding, and the lack of external funding reduces businesses’ ability to raise the money necessary for innovation, forcing them to scale back [47].
- (2)
- A strong positive association exists between enterprise green innovation and the quality of carbon information disclosure. Information asymmetry lessens, and the cost of borrowing decreases when the carbon information disclosure level is high. Additionally, it can lower management’s rent-seeking behavior, bring in more funding for the company’s green innovation [48], and raise the level of green innovation within the company.
- (3)
- The degree of carbon information transparency weakens the link between enterprise green innovation and the unpredictability of economic policy. Because of the unique characteristics of each business, the effects of unclear economic policy on green business innovation vary. Because they offer comparatively extensive and high-quality information, businesses with a high degree of carbon information disclosure are more likely to be favored by external financial institutions [49]. With uncertain economic policies, quality carbon information disclosure deters some cautionary management practices, practices such as lowering investment in green innovation. All these factors reduce the effect of unclear economic policy on corporate green innovation in businesses with high levels of carbon information disclosure.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- People’s Daily Online. Which Is One of the Mainstream Official News Channels in China. Available online: http://politics.people.com.cn/n/2014/1109/c1001-26000293.html (accessed on 9 November 2014).
- Yu, J.; Zhou, K.; Yang, S. Regional heterogeneity of China’s energy efficiency in “new normal”: A meta-frontier Super-SBM analysis. Energy Pol. 2019, 134, 110941. [Google Scholar] [CrossRef]
- Cui, X.; Wang, C.; Sensoy, A.; Liao, J.; Xie, X. Economic policy uncertainty and green innovation: Evidence from China. Econ. Model. 2023, 118, 106104. [Google Scholar] [CrossRef]
- Yang, X.; Mao, S.; Sun, L.; Feng, C.; Xia, Y. The Effect of Economic Policy Uncertainty on Green Technology Innovation: Evidence from China’s Enterprises. Sustainability 2022, 14, 11522. [Google Scholar] [CrossRef]
- Jiang, Z.; Lyu, P.; Ye, L.; Zhou, Y.W.Q. Green innovation transformation, Economic sustainability and energy consumption during China’s new normal stage. J. Clean. Prod. 2020, 273, 123044. [Google Scholar] [CrossRef]
- Hu, D.; Wang, Y.; Huang, J.; Huang, H. How do different innovation forms mediate the relationship between environmental regulation and performance? J. Clean. Prod. 2017, 161, 466–476. [Google Scholar] [CrossRef]
- Cai, W.; Li, G. The Drivers of Eco-Innovation and its Impact on Performance: Evidence from China. J. Clean. Prod. 2018, 176, 110–118. [Google Scholar] [CrossRef]
- Gulen, H.; Ion, M. Policy uncertainty and corporate investment. Rev. Financ. Stud. 2016, 29, 523–564. [Google Scholar] [CrossRef] [Green Version]
- Kesidou, E.; Snijders, C. External Knowledge and Innovation Performance in Clusters: Empirical Evidence from the Uruguay Software Cluster. Ind. Innov. 2012, 19, 437–457. [Google Scholar] [CrossRef]
- Xu, S.; Xi, R.; He, Z. Analysis of the influencing factors of China’s energy consumption and carbon emissions and policy implications. Resour. Sci. 2012, 34, 2–12. [Google Scholar]
- Wang, Y.; Wei, Y.; Song, F.M. Uncertainty and corporate R&D investment:evidence from Chinese listed firms. Int. Rev. Econ. Finance 2017, 47, 176–200. [Google Scholar]
- Hsu, P.H.; Tian, X.; Xu, Y. Financial development and innovation: Cross-country evidence. J. Financ. Econ. 2014, 112, 116–135. [Google Scholar] [CrossRef] [Green Version]
- Fengyu, L.; Mozhu, Y. Does Economic Policy Uncertainty Inhibit Enterprise Investment?—An Empirical Study Based on China’s Economic Policy Uncertainty Index. J. Financ. Res. 2015, 115–129. [Google Scholar]
- Abel, A.B. Optimal Investment Under Uncertainty. Am. Econ. Rev. 1983, 73, 228–233. [Google Scholar]
- Pástor, L.; Veronesi, P. Uncertainty about Government Policy and Stock Prices. J. Financ. 2012, 67, 1219–1264. [Google Scholar] [CrossRef] [Green Version]
- Hartman, R. Adjustment Costs, Price and Wage Uncertainty, and Investment. Rev. Econ. Stud. 1973, 40, 259–267. [Google Scholar] [CrossRef]
- Oi, W.Y. The Desirability of Price Instability Under Perfect Competition. Econometrica 1961, 29, 58–64. [Google Scholar] [CrossRef]
- Mateo-Márquez, A.J.; González-González, J.M.; Zamora-Ramírez, C. An international empirical study of greenwashing and voluntary carbon disclosure. J. Clean. Prod. 2022, 363, 132567. [Google Scholar] [CrossRef]
- Ding, J.; Lu, Z.; Yu, C.-H. Environmental information disclosure and firms’ green innovation: Evidence from China. Int. Rev. Econ. Financ. 2022, 81, 147–159. [Google Scholar] [CrossRef]
- Hong, J. Research on the Economic Consequences of Information Disclosure Quality of Listed Companies; Institute of Fiscal Science, Ministry of Finance: Beijing, China, 2011. [Google Scholar]
- Zhang, C.; Wei, L.V. Information disclosure, market concern and financing constraints. Account. Res. 2007, 32–38+95. [Google Scholar]
- Yang, J.Y.; Roh, T. Open for Green Innovation: From the Perspective of Green Process and Green Consumer Innovation. Sustainability 2019, 11, 3234. [Google Scholar] [CrossRef] [Green Version]
- Lili, F.; Yufeng, C.; Qing, X.; Jiafeng, M. Impact of Economic Policy Uncertainty on Carbon Emissions: Evidence at China’s City Level. Front. Energy Res. 2022, 10. Available online: https://www.frontiersin.org/articles/10.3389/fenrg.2022.866217/full. (accessed on 7 March 2023).
- Ma, W.; Zhang, R.; Chai, S. What drives green innovation? A game theoretic analysis of government subsidy and cooperatiRanranZhanon contract. Sustainability 2019, 11, 5584. [Google Scholar] [CrossRef] [Green Version]
- Owen, R.; Brennan, G.; Lyon, F. Enabling investment for the transition to a low carbon economy: Government policy to finance early stage green innovation. Curr. Opin. Environ. Sust. 2018, 31, 137–145. [Google Scholar] [CrossRef]
- Gohoungodji, P.; N’Dri, A.B.; Latulippe, J.-M.; Matos, A.L.B. What is stopping the automotive industry from going green? A systematic review of barriers to green innovation in the automotive industry. J. Clean. Prod. 2020, 277, 123524. [Google Scholar] [CrossRef]
- Sellitto, M.A.; Camfield, C.G.; Buzuku, S. Green innovation and competitive advantages in a furniture industrial cluster: A survey and structural model. Sustain. Prod. Consump. 2020, 23, 94–104. [Google Scholar] [CrossRef]
- Robinson, S.; Stubberud, H.A. Green innovation in Germany: A comparison by business size. J. Int. Bus. Res. 2013, 12, 47. [Google Scholar]
- Chang, C.-H. The influence of corporate environmental ethics on competitive advantage: The mediation role of green innovation. J. Bus. Ethics 2011, 10, 361–370. [Google Scholar] [CrossRef]
- Liao, Y. Environmental uncertainty, quality of internal control and cost of equity. J. Audit. Econ. Res. 2015, 30, 69–78. [Google Scholar]
- Knight, F.H. Risk, Uncertainty and Profit; Social Science Electronic Publishing: Rochester, NY, USA, 1921; pp. 682–690. [Google Scholar]
- Xiaming, G.; Yongmin, C.; Shiyuan, P. Economic Policy Uncertainty and Innovation: An Empirical Analysis Based on Listed Companies in China. Econ. Res. 2018, 53, 109–123. [Google Scholar]
- Pingui, R.; Zihui, X. Has economic policy uncertainty affected executive changes? Manag. World 2017, 145–157. [Google Scholar]
- Pingui, R.; Heng, Y.; Guohua, J. Research on Economic Policy Uncertainty and Enterprise Investment Behavior. World Econ. 2017, 29–53. [Google Scholar]
- Yuming, W.; Huan, S. The impact of environmental regulation on enterprise innovation under the background of dual carbon: An empirical study based on China’s provincial panel data. Eco-Econ. 2023, 3, 148–159. [Google Scholar]
- Yang, Y.; Jiang, W.; Laijun, L. Who is using government subsidies for innovation?— The joint regulation effect of ownership and factor market distortion. Manag. World 2015, 75–86+98+188. [Google Scholar]
- Songyi, C. Construction and measurement of green innovation capability evaluation index system in high-tech industry. Manag. Decis. 2023, 3, 174–179. [Google Scholar]
- Xiaoyang, F. Research on the impact of environmental information disclosure on enterprise innovation—Based on the regulatory effect of financialization. J. Luoyang Inst. Technol. 2023, 2, 48–55. [Google Scholar]
- Tao, Q. Intellectual property protection, agglomeration differences and enterprise innovation. J. Econ. 2023, 1–32. [Google Scholar] [CrossRef]
- Dongmin, K. Research on environmental regulation optimization of green technology innovation of Chinese enterprises under the goal of “dual carbon”. Tax. Econ. 2022, 1–8. [Google Scholar]
- Wanli, Z. Research on the impact of economic agglomeration on green innovation of listed enterprises. Res. Technol. Econ. Manag. 2023, 67–73. [Google Scholar]
- Huiyun, L. Environmental, social and governance information disclosure and enterprise green innovation performance. Stat. Res. 2022, 12, 46. [Google Scholar]
- Xinhong, W.; Shiwei, H. Carbon trading system, environmental attention of senior management team and green technology innovation. J. Xi’an Univ. Sci. Technol. 2023, 217. [Google Scholar]
- Lin, H.; Zeng, S.X.; Ma, H.Y.; Qi, G.Y.; Tam, V.W.Y. Can political capital drive corporate green innovation? Lessons from China. J. Clean. Prod. 2014, 11, 63–72. [Google Scholar] [CrossRef]
- Akron, S.; Demir, E.; Díez-Esteban, J.M.; García-Gómez, C.D. Economic Policy Uncertainty and Corporate Investment: Evidence from the U.S. Hospitality Industry. Tour. Manag. 2020, 77, 104–119. [Google Scholar] [CrossRef]
- Dejuan-Bitria, D.; Ghirelli, C. Economic Policy Uncertainty and Investment in Spain. J. Span. Econ. Assoc. 2021, 58, 104019. [Google Scholar] [CrossRef]
- Wu, J.; Zhang, J.; Zhang, S.; Zou, L. The Economic Policy Uncertainty and Firm Investment in Australia. Appl. Econ. 2020, 52, 3354–3378. [Google Scholar] [CrossRef]
- Liu, F.; Sim, J.Y.; Sun, H.; Edziah, B.K.; Adom, P.K.; Song, S. Assessing the role of economic globalization on energy efficiency: Evidence from a global perspective. China Econ. Rev. 2023, 77, 101897. [Google Scholar] [CrossRef]
- Sun, H.; Edziah, B.K.; Kporsu, A.K.; Sarkodie, S.A.; Taghizadeh-Hesary, F. Energy efficiency: The role of technological innovation and knowledge spillover. Technol. Forecast. Soc. Chang. 2021, 167, 120659. [Google Scholar] [CrossRef]
Variable Type | Variable | Symbol | Variable Measurement Method |
---|---|---|---|
Explained | Enterprise green innovation | EGI | Value of investment in enterprise green innovation/enterprise operating income |
Explanatory | Economic policy uncertainty | EPU | Internationally used index of economic policy uncertainty, measured as monthly arithmetic average |
Regulated | Carbon information disclosure | CDI | By referring to the evaluation system of the Climate Change Disclosure Guidelines, scored 1–4 |
Scale of company | Size | Take natural logarithm of total assets at year end | |
Nature of property rights | Prty | State-owned enterprises: Prty = 1; otherwise, Prty = 0 | |
Asset–liability ratio | Lev | Lev = year-end liabilities/year-end total assets | |
Operational cash flow | CF | CF = net operating cash flow/total assets at year-end | |
Control variables | Listed years | Age | Age = present year minus year of listing +1 |
Investment opportunities | Tz | Tz = market value/total assets at year end | |
Growth rate of GDP | GDP | ||
Return on equity | ROE | ROE = net profit/net asset at year end | |
Growth rate of sales | Sg | ||
Foreign participation | FDI | Foreign direct investment/gross local product | |
Area situation | Area | Eastern area: Area = 1; otherwise, Area = 0 |
Variable Symbol | N | SD | Mean | Median | Max | Min |
---|---|---|---|---|---|---|
EGI | 8637 | 8637 | 0.127 | 0.102 | 0.097 | 0.239 |
EPU | 8637 | 0.892 | 1.948 | 1.706 | 3.648 | 0.823 |
CDI | 8637 | 0.544 | 3.087 | 3 | 4 | 2 |
Size | 8637 | 1.029 | 21.550 | 21.39 | 24.99 | 19.75 |
Prty | 8637 | 0.252 | 0.53 | 1 | 1 | 0 |
Lev | 8637 | 0.196 | 0.349 | 0.324 | 0.820 | 0.033 |
CF | 8637 | 0.068 | 0.041 | 0.040 | 0.223 | −0.163 |
Age | 8637 | 5.703 | 7.729 | 6 | 27 | 2 |
Tz | 8637 | 2.197 | 3.251 | 2.561 | 12.60 | 0.970 |
GDP | 8637 | 1.390 | 7.965 | 7.800 | 14.20 | 6.700 |
Sg | 8637 | 0.372 | 0.208 | 0.144 | 2.122 | −0.432 |
ROE | 8637 | 0.087 | 0.083 | 0.081 | 0.328 | −0.287 |
FDI | 8637 | 0.062 | 0.034 | 0.037 | 0.086 | 0.012 |
Area | 8637 | 0.206 | 0.39 | 0 | 1 | 0 |
Variable | EPU | CDI | Size | Lev | Age | Tz | CF | GDP | Sg | ROE | Prty | FDI | Area |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
EPU | 1 | ||||||||||||
CDI | −0.001 | 1 | |||||||||||
Size | 0.152 *** | 0.165 *** | 1 | ||||||||||
Lev | 0.027 *** | −0.084 *** | 0.534 *** | 1 | |||||||||
Age | 0.138 *** | −0.012 | 0.498 *** | 0.422 *** | 1 | ||||||||
Tz | 0.05 *** | −0.006 | −0.388 *** | −0.326 *** | −0.158 *** | 1 | |||||||
CF | 0.023 ** | 0.165 *** | 0.042 *** | −0.145 *** | 0.040 *** | 0.134 *** | 1 | ||||||
GDP | −0.485 *** | −0.057 *** | −0.269 *** | −0.095 *** | −0.289 *** | −0.08 *** | −0.055 *** | 1 | |||||
Sg | 0.068 *** | −0.007 | −0.054 *** | −0.019 * | −0.064 *** | 0.185 *** | −0.052 *** | −0.037 *** | 1 | ||||
ROE | −0.033 *** | 0.279 *** | 0.034 *** | −0.165 *** | −0.148 *** | 0.221 *** | 0.317 *** | 0.171 *** | 0.017 | 1 | |||
Prty | 0.103 *** | 0.217 *** | 0.156 *** | −0.016 ** | 0.129 *** | −0.102 *** | 0.089 *** | 0.075 ** | 0.143 | 1 | |||
FDI | −0.082 *** | 0.077 *** | 0.111 *** | −0.220 *** | −0.444 *** | 0.093 *** | 0.051 *** | 0.209 *** | 0.043 *** | 0.243 *** | −0.163 *** | 1 | |
Area | 0.025 *** | 0.182 *** | 0.093 *** | 0.212 *** | 0.137 *** | 0.265 *** | 0.206 *** | 0.234 *** | 0.172 *** | 0.107 *** | 0.079 ** | 0.196 *** | 1 |
Variable | VIF | Tolerance |
---|---|---|
EPU | 1.320 | 0.755 |
CDI | 1.160 | 0.865 |
Size | 2.140 | 0.466 |
Lev | 1.640 | 0.611 |
Age | 1.780 | 0.563 |
Tz | 1.430 | 0.701 |
CF | 1.170 | 0.854 |
GDP | 1.590 | 0.631 |
Sg | 1.050 | 0.951 |
ROE | 1.410 | 0.709 |
Prty | 1.490 | 0.687 |
FDI | 1.630 | 0.741 |
Area | 1.340 | 0.705 |
Mean | 1.510 | 0.711 |
Variable | Coef. | Std. Err | t-Value | p-Value |
---|---|---|---|---|
EPU | −0.106 *** | 0.022 | −3.52 | 0.000 |
Size | 0.626 *** | 0.262 | 17.67 | 0.095 |
Lev | −0.104 | 0.314 | −1.02 | 0.566 |
Age | 0.043 *** | 0.107 | 4.52 | 0.000 |
Tz | 0.058 *** | 0.036 | 3.59 | 0.000 |
CF | 0.072 | 0.171 | 0.45 | 0.197 |
GDP | −0.089 ** | 0.103 | −2.99 | 0.007 |
Sg | 0.263 *** | 0.025 | 10.56 | 0.000 |
ROE | 0.956 *** | 0.139 | 8.12 | 0.000 |
Prty | 0.131 *** | 0.101 | 1.29 | 0.154 |
Area | 0.032 ** | 0.061 | 0.05 | 0.794 |
FDI | 0.103 ** | 0.219 | 1.89 | 0.013 |
_cons | 3.207 *** | 0.816 | 3.76 | 0.000 |
Enterprise fixed effects | Yes | |||
Year fixed effects | Yes | |||
R2 | 0.412 | Number of obs | 8637 | |
F | 91.570 | Prob > F | 0.000 |
Variable | Coef. | Std. Err | t-Value | p-Value |
---|---|---|---|---|
CDI | 0.073 *** | 0.031 | 4.37 | 0.000 |
Size | 0.639 *** | 0.040 | 16.29 | 0.000 |
Lev | −0.112 | 0.113 | −0.92 | 0.318 |
Age | 0.052 *** | 0.047 | 4.46 | 0.000 |
Tz | 0.127 *** | 0.053 | 3.68 | 0.000 |
CF | 0.069 | 0.139 | 0.67 | 0.537 |
GDP | −0.076 *** | 0.043 | −3.62 | 0.018 |
Sg | 0.285 *** | 0.036 | 11.08 | 0.000 |
ROE | 0.893 *** | 0.246 | 7.84 | 0.000 |
Prty | 0.123 *** | 0.103 | 1.22 | 0.202 |
Area | 0.026 ** | 0.001 | 0.07 | 0.000 |
FDI | 0.082 ** | 0.037 | 1.63 | 0.018 |
_cons | 3.068 *** | 0.773 | 3.82 | 0.000 |
Enterprise fixed effects | Yes | |||
Year fixed effect | Yes | |||
R2 | 0.409 | Number of obs | 8637 | |
F | 92.420 | Prob > F | 0.000 |
Variable | EGI | EGI | EGI |
---|---|---|---|
EPU | −0.0472 *** (−2.34) | −0.0381 *** (−2.73) | |
CDI | 0.0734 *** (4.12) | 0.0677 *** (4.33) | |
EPU∗CDI | 0.0289 *** (3.17) | ||
Size | 0.6263 *** (17.67) | 0.6386 *** (16.29) | 0.6372 *** (17.54) |
Lev | −0.1042 (−1.02) | −0.1124 (−0.92) | −0.0963 (−0.103) |
Age | 0.0428 *** (4.52) | 0.0515 *** (4.46) | 0.0508 *** (4.26) |
Tz | 0.0581 *** (3.59) | 0.0529 *** (3.69) | 0.0584 *** (3.71) |
CF | 0.0717 (0.45) | 0.0687 (0.67) | 0.0674 (0.47) |
GDP | −0.0887 *** (−2.99) | −0.0764 *** (−3.62) | −0.0767 *** (−3.09) |
Sg | 0.2627 *** (10.56) | 0.2842 *** (11.08) | 0.2637 *** (10.67) |
ROE | 0.9564 *** (8.12) | 0.8927 *** (7.84) | 0.8875 *** (6.39) |
Prty | 0.1312 *** (1.29) | 0.1227 *** (1.22) | 0.1244 *** (1.24) |
Area | 0.0322 ** (0.05) | 0.0264 ** (0.07) | 0.0274 ** (0.08) |
FDI | 0.1034 ** (1.89) | 0.0824 ** (1.63) | 0.0847 (1.73) |
_cons | 3.2074 *** (3.76) | 3.0683 *** (3.82) | 3.2981 *** (3.77) |
Enterprise fixed effects | Yes | Yes | Yes |
Year fixed effect | Yes | Yes | Yes |
N | 8637 | 8637 | 8637 |
F | 91.5697 | 92.4204 | 94.1286 |
Adj-R2 | 0.411 | 0.4083 | 0.414 |
R2 | 0.4123 | 0.4091 | 0.4178 |
Variable | CDI = 0 EGI | CDI = 1 EGI |
---|---|---|
EPU | −0.1360 *** (−3.05) | −0.0131 (−1.48) |
Size | 0.7042 *** (5.17) | 0.6039 *** (17.78) |
Lev | −1.2108 ** (−2.13) | 0.0362 (0.31) |
Age | 0.126 ** (2.23) | 0.0626 *** (4.48) |
Tz | −0.0104 (−0.14) | 0.0275 *** (3.96) |
CF | 0.2301 (0.35) | −0.0190 (−0.16) |
GDP | −0.0656 (−0.18) | −0.0283 ** (−2.55) |
Sg | 0.3216 *** (3.39) | 0.2329 *** (10.83) |
ROE | 0.2348 (0.71) | 0.9046 *** (5.38) |
Prty | 0.172 ** (0.02) | 0.617 *** (2.93) |
Area | 0.068 * (0.12) | 0.006 (0.12) |
FDI | 0.0101 (1.43) | 0.0006 (0.44) |
_cons | 1.4963 (0.50) | 3.7759 *** (5.20) |
Enterprise fixed effects | Yes | Yes |
Year fixed effect | Yes | Yes |
N | 937 | 7700 |
F | 6.3230 | 89.7134 |
Adj-R2 | 0.327 | 0.517 |
R2 | 0.3390 | 0.5181 |
Variables Symbol | EGI | EGI | EGI |
---|---|---|---|
EPU | −0.1164 *** (−2.48) | −0.1408 *** (−2.43) | |
CDI | 0.2041 *** (1.85) | 0.2208 *** (1.37) | |
EPU∗CDI | 0.1147 *** (2.25) | ||
_cons | 5.4672 | 5.2639 | 5.3305 |
Controls | Yes | Yes | Yes |
Enterprise fixed effects | Yes | Yes | Yes |
Year fixed effect | Yes | Yes | Yes |
N | 8637 | 8637 | 8637 |
F | 18.2077 | 17.5484 | 17.2405 |
Adj-R2 | 0.405 | 0.443 | 0.387 |
R2 | 0.403 | 0.451 | 0.385 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luo, X.; Yu, M.; Jin, Y. The Impact of Economic Policy Uncertainty on Enterprise Green Innovation: A Study on the Moderating Effect of Carbon Information Disclosure. Sustainability 2023, 15, 4915. https://doi.org/10.3390/su15064915
Luo X, Yu M, Jin Y. The Impact of Economic Policy Uncertainty on Enterprise Green Innovation: A Study on the Moderating Effect of Carbon Information Disclosure. Sustainability. 2023; 15(6):4915. https://doi.org/10.3390/su15064915
Chicago/Turabian StyleLuo, Xu, Mengke Yu, and Yongsheng Jin. 2023. "The Impact of Economic Policy Uncertainty on Enterprise Green Innovation: A Study on the Moderating Effect of Carbon Information Disclosure" Sustainability 15, no. 6: 4915. https://doi.org/10.3390/su15064915
APA StyleLuo, X., Yu, M., & Jin, Y. (2023). The Impact of Economic Policy Uncertainty on Enterprise Green Innovation: A Study on the Moderating Effect of Carbon Information Disclosure. Sustainability, 15(6), 4915. https://doi.org/10.3390/su15064915