Methodology for Identification of the Key Levee Parameters for Limit-State Analyses Based on Sequential Bifurcation
Abstract
1. Introduction
2. Methodology
2.1. The Sequential Bifurcation Procedure
2.2. Implementation
3. Case Study
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
ULS | Ultimate Limit State |
SLS | Serviceability Limit State |
SB | Sequential Bifurcation |
SRM | Strength Reduction Method |
References
- Wolff, T.F. Reliability of Levee Systems. In Reliability-Based Design in Geotechnical Engineering; Phoon, K.K., Ed.; Taylor & Francis: London, UK, 2008; pp. 448–496. [Google Scholar]
- Mirosław-Świątek, D.; Popielski, P.; Śliwiński, P.; Cwalina, T.; Skutnik, Z. Analysis of Factors Influencing Levee Safety Using the DEMATEL Method. PLOS ONE 2021, 16, e0255755. [Google Scholar] [CrossRef] [PubMed]
- Montgomery, D.C. Design and Analysis of Experiments, 9th ed.; Wiley: Hoboken, NJ, USA, 2017. [Google Scholar]
- Bettonvil, B. Detection of Important Factors by Sequential Bifurcation. Ph.D. Thesis, Tilburg University, Tilburg, The Netherlands, 1990. [Google Scholar]
- Cheng, R. Searching For Important Factors: Sequential Bifurcation Under Uncertainty. In Proceedings of the Winter Simulation Conference Proceedings, Atlanta, GA, USA, 7–10 December 1997; pp. 275–280. [Google Scholar] [CrossRef]
- Wan, H.; Ankenman, B.E.; Nelson, B.L. Controlled Sequential Bifurcation: A New Factor-Screening Method for Discrete-Event Simulation. Oper. Res. 2006, 54, 743–755. [Google Scholar] [CrossRef]
- Wan, H.; Ankenman, B.E.; Nelson, B.L. Improving the Efficiency and Efficacy of Controlled Sequential Bifurcation for Simulation Factor Screening. INFORMS J. Comput. 2010, 22, 482–492. [Google Scholar] [CrossRef]
- Oh, R.P.T.; Sanchez, S.M.; Lucas, T.W.; Wan, H.; Nissen, M.E. Efficient Experimental Design Tools for Exploring Large Simulation Models. Comput. Math. Organ. Theory 2009, 15, 237. [Google Scholar] [CrossRef]
- Sanchez, S.M.; Wan, H.; Lucas, T.W. Two-Phase Screening Procedure for Simulation Experiments. ACM Trans. Model. Comput. Simul. 2009, 19, 1–24. [Google Scholar] [CrossRef]
- Kleijnen, J.P. Design and Analysis of Simulation Experiments, 2nd ed.; International Series in Operations Research & Management Science; Springer International Publishing: Cham, Switzerland, 2015; Volume 230. [Google Scholar]
- Shi, W.; Kleijnen, J.P.; Liu, Z. Factor Screening for Simulation with Multiple Responses: Sequential Bifurcation. Factor Screen. Simul. Mult. Responses 2012, 2012, 37. [Google Scholar] [CrossRef]
- Shi, W.; Shang, J.; Liu, Z.; Zuo, X. Optimal Design of the Auto Parts Supply Chain for JIT Operations: Sequential Bifurcation Factor Screening and Multi-Response Surface Methodology. Eur. J. Oper. Res. 2014, 236, 664–676. [Google Scholar] [CrossRef]
- Tadić, L.; Bonacci, O.; Dadić, T. Analysis of the Drava and Danube Rivers Floods in Osijek (Croatia) and Possibility of Their Coincidence. Environ. Earth Sci. 2016, 75, 1238. [Google Scholar] [CrossRef]
- Bačić, M.; Lovorka, L.; Kovačević, M.S. Application of Geosynthetics as Hydraulic Barriers in Flood Protection Embankments. In Proceedings of the 1st International Conference CoMS_2017, Zadar, Croatia, 19–21 April 2017; p. 677. [Google Scholar]
- Dean, A.M.; Lewis, S.M. Comparison of Group Screening Strategies for Factorial Experiments. Comput. Stat. Data Anal. 2002, 39, 287–297. [Google Scholar] [CrossRef]
- Kleijnen, J.P.C.; Bettonvil, B.; Persson, F. Screening for the Important Factors in Large Discrete-Event Simulation Models: Sequential Bifurcation and Its Applications. In Screening: Methods for Experimentation in Industry, Drug Discovery, and Genetics; Dean, A., Lewis, S., Eds.; Springer: New York, NY, USA, 2006; pp. 287–307. [Google Scholar] [CrossRef]
- Rossi, N.; Bačić, M.; Kovačević, M.S.; Librić, L. Fragility Curves for Slope Stability of Geogrid Reinforced River Levees. Water 2021, 13, 2615. [Google Scholar] [CrossRef]
- Phoon, K.K.; Kulhawy, F.H. Characterization of Geotechnical Variability. Can. Geotech. J. 1999, 36, 612–624. [Google Scholar] [CrossRef]
- Phoon, K.K.; Kulhawy, F.H. Evaluation of Geotechnical Property Variability. Can. Geotech. J. 1999, 36, 625–639. [Google Scholar] [CrossRef]
- Wolebo, A.P. Advanced Probabilistic Slope Stability Analysis on Rissa Slope. Master’s Thesis, Norwegian University of Science and Technology, Trondheim, Norway, 2016. [Google Scholar]
- Rossi, N.; Bačić, M.; Kovačević, M.S.; Librić, L. Development of Fragility Curves for Piping and Slope Stability of River Levees. Water 2021, 13, 738. [Google Scholar] [CrossRef]
- Reale, C.; Kovačević, M.S.; Bačić, M.; Gavin, K. Cone Penetration Testing 2022. In Assessment of the Spatial Variability of a Croatian Flood Embankment Using the Cone Penetration Test; CRC Press: London, UK, 2022; pp. 1053–1057. [Google Scholar] [CrossRef]
Physical & Mechanical | Hydraulic | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
unit weight | − | − | − | − | |||||||
porosity | + | + | + | + | |||||||
cohesion | − | − | − | − | |||||||
friction angle | + | + | − | − | |||||||
dilatation | − | − | − | − | vertical perm. | + | + | + | + | ||
Poisson ratio | + | + | + | + | anisotropy | + | + | + | + | ||
OCR | − | − | − | − | |||||||
Young’s modulus | − | − | − | − | |||||||
unload./reload. modulus | − | − | − | − | |||||||
power m | − | − | − | − | |||||||
D | Ux | G | F | D | Ux | G | F |
Component | Geometric Parameters | D | Ux | G | F |
---|---|---|---|---|---|
waterside slope | − | − | − | + | |
landside slope | + | + | + | + | |
Levee body | crown width | − | − | − | − |
crown height from waterside toe | + | + | + | + | |
crown height from landside toe | + | + | + | + | |
waterside slope | − | − | − | + | |
landside slope | − | − | − | − | |
Impermeable core | crown width | − | − | − | − |
crown height from landside toe | − | − | + | + | |
core position within the body | + | + | − | + | |
Landside berm | height | − | − | − | − |
width | − | − | − | − | |
slope angle | + | + | + | + | |
berm angle | + | + | + | + | |
Waterside berm | height | + | + | − | − |
width | − | − | − | + | |
slope angle | + | + | + | + | |
berm angle | + | + | + | + | |
Surface layer | thickness | + | + | + | − |
Foundation soil |
Geometric | Hydraulic | ||||||||
---|---|---|---|---|---|---|---|---|---|
river depth river bank slope river dist. from waterside toe channel depth channel bank slope channel width channel dist. from landside toe | + + − + + + − | + + − + + + − | − + − + + + − | − + − + + + − | landside water level inundation time duration of max. water level height of water event | + + + + | + + + + | − + + + | − + + + |
D | Ux | G | F | D | Ux | G | F |
Factors | Percent Effect [%] | Ranges | |||||
---|---|---|---|---|---|---|---|
crown height from landside toe | 52.9 | 59.5 | 96.7 | 24.0 | 0.5–7.3 | [m] | |
LEVEE BODY: | vertical permeability | 35.6 | 37.8 | 91.7 | ∼ | to | [m/s] |
FOUND. SOIL: | Young’s modulus | 23.6 | 22.4 | ∼ | ∼ | 10–80 | [MPa] |
water depth in the landside soil | 21.3 | 12.0 | 12.0 | 0–5.5 | [m] | ||
CORE: | position inside the levee | 20.6 | 24.3 | ∼ | ∼ | −1 to 1 | [%] |
crown height from waterside toe | 18.8 | 20.8 | ∼ | 27.0 | 0.3–3.34 | [%] | |
FOUND. SOIL: | unloading/reloading modulus | 15.0 | 13.8 | ∼ | ∼ | 2–5 | [MPa] |
TOP LAYER: | vertical permeability | 12.0 | 9.3 | 87.5 | 31.6 | to | [m/s] |
LEVEE BODY: | waterside slope | 9.7 | 5.8 | ∼ | ∼ | 0.18–0.55 | [/] |
CORE: | height | 7.3 | 9.6 | 91.0 | ∼ | 0.3–0.9 | [%] |
LEVEE BODY: | Young’s modulus | 7.2 | 8.2 | ∼ | ∼ | 20–50 | [MPa] |
FOUND. SOIL: | friction angle | 6.9 | 5.4 | ∼ | 19.8 | 21.9–42.4 | [] |
FOUND. SOIL: | vertical permeability | 5.5 | 7.9 | 94.3 | ∼ | to | [m/s] |
river depth | 5.1 | 8.0 | ∼ | ∼ | 0.8–5.4 | [m] | |
LEVEE BODY: | crown width | ∼ | 6.0 | 91.7 | ∼ | 1.4–12.4 | [m] |
inundation time | ∼ | ∼ | 91.7 | ∼ | 1–6 | [d] | |
CORE: | landside slope | ∼ | ∼ | 80.5 | ∼ | 0.25–2 | [/] |
CORE: | vertical permeability | ∼ | ∼ | 79.9 | ∼ | to | [m/s] |
channel width | ∼ | ∼ | 32.9 | ∼ | 0.5–7 | [m] | |
duration of water event | ∼ | ∼ | 19.4 | ∼ | 1–6 | [d] | |
river bank slope | ∼ | ∼ | ∼ | 46.7 | 0.06–0.75 | [/] | |
TOP LAYER: | thickness | ∼ | ∼ | ∼ | 43.5 | 0.5–5.5 | [m] |
channel depth | ∼ | ∼ | ∼ | 35.2 | 0.8–2.4 | [m] | |
channel dist. from landside toe | ∼ | ∼ | ∼ | 12.0 | 0–4.9 | [%] | |
D | Ux | G | F |
Factors | Percent Effect [%] | Ranges | |||||
---|---|---|---|---|---|---|---|
crown height from landside toe | 91.4 | 78.3 | ∼ | 43.0 | 0.5–7.3 | [m] | |
LEVEE BODY: | vertical permeability | 89.4 | 71.5 | ∼ | 40.2 | to | [m/s] |
crown height from waterside toe | 83.2 | 37.4 | ∼ | ∼ | 0.3–3.34 | [%] | |
water depth in the landside soil | 72.5 | 42.0 | ∼ | 52.5 | 0–5.5 | [m] | |
FOUND. SOIL: | vertical permeability | 70.0 | 42.0 | ∼ | 34.5 | to | [m/s] |
LEVEE BODY: | landside slope | 65.5 | 27.3 | ∼ | ∼ | 0.29–0.57 | [/] |
inundation time | 52.9 | 9.2 | ∼ | ∼ | 1–6 | [d] | |
LEVEE BODY: | waterside slope | 50.0 | 29.9 | ∼ | ∼ | 0.18–0.55 | [/] |
FOUND. SOIL: | anisotropy | 34.7 | ∼ | ∼ | ∼ | 2–5 | [/] |
FOUND. SOIL: | friction angle | 33.4 | ∼ | ∼ | 24.4 | 21.9–42.4 | [] |
LEVEE BODY: | cohesion | 27.5 | 27.0 | ∼ | 8.1 | 1–29.1 | [kPa] |
FOUND. SOIL: | unloading/reloading modulus | 17.4 | 22.2 | ∼ | ∼ | 2–5 | [MPa] |
FOUND. SOIL: | Young’s modulus | 17.4 | 22.2 | ∼ | ∼ | 10–80 | [MPa] |
LEVEE BODY: | anisotropy | 6.0 | 9.5 | ∼ | ∼ | 2–5 | [/] |
LEVEE BODY: | friction angle | 5.2 | ∼ | ∼ | ∼ | 26–35 | [] |
LEVEE BODY: | crown width | ∼ | 16.3 | 91.7 | ∼ | 1.4–12.4 | [m] |
LEVEE BODY: | Young’s modulus | ∼ | 16.3 | ∼ | ∼ | 20–50 | [MPa] |
LEVEE BODY: | power m | ∼ | 10.5 | ∼ | ∼ | 0.5–1 | [/] |
duration of water event | ∼ | ∼ | ∼ | 8.7 | 1–6 | [d] | |
D | Ux | G | F |
Component | Parameter | ||
---|---|---|---|
Geometric | Physical/Mechanical | Hydraulic | |
LEVEE BODY | waterside slope crown width landside slope | Young’s modulus cohesion friction angle power m | vertical permeability anisotropy |
CORE | position inside the levee height landside slope crown width * | vertical permeability | |
TOP LAYER | thickness | vertical permeability | |
FOUND. SOIL | Young’s modulus unload./reload. modulus friction angle | vertical permeability anisotropy | |
BERMS | landside berm width * landside berm height * | ||
GENERAL | crown height from landside toe crown height from waterside toe river depth river bank slope channel width channel depth channel dist. from landside toe water height * | water depth in the landside soil inundation time duration of water event |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rossi, N.; Bačić, M.; Librić, L.; Kovačević, M.S. Methodology for Identification of the Key Levee Parameters for Limit-State Analyses Based on Sequential Bifurcation. Sustainability 2023, 15, 4754. https://doi.org/10.3390/su15064754
Rossi N, Bačić M, Librić L, Kovačević MS. Methodology for Identification of the Key Levee Parameters for Limit-State Analyses Based on Sequential Bifurcation. Sustainability. 2023; 15(6):4754. https://doi.org/10.3390/su15064754
Chicago/Turabian StyleRossi, Nicola, Mario Bačić, Lovorka Librić, and Meho Saša Kovačević. 2023. "Methodology for Identification of the Key Levee Parameters for Limit-State Analyses Based on Sequential Bifurcation" Sustainability 15, no. 6: 4754. https://doi.org/10.3390/su15064754
APA StyleRossi, N., Bačić, M., Librić, L., & Kovačević, M. S. (2023). Methodology for Identification of the Key Levee Parameters for Limit-State Analyses Based on Sequential Bifurcation. Sustainability, 15(6), 4754. https://doi.org/10.3390/su15064754