The Urban Heat Island Analysis for the City of Zagreb in the Period 2013–2022 Utilizing Landsat 8 Satellite Imagery
Abstract
:1. Introduction
- To present long-term monitoring of SUHI manifestation in the City of Zagreb in a summertime period;
- To explore the relationship between calculated LST and NDVI, and NDBI values for the same period;
- To describe the behaviour of SUHI manifestation in the city of Zagreb in relation to calculated indices and detect other possible influences.
2. Materials and Methods
2.1. Study Area
2.2. Satellite Imagery
2.3. Time Period
2.4. Preparation and Calibration of the Raw Temperature Data
2.5. Calculating Spatial Indices
3. Results and Discussion
Cartographic Representation of the Delineated UHI in the City of Zagreb
4. Limitations
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Rizwan, A.M.; Dennis, L.Y.C.; Liu, C. A Review on the Generation, Determination and Mitigation of Urban Heat Island. J. Environ. Sci. 2008, 20, 120–128. [Google Scholar] [CrossRef]
- Oke, T.R.; Mills, G.; Christen, A.; Voogt, J.A. Urban Climates; Cambridge University Press: Cambridge, UK, 2017. [Google Scholar]
- Yang, L.; Qian, F.; Song, D.-X.; Zheng, K.-J. Research on Urban Heat-Island Effect. Procedia Eng. 2016, 169, 11–18. [Google Scholar] [CrossRef]
- Herbel, I.; Croitoru, A.-E.; Rus, A.V.; Roşca, C.F.; Harpa, G.V.; Ciupertea, A.-F.; Rus, I. The Impact of Heat Waves on Surface Urban Heat Island and Local Economy in Cluj-Napoca City, Romania. Theor. Appl. Climatol. 2018, 133, 681–695. [Google Scholar] [CrossRef]
- Ünal, Y.S.; Sonuç, C.Y.; Incecik, S.; Topcu, H.S.; Diren-Üstün, D.H.; Temizöz, H.P. Investigating Urban Heat Island Intensity in Istanbul. Theor. Appl. Climatol. 2020, 139, 175–190. [Google Scholar] [CrossRef]
- Voogt, J.A.; Oke, T.R. Thermal Remote Sensing of Urban Climates. Remote Sens. Environ. 2003, 86, 370–384. [Google Scholar] [CrossRef]
- Naikoo, M.W.; Islam, A.R.M.T.; Mallick, J.; Rahman, A. Land Use/Land Cover Change and Its Impact on Surface Urban Heat Island and Urban Thermal Comfort in a Metropolitan City. Urban Clim. 2022, 41, 101052. [Google Scholar] [CrossRef]
- Kim, S.W.; Brown, R.D. Urban Heat Island (UHI) Variations within a City Boundary: A Systematic Literature Review. Renew. Sustain. Energy Rev. 2021, 148, 111256. [Google Scholar] [CrossRef]
- Lafortezza, R.; Chen, J. The Provision of Ecosystem Services in Response to Global Change: Evidences and Applications. Environ. Res. 2016, 147, 576–579. [Google Scholar] [CrossRef]
- Santamouris, M. Analyzing the Heat Island Magnitude and Characteristics in One Hundred Asian and Australian Cities and Regions. Sci. Total Environ. 2015, 512–513, 582–598. [Google Scholar] [CrossRef]
- Chakraborty, T.; Hsu, A.; Manya, D.; Sheriff, G. A Spatially Explicit Surface Urban Heat Island Database for the United States: Characterization, Uncertainties, and Possible Applications. ISPRS J. Photogramm. Remote Sens. 2020, 168, 74–88. [Google Scholar] [CrossRef]
- Marando, F.; Heris, M.P.; Zulian, G.; Udías, A.; Mentaschi, L.; Chrysoulakis, N.; Parastatidis, D.; Maes, J. Urban Heat Island Mitigation by Green Infrastructure in European Functional Urban Areas. Sustain. Cities Soc. 2022, 77, 103564. [Google Scholar] [CrossRef]
- Schwarz, N.; Manceur, A.M. Analyzing the Influence of Urban Forms on Surface Urban Heat Islands in Europe. J. Urban Plan. Dev. 2015, 141, A4014003. [Google Scholar] [CrossRef]
- Dugord, P.-A.; Lauf, S.; Schuster, C.; Kleinschmit, B. Land Use Patterns, Temperature Distribution, and Potential Heat Stress Risk—The Case Study Berlin, Germany. Comput. Environ. Urban Syst. 2014, 48, 86–98. [Google Scholar] [CrossRef]
- Geletič, J.; Lehnert, M.; Savić, S.; Milošević, D. Inter-/Intra-Zonal Seasonal Variability of the Surface Urban Heat Island Based on Local Climate Zones in Three Central European Cities. Build. Environ. 2019, 156, 21–32. [Google Scholar] [CrossRef]
- Zhou, B.; Rybski, D.; Kropp, J.P. On the Statistics of Urban Heat Island Intensity. Geophys. Res. Lett. 2013, 40, 5486–5491. [Google Scholar] [CrossRef]
- Marando, F.; Salvatori, E.; Sebastiani, A.; Fusaro, L.; Manes, F. Regulating Ecosystem Services and Green Infrastructure: Assessment of Urban Heat Island Effect Mitigation in the Municipality of Rome, Italy. Ecol. Model. 2019, 392, 92–102. [Google Scholar] [CrossRef]
- Krtalić, A.; Divjak, A.K.; Čmrlec, K. Satellite-driven assessment of surface urban heat islands in the city of Zagreb, Croatia. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2020, 3, 757–764. [Google Scholar] [CrossRef]
- Žgela, M. Urbana Klimatologija—Primjer Toplinskog Otoka Grada Zagreba. Geogr. Horiz. 2018, 64, 31–40. [Google Scholar]
- Jaganmohan, M.; Knapp, S.; Buchmann, C.M.; Schwarz, N. The Bigger, the Better? The Influence of Urban Green Space Design on Cooling Effects for Residential Areas. J. Environ. Qual. 2016, 45, 134–145. [Google Scholar] [CrossRef]
- László, E.; Bottyán, Z.; Szegedi, S. Long-Term Changes of Meteorological Conditions of Urban Heat Island Development in the Region of Debrecen, Hungary. Theor. Appl. Climatol. 2016, 124, 365–373. [Google Scholar] [CrossRef]
- Weng, Q.; Lu, D.; Schubring, J. Estimation of Land Surface Temperature–Vegetation Abundance Relationship for Urban Heat Island Studies. Remote Sens. Environ. 2004, 89, 467–483. [Google Scholar] [CrossRef]
- Santamouris, M.; Cartalis, C.; Synnefa, A. Local Urban Warming, Possible Impacts and a Resilience Plan to Climate Change for the Historical Center of Athens, Greece. Sustain. Cities Soc. 2015, 19, 281–291. [Google Scholar] [CrossRef]
- Santamouris, M. On the Energy Impact of Urban Heat Island and Global Warming on Buildings. Energy Build. 2014, 82, 100–113. [Google Scholar] [CrossRef]
- Tan, J.; Zheng, Y.; Tang, X.; Guo, C.; Li, L.; Song, G.; Zhen, X.; Yuan, D.; Kalkstein, A.J.; Li, F.; et al. The Urban Heat Island and Its Impact on Heat Waves and Human Health in Shanghai. Int. J. Biometeorol. 2010, 54, 75–84. [Google Scholar] [CrossRef]
- Keikhosravi, Q. The Effect of Heat Waves on the Intensification of the Heat Island of Iran’s Metropolises (Tehran, Mashhad, Tabriz, Ahvaz). Urban Clim. 2019, 28, 100453. [Google Scholar] [CrossRef]
- Mirzaei, P.A. Recent Challenges in Modeling of Urban Heat Island. Sustain. Cities Soc. 2015, 19, 200–206. [Google Scholar] [CrossRef] [Green Version]
- Kaplan, G.; Avdan, U.; Avdan, Z.Y. Urban Heat Island Analysis Using the Landsat 8 Satellite Data: A Case Study in Skopje, Macedonia. Proceedings 2018, 2, 358. [Google Scholar] [CrossRef] [Green Version]
- Schmidt, P.; Lawrence, B.T. Association between Land Surface Temperature and Green Volume in Bochum, Germany. Sustainability 2022, 14, 14642. [Google Scholar] [CrossRef]
- Founda, D.; Santamouris, M. Synergies between Urban Heat Island and Heat Waves in Athens (Greece), during an Extremely Hot Summer (2012). Sci. Rep. 2017, 7, 10973. [Google Scholar] [CrossRef] [Green Version]
- Owen, T.W.; Carlson, T.N.; Gillies, R.R. An Assessment of Satellite Remotely-Sensed Land Cover Parameters in Quantitatively Describing the Climatic Effect of Urbanization. Int. J. Remote Sens. 1998, 19, 1663–1681. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.-L.; Zhao, H.-M.; Li, P.-X.; Yin, Z.-Y. Remote Sensing Image-Based Analysis of the Relationship between Urban Heat Island and Land Use/Cover Changes. Remote Sens. Environ. 2006, 104, 133–146. [Google Scholar] [CrossRef]
- Gallo, K.P.; Owen, T.W. Satellite-Based Adjustments for the Urban Heat Island Temperature Bias. J. Appl. Meteorol. 1999, 38, 806–813. [Google Scholar] [CrossRef]
- Weng, Q. A Remote Sensing?GIS Evaluation of Urban Expansion and Its Impact on Surface Temperature in the Zhujiang Delta, China. Int. J. Remote Sens. 2001, 22, 1999–2014. [Google Scholar] [CrossRef]
- Florim, I.; Albert, B.; Shpejtim, B. Measuring Uhi Using Landsat 8 Oli and Tirs Data with Ndvi and Ndbi in Municipality of Prishtina. Disaster Adv. 2021, 14, 25–36. [Google Scholar] [CrossRef]
- Gill, S.E.; Handley, J.F.; Ennos, A.R.; Pauleit, S. Adapting Cities for Climate Change: The Role of the Green Infrastructure. Built Environ. 2007, 33, 115–133. [Google Scholar] [CrossRef] [Green Version]
- Arico, S.; Bridgewater, P.; El-beltagy, A.; Finlayson, M.; Harms, E.; Program, S.; Hepworth, R.; Leitner, K.; Oteng-yeboah, A.; Ramos, M.A.; et al. Millennium Ecosystem Assessment, 2005—Ecosystems and Human Well-Being: Synthesis; Island Press: Washington, DC, USA, 2005; ISBN 1-59726-040-1. [Google Scholar]
- Livesley, S.J.; McPherson, E.G.; Calfapietra, C. The Urban Forest and Ecosystem Services: Impacts on Urban Water, Heat, and Pollution Cycles at the Tree, Street, and City Scale. J. Environ. Qual. 2016, 45, 119–124. [Google Scholar] [CrossRef] [Green Version]
- Gunawardena, K.R.; Wells, M.J.; Kershaw, T. Utilising Green and Bluespace to Mitigate Urban Heat Island Intensity. Sci. Total Environ. 2017, 584–585, 1040–1055. [Google Scholar] [CrossRef]
- Oke, T.R. The Micrometeorology of the Urban Forest. Philos. Trans. R. Soc. Lond. B 1989, 324, 335–349. [Google Scholar] [CrossRef]
- Ugarković, D.; Matijević, M.; Tikvić, I.; Popić, K. Neka Obilježja Klime i Klimatskih Elemenata Na Području Grada Zagreba. Šumarski List 2021, 145, 479–488. [Google Scholar] [CrossRef]
- Nimac, I.; Herceg-Bulić, I.; Cindrić Kalin, K.; Perčec Tadić, M. Changes in Extreme Air Temperatures in the Mid-Sized European City Situated on Southern Base of a Mountain (Zagreb, Croatia). Theor. Appl. Climatol. 2021, 146, 429–441. [Google Scholar] [CrossRef]
- Nimac, I.; Herceg-Bulić, I.; Žuvela-Aloise, M. The Contribution of Urbanisation and Climate Conditions to Increased Urban Heat Load in Zagreb (Croatia) since the 1960s. Urban Clim. 2022, 46, 101343. [Google Scholar] [CrossRef]
- Šegota, T.; Filipčić, A. Köppenova Podjela Klima i Hrvatsko Nazivlje. Geoadria 2003, 8, 17–37. [Google Scholar] [CrossRef] [Green Version]
- USGS. Landsat 8 (L8) Data Users Handbook; Earth Resources Observation and Science (EROS) Center: Garretson, SD, USA, 2019. [Google Scholar]
- Guha, S.; Govil, H.; Dey, A.; Gill, N. Analytical Study of Land Surface Temperature with NDVI and NDBI Using Landsat 8 OLI and TIRS Data in Florence and Naples City, Italy. Eur. J. Remote Sens. 2018, 51, 667–678. [Google Scholar] [CrossRef] [Green Version]
- Nastran, M.; Kobal, M.; Eler, K. Urban Heat Islands in Relation to Green Land Use in European Cities. Urban For. Urban Green. 2019, 37, 33–41. [Google Scholar] [CrossRef] [Green Version]
- Kong, J.; Zhao, Y.; Carmeliet, J.; Lei, C. Urban Heat Island and Its Interaction with Heatwaves: A Review of Studies on Mesoscale. Sustainability 2021, 13, 10923. [Google Scholar] [CrossRef]
- Alademomi, A.S.; Okolie, C.J.; Daramola, O.E.; Akinnusi, S.A.; Adediran, E.; Olanrewaju, H.O.; Alabi, A.O.; Salami, T.J.; Odumosu, J. The Interrelationship between LST, NDVI, NDBI, and Land Cover Change in a Section of Lagos Metropolis, Nigeria. Appl. Geomat. 2022, 14, 299–314. [Google Scholar] [CrossRef]
- Elmarakby, E.; Khalifa, M.; Elshater, A.; Afifi, S. Tailored Methods for Mapping Urban Heat Islands in Greater Cairo Region. Ain Shams Eng. J. 2022, 13, 101545. [Google Scholar] [CrossRef]
Year | MIN | MAX | MEAN | SD |
---|---|---|---|---|
2013 | 21.27 | 41.95 | 28.19 | 2.77 |
2015 | 18.72 | 42.56 | 27.50 | 2.62 |
2017 | 20.73 | 44.94 | 29.31 | 2.56 |
2019 | 17.42 | 37.38 | 24.20 | 2.28 |
2020 | 18.11 | 38.38 | 24.11 | 2.12 |
2022 | 13.97 | 38.58 | 28.46 | 2.53 |
Year | MIN | MAX | MEAN | SD |
---|---|---|---|---|
2013 | −0.11 | 0.61 | 0.36 | 0.11 |
2015 | −0.13 | 0.61 | 0.38 | 0.11 |
2017 | −0.15 | 0.60 | 0.36 | 0.12 |
2019 | −0.15 | 0.63 | 0.39 | 0.12 |
2020 | −0.14 | 0.63 | 0.40 | 0.11 |
2022 | −0.15 | 0.62 | 0.34 | 0.12 |
Year | MIN | MAX | MEAN | SD |
---|---|---|---|---|
2013 | −0.54 | 0.63 | −0.16 | 0.1 |
2015 | −0.40 | 0.61 | −0.18 | 0.09 |
2017 | −0.44 | 0.48 | −0.15 | 0.1 |
2019 | −0.44 | 0.42 | −0.19 | 0.1 |
2020 | −0.21 | 0.59 | −0.21 | 0.09 |
2022 | −0.52 | 0.39 | −0.13 | 0.11 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Seletković, A.; Kičić, M.; Ančić, M.; Kolić, J.; Pernar, R. The Urban Heat Island Analysis for the City of Zagreb in the Period 2013–2022 Utilizing Landsat 8 Satellite Imagery. Sustainability 2023, 15, 3963. https://doi.org/10.3390/su15053963
Seletković A, Kičić M, Ančić M, Kolić J, Pernar R. The Urban Heat Island Analysis for the City of Zagreb in the Period 2013–2022 Utilizing Landsat 8 Satellite Imagery. Sustainability. 2023; 15(5):3963. https://doi.org/10.3390/su15053963
Chicago/Turabian StyleSeletković, Ante, Martina Kičić, Mario Ančić, Jelena Kolić, and Renata Pernar. 2023. "The Urban Heat Island Analysis for the City of Zagreb in the Period 2013–2022 Utilizing Landsat 8 Satellite Imagery" Sustainability 15, no. 5: 3963. https://doi.org/10.3390/su15053963
APA StyleSeletković, A., Kičić, M., Ančić, M., Kolić, J., & Pernar, R. (2023). The Urban Heat Island Analysis for the City of Zagreb in the Period 2013–2022 Utilizing Landsat 8 Satellite Imagery. Sustainability, 15(5), 3963. https://doi.org/10.3390/su15053963