Isolation and Identification of New Soil Strains with Phosphate-Solubilizing and Exopolysaccharide-Producing Abilities in the Yellow River Wetland Nature Reserve of Luoyang City, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Soil Sample Collection
2.2. Soil Characteristics Analysis
2.3. Isolation and Selection of Candidate PSB
2.4. Isolation and Selection of Candidate EPS-Producing Strains
2.5. Identification of Candidate Strains
2.6. Statistical Analysis
3. Results and Discussion
3.1. Soil Characteristics
3.2. Screening and Isolation of Soil Bacteria
3.3. Identification of Soil Bacteria
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhao, Y.; Hu, C.; Zhang, X.; Lv, X.; Wang, Z. Response of sediment discharge to soil erosion control in the middle reaches of the yellow river. Catena 2021, 203, 105330. [Google Scholar] [CrossRef]
- Bu, X.; Cui, D.; Dong, S.; Mi, W.; Li, Y.; Li, Z.; Feng, Y. Effects of wetland restoration and conservation projects on soil carbon sequestration in the Ningxia basin of the Yellow River in China from 2000 to 2015. Sustainability 2020, 12, 10284. [Google Scholar] [CrossRef]
- Yan, Y.W.; Jiang, Q.Y.; Wang, J.G.; Zhu, T.; Quan, Z.X. Microbial communities and diversities in mudflat sediments analyzed using a modified metatranscriptomic method. Front. Microbiol. 2018, 9, 93. [Google Scholar] [CrossRef] [PubMed]
- Rossi, F.; Mugnai, G.; Philippis, R.D. Complex role of the polymeric matrix in biological soil crusts. Plant Soil 2018, 429, 19–34. [Google Scholar] [CrossRef]
- Zhao, L.N.; Li, X.R.; Wang, Z.R.; Qi, J.H.; Zhang, W.L.; Wang, Y.S.; Liu, Y.B. A new strain of Bacillus tequilensis CGMCC 17603 isolated from biological soil crusts: A promising sand-fixation agent for desertification control. Sustainability 2019, 11, 6501. [Google Scholar] [CrossRef] [Green Version]
- Lehman, A.P.; Long, S.R. Exopolysaccharides from Sinorhizobium meliloti can protect against H2O2-dependent damage. J. Bacteriol. 2013, 195, 5362–5369. [Google Scholar] [CrossRef] [Green Version]
- Flemming, H.C.; Neu, T.R.; Wozniak, D.J. The EPS matrix: The “house of biofilm cells”. J. Bacteriol. 2007, 189, 7945–7947. [Google Scholar] [CrossRef] [Green Version]
- Bagalkar, N.W. Isolation and Characterization of Phosphate Solubilizing Bacteria from Rhizospheric Soil of the Soybean Plants. Online Int. Interdiscip. Res. J. 2013, 3, 251–258. [Google Scholar]
- Miller, S.H.; Browne, P.; Prigent-Combaret, C.; Combes-Meynet, E.; Morrissey, J.P.; O’Gara, F. Biochemical and genomic comparison of inorganic phosphate solubilization in Pseudomonas species. Environ. Microbiol. Rep. 2009, 2, 403–411. [Google Scholar] [CrossRef]
- Illmer, P.; Schinner, F. Solubilization of inorganic calcium phosphates-solubilization mechanisms. Soil Biol. Biochem. 1995, 27, 257–263. [Google Scholar] [CrossRef]
- Wang, Y.Y.; Li, P.S.; Zhang, B.X.; Wang, Y.P.; Meng, J.; Gao, Y.F.; He, X.M.; Hu, X.M. Identification of phosphate-solubilizing microorganisms and determination of their phosphate-solubilizing activity and growth-promoting capability. BioResources 2020, 15, 2560–2578. [Google Scholar] [CrossRef]
- Gyaneshwar, P.; Kumar, G.N.; Parekh, L.J.; Poole, P.S. Role of soil microorganisms in improving P nutrition of plants. Plant Soil 2002, 245, 83–93. [Google Scholar] [CrossRef]
- Sati, S.C.; Pant, P. Evaluation of phosphate Solubilization by root endophytic aquatic Hyphomycete Tetracladium setigerum. Symbiosis 2019, 77, 141–145. [Google Scholar] [CrossRef]
- Zeng, Q.; Wu, X.; Wen, X. Identification and characterization of the rhizosphere phosphate-solubilizing bacterium Pseudomonas frederiksbergensis JW-SD2, and its plant growth-promoting effects on poplar seedlings. Ann. Microbiol. 2016, 66, 1343–1354. [Google Scholar] [CrossRef]
- Khan, M.S.; Zaidi, A.; Wani, P.A. Role of phosphate-solubilizing microorganisms in sustainable agriculture-a review. Agron. Sustain. Dev. 2007, 27, 29–43. [Google Scholar] [CrossRef]
- Liu, H.; Wu, X.Q.; Ren, J.H.; Ye, J.R. Isolation and identification rhizosphere from different of phosphobacteria in Poplar regions of China. Pedosphere 2011, 21, 90–97. [Google Scholar] [CrossRef]
- Nelson, D.W.; Sommers, L.E. Total carbon, organic carbon and organic matter. In Methods of Soil Analysis, Part 2 Chemical and Microbiological Properties; Page, A.L., Miller, R.H., Keeney, D.R., Eds.; American Society of Agronomy, Inc., Soil Science Society of America, Inc.: Madison, WI, USA, 1982; Volume 9, pp. 539–577. [Google Scholar]
- Olsen, S.R.; Cole, C.V.; Watanabe, F.S.; Dean, L.A. Estimation of Available Phosphorus in Soils by Extraction with Sodium Bicarbonate; Circular; US Department of Agriculture: Washington, DC, USA, 1954; Volume 939.
- Nanjing Institute of Soil Research. Analysis of Soil Physicochemical Features; Shanghai Science and Technology Press: Shanghai, China, 1980; 360p. (In Chinese) [Google Scholar]
- Nautiyal, C.S. An efficient microbiological growth medium for screening phosphate solubilizing microorganisms. FEMS Microbiol. Lett. 1999, 170, 265–270. [Google Scholar] [CrossRef]
- Abdhul, K.; Ganesh, M.; Shanmughapriya, S.; Kanagavel, M.; Anbarasu, K.; Natarajaseenivasan, K. Antioxidant activity of exopolysaccharide from probiotic strain Enterococcus faecium (BDU7) from Ngari. Int. J. Biol. Macromol. 2014, 70, 450–454. [Google Scholar] [CrossRef]
- Dubois, M.; Gilles, K.A.; Hamilton, J.K.; Rebers, P.A.; Smith, F. Colorimetric method for determination of sugars and related substances. Anal. Chem. 1956, 28, 350–356. [Google Scholar] [CrossRef]
- Sambrook, J.; Fritsch, E.F.; Maniatis, T. Molecular Cloning: A Laboratory Manual; Cold Spring Harbor Laboratory: Cold Spring Harbor, NY, USA, 1989. [Google Scholar]
- Tamura, K.; Peterson, D.; Peterson, N.; Stecher, G.; Nei, M.; Kumar, S. MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol. 2011, 28, 2731–2739. [Google Scholar] [CrossRef] [Green Version]
- Brenner, D.J.; Krieg, N.R.; Staley, J.T.; Garrity, G.M.; Boone, D.R.; Vos, P.; Goodfellow, M.; Rainey, F.A.; Schleifer, K.H. Bergey’s Manual of Systematic Bacteriology; The Proteobacteria; Springer: Berlin, Germany, 2006; Volume 2. [Google Scholar]
- Qin, C.L.; Li, S.B. Laboratory Manual of Microbiology; Weapon Industry Press: Beijing, China, 2008. (In Chinese) [Google Scholar]
- Rabot, E.; Wiesmeier, M.; Schlüter, S.; Vogel, H.J. Soil structure as an indicator of soil functions: A review. Geoderma 2018, 314, 122–137. [Google Scholar] [CrossRef]
- Suh, J.S.; Kwon, J.S. Characterization of phosphate-solubilizing microorganisms in upland and plastic film house soils. Korean J. Soil Sci. Fert. 2008, 41, 348–353. [Google Scholar]
- Bakhshandeh, E.; Pirdashti, H.; Lendeh, K.S. Phosphate and potassium-solubilizing bacteria effect on the growth of rice. Ecol. Eng. 2017, 103, 164–169. [Google Scholar] [CrossRef]
- Meena, V.S.; Maurya, B.R.; Verma, J.P.; Meena, R.S. Potassium Solubilizing Microorganisms for Sustainable Agriculture; Springer: New Delhi, India, 2016. [Google Scholar]
- Liu, X.; Jiang, X.; He, X.; Zhao, W.; Cao, Y.; Guo, T.; Li, T.; Ni, H.; Tang, X. Phosphate-solubilizing pseudomonas sp. strain p34-l promotes wheat growth by colonizing the wheat rhizosphere and improving the wheat root system and soil phosphorus nutritional status. J. Plant Growth Regul. 2019, 38, 1314–1324. [Google Scholar] [CrossRef]
- Wang, Q.; Ye, J.; Wu, Y.; Luo, S.; Chen, B.; Ma, L.; Pan, F.; Feng, Y.; Yang, X. Promotion of the root development and Zn uptake of Sedum alfredii was achieved by an endophytic bacterium Sasm05. Ecotoxicol. Environ. Saf. 2019, 172, 97–104. [Google Scholar] [CrossRef]
- Elhaissoufi, W.; Khourchi, S.; Ibnyasser, A.; Ghoulam, C.; Rchiad, Z.; Zeroual, Y.; Lyamlouli, K.; Bargaz, A. Phosphate solubilizing rhizobacteria could have a stronger influence on wheat root traits and aboveground physiology than rhizosphere P solubilization. Front. Plant Sci. 2020, 11, 979. [Google Scholar] [CrossRef]
- Chung, H.; Park, M.; Madhaiyan, M.; Seshadri, S.; Song, J.; Cho, H.; Sa, T. Isolation and characterization of phosphate solubilizing bacteria from the rhizosphere of crop plants of Korea. Soil Biol. Biochem. 2005, 37, 1970–1974. [Google Scholar] [CrossRef]
- Widawati, S. Augmentation of potential phosphate solubilizing bacteria (PSB) stimulate growth of green mustard (Brasica caventis Oed.) in marginal soil. Biodiversitas 2006, 7, 10–14. [Google Scholar] [CrossRef]
- Brisse, S.; van Himbergen, T.; Kusters, K.; Verhoef, J. Development of a rapid identification method for Klebsiella pneumoniae phylogenetic groups and analysis of 420 clinical isolates. Clin. Microbiol. Infect. 2004, 10, 942–945. [Google Scholar] [CrossRef] [Green Version]
- Alves, M.S.; Dias, R.C.; de Castro, A.C.; Riley, L.W.; Moreira, B.M. Identification of clinical isolates of indole-positive and indole-negative Klebsiella spp. J. Clin. Microbiol. 2006, 44, 3640–3646. [Google Scholar] [CrossRef] [Green Version]
- Garza-Ramos, U.; Silva-Sánchez, J.; Martínez-Romero, E.; Tinoco, P.; Pina-Gonzales, M.; Barrios, H.; Martínez-Barnetche, J.; Gómez-Barreto, R.E.; Tellez-Sosa, J. Development of a multiplex-PCR probe system for the proper identification of Klebsiella variicola. BMC Microbiol. 2015, 15, 64. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Holt, K.E.; Wertheim, H.; Zadoks, R.N.; Baker, S. Genomic analysis of diversity, population structure, virulence, and antimicrobial resistance in Klebsiella pneumoniae, an urgent threat to public health. Proc. Natl. Acad. Sci. USA 2015, 112, 3574–3581. [Google Scholar] [CrossRef] [PubMed]
- Tewari, S.; Arora, N.K. Role of salicylic acid from Pseudomonas aeruginosa PF23 EPS+ in growth promotion of sunflower in saline soils infested with phytopathogen Macrophomina phaseolina. Environ. Sustain. 2018, 1, 49–59. [Google Scholar] [CrossRef]
- Mahmood, S.; Daur, I.; Al-Solaimani, S.G.; Ahmad, S.; Madkour, M.H.; Yasir, M.; Hirt, H.; Ali, S.; Ali, Z. Plant growth promoting rhizobacteria and silicon synergistically enhance salinity tolerance of mung bean. Front. Plant Sci. 2016, 7, 876. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ashraf, M.; Hasnain, S.; Berge, O.; Mahmood, T. Inoculating wheat seedlings with exopolysaccharide-producing bacteria restricts sodium uptake and stimulates plant growth under salt stress. Biol. Fertil. Soils 2004, 40, 157–162. [Google Scholar] [CrossRef]
- Greiner, R.; Haller, E.; Konietzny, U.; Jany, K.D. Purification and characterization of a phytase from Klebsella terrigena. Arch. Biochem. Biophys. 1997, 341, 201–206. [Google Scholar] [CrossRef]
- Chen, M.Y.; Li, Y.Y.; Li, S.Y.; Tang, L.; Zheng, J.W.; An, Q.L. Genomic identification of nitrogen-fixing Klebsiella variicola, K. pneumoniae and K. quasipneumoniae. J. Basic Microbiol. 2016, 56, 78–84. [Google Scholar] [CrossRef]
- Rosenblueth, M.; Martínez, L.; Silva, J.; Martínez-Romero, E. Klebsiella variicola, a novel species with clinical and plant-associated isolates. Syst. Appl. Microbiol. 2004, 27, 27–35. [Google Scholar] [CrossRef]
- Temme, K.; Tamsir, A.; Bloch, S.; Clark, R.; Tung, E. Methods and Compositions for Improving Plant Traits; USPTO, Pivot Bio, Inc.: Berkeley, CA, USA, 2020. [Google Scholar]
Characteristics | PD3 | PD12 | PD14 | EPS12 | EPS15 | EPS19 | EPS18 |
---|---|---|---|---|---|---|---|
Methyl red test | – (a) | – | – | – | – | – | + |
Voges–Proskauer reaction | + (b) | + | + | – | – | – | – |
Amylolysis test | + | + | + | – | – | – | + |
Gelatin liquefaction | – | – | – | – | – | – | + |
Catalase test | + | + | + | + | + | + | + |
Indole production | – | – | – | – | – | – | – |
Utilization of citrate | + | + | + | – | – | – | – |
Nitrate reduction | + | + | + | + | + | + | + |
Acid production from: | |||||||
Glucose | + | + | + | + | + | + | + |
Galactose | + | + | + | – | – | – | + |
D-Mannose | + | + | + | – | – | – | + |
Maltose | + | + | + | – | – | – | + |
Sucrose | + | + | + | – | – | – | + |
Fructose | + | + | + | – | – | – | + |
Gas production from glucose | + | + | + | – | – | – | – |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, X.; Niu, Y.; Du, Y.; Geng, C.; Guo, C.; Zhao, L. Isolation and Identification of New Soil Strains with Phosphate-Solubilizing and Exopolysaccharide-Producing Abilities in the Yellow River Wetland Nature Reserve of Luoyang City, China. Sustainability 2023, 15, 3607. https://doi.org/10.3390/su15043607
Sun X, Niu Y, Du Y, Geng C, Guo C, Zhao L. Isolation and Identification of New Soil Strains with Phosphate-Solubilizing and Exopolysaccharide-Producing Abilities in the Yellow River Wetland Nature Reserve of Luoyang City, China. Sustainability. 2023; 15(4):3607. https://doi.org/10.3390/su15043607
Chicago/Turabian StyleSun, Xiaofei, Yuting Niu, Yaoze Du, Chenxue Geng, Chunli Guo, and Lina Zhao. 2023. "Isolation and Identification of New Soil Strains with Phosphate-Solubilizing and Exopolysaccharide-Producing Abilities in the Yellow River Wetland Nature Reserve of Luoyang City, China" Sustainability 15, no. 4: 3607. https://doi.org/10.3390/su15043607
APA StyleSun, X., Niu, Y., Du, Y., Geng, C., Guo, C., & Zhao, L. (2023). Isolation and Identification of New Soil Strains with Phosphate-Solubilizing and Exopolysaccharide-Producing Abilities in the Yellow River Wetland Nature Reserve of Luoyang City, China. Sustainability, 15(4), 3607. https://doi.org/10.3390/su15043607