Eating Sturgeon: An Endangered Delicacy
Abstract
:1. Introduction
2. Sustainability and Economic Relevance
3. Processing and Preservation Technologies
3.1. Sturgeon Meat or Flesh
3.2. Sturgeon Caviar or Eggs
4. Food Quality and Authenticity
4.1. Fluorescence Spectroscopy
4.2. Mid-Infrared Spectroscopy
5. Nutritional Profile and Health Impacts
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bronzi, P.; Rosenthal, H. Present and future sturgeon and caviar production and marketing: A global market over-view. J. Appl. Ichthyol. 2014, 30, 1536–1546. [Google Scholar] [CrossRef]
- IUCN. The IUCN Red List of Threatened Species; Version 2018–1, IUCN: Gland, Switzerland, 2018. [Google Scholar]
- Pikitch, E.K.; Doukakis, P.; Lauck, L.; Chakrabarty, P.; Erickson, D.L. Status, trends and management of sturgeon and paddlefish fisheries. Fish Fish. 2005, 6, 233–265. [Google Scholar] [CrossRef]
- Litvak, M. The Sturgeons (Family: Acipenseridae). In Finfish Aquaculture Diversification; CABI: Wallingford, UK, 2010; pp. 178–199. [Google Scholar]
- Tavakoli, S.; Luo, Y.; Regenstein, J.M.; Daneshvar, E.; Bhatnagar, A.; Tan, Y.; Hong, H. Sturgeon, Caviar, and Caviar Substitutes: From Production, Gastronomy, Nutrition, and Quality Change to Trade and Commercial Mimicry. Rev. Fish. Sci. Aquac. 2021, 29, 753–768. [Google Scholar] [CrossRef]
- Reza, S.A.; Karmaker, S.; Hasan, M.; Roy, S.; Hoque, R.; Rahman, N. Effect of Traditional Fish Processing Methods on the Proximate and Microbiological Characteristics of Laubuka dadiburjori During Storage at Room Temperature. J. Fish. Aquat. Sci. 2015, 10, 232–243. [Google Scholar] [CrossRef]
- Kaya, Y.; Turan, H.; Erdem, M.E. Fatty acid and amino acid composition of raw and hot smoked sturgeon (Huso huso, L. 1758). Int. J. Food Sci. Nutr. 2008, 59, 635–642. [Google Scholar] [CrossRef]
- Pelic, M.; Knezevic, S.V.; Balos, M.Z.; Popov, N.; Novakov, N.; Cirkovic, M.; Pelic, D.L. Fatty acid composition of Acipenseridae–sturgeon fish. IOP Conf. Ser. Earth Environ. Sci. 2019, 333, 012092. [Google Scholar] [CrossRef]
- Ghomi, M.R.; Nikoo, M.; Pourshamsian, K. Omega-6/omega-3 essential fatty acid ratio in cultured beluga stur-geon. Comp. Clin. Pathol. 2012, 21, 479–483. [Google Scholar] [CrossRef]
- Bronzi, P.; Chebanov, M.; Michaels, J.T.; Wei, Q.; Rosenthal, H.; Gessner, J. Sturgeon meat and caviar production: Global update. J. Appl. Ichthyol. 2019, 35, 257–266. [Google Scholar] [CrossRef]
- Vilkova, D.; Chèné, C.; Kondratenko, E.; Karoui, R. A comprehensive review on the assessment of the quality and authenticity of the sturgeon species by different analytical techniques. Food Control. 2022, 133, 108479. [Google Scholar] [CrossRef]
- Bronzi, P.; Rosenthal, H.; Arlati, G.; Williot, P. A brief overview on the status and prospects of sturgeon farming in Western and Central Europe. J. Appl. Ichthyol. 1999, 15, 224–227. [Google Scholar] [CrossRef]
- Bronzi, P.; Rosenthal, H.; Gessner, J. Global sturgeon aquaculture production: An overview. J. Appl. Ichthyol. 2011, 27, 169–175. [Google Scholar] [CrossRef]
- Williot, P.; Bronzi, P.; Arlati, G. A very brief survey of status and prospects of freshwater sturgeon farming in Europe. In Workshop on Aquaculture of Freshwater Species (except Salmonids); Kestemont, P., Billard, R., Eds.; European Aquaculture Society: Ghent, Belgium, 1993; Volume 20, pp. 32–36. [Google Scholar]
- Williot, P.; Nonnotte, G.; Chebanov, M. (Eds.) . The Siberian sturgeon (Acipenser baerii, Brandt, 1869) Volume 2—Farming; Springer: Berlin/Heidelberg, Germany, 2018; p. 590. [Google Scholar]
- IUCN. The International Union for Conservation of Nature’s Red List of Threatened Species (IUCN) Red List of Threatened Species, Version 2022. Available online: https://www.iucnredlist.org/ (accessed on 6 November 2022).
- Lopez, A.; Vasconi, M.; Bellagamba, F.; Mentasti, T.; Moretti, V.M. Sturgeon Meat and Caviar Quality from Different Cultured Species. Fishes 2020, 5, 9. [Google Scholar] [CrossRef]
- Paul, M.; Thomas, H.; Thomas, F.; Alice, V.; Tibor, E.; Michael, S.; Horst, Z.; Mirjana, L.; Ladislav, P.; Pauline, J.; et al. Sturgeons in large rivers: Detecting the near-extinct needles in a haystack via eDNA metabarcoding from water samples. Biodivers. Conserv. 2022, 31, 2817–2832. [Google Scholar]
- Harris, L.; Shiraishi, H. Understanding the global caviar market. Results of a rapid assessment of trade in sturgeon caviar. TRAFFIC WWF Jt. Rep. 2018, 94. [Google Scholar]
- Zabyelina, Y.G. The “fishy” business: A qualitative analysis of the illicit market in black caviar. Trends Organ. Crime 2014, 17, 181–198. [Google Scholar] [CrossRef]
- Carlson, K.T. A Sto: Lo-Coast Salish Historical Atlas eds. In Douglas and McIntyre; Douglas and MacIntyre: Vancouver, BC, Canada, 2001; ISBN 1-55054-812-3. [Google Scholar]
- Rousmaniere, N. An Interview with Bill Clark; Faculty of Arts and Humanities, University of East Anglia: Norwich, England, 2002. [Google Scholar]
- Hope, R. Interview with Richard Hope; Sagamore Publishing LLC: Champaign, IL, USA, 1988. [Google Scholar]
- Lee, K.-E.; Nho, Y.-H.; Yun, S.K.; Park, S.-M.; Kang, S.; Yeo, H. Caviar Extract and Its Constituent DHA Inhibits UVB-Irradiated Skin Aging by Inducing Adiponectin Production. Int. J. Mol. Sci. 2020, 21, 3383. [Google Scholar] [CrossRef]
- Oloriz, C.; Parlee, B. Towards Biocultural Conservation: Local and Indigenous Knowledge, Cultural Values and Governance of the White Sturgeon (Canada). Sustainability 2020, 12, 7320. [Google Scholar] [CrossRef]
- Degani, G.; Din, G.Y. A Business Analysis of Innovations in Aquaculture: Evidence from Israeli Sturgeon Caviar Farm. Businesses 2022, 2, 290–299. [Google Scholar] [CrossRef]
- Scarnecchia, D.L.; Lim, Y.; Ryckman, L.F.; Backes, K.M.; Miller, S.E.; Gangl, R.S.; Schmitz, B.J. Virtual Population Analysis, Episodic Recruitment, and Harvest Management of Paddlefish with Applications to Other Acipenseriform Fishes. Rev. Fish. Sci. Aquac. 2014, 22, 16–35. [Google Scholar] [CrossRef]
- Stokesbury, K.; Stokesbury, M.; Balazik, M.; Dadswell, M. Use of the SAFE index to evaluate the status of a summer ag-gregation of atlantic sturgeon in Minas Basin, Canada, and the implication of the index for the USA endangered species des-ignation of atlantic and shortnose sturgeons. Rev. Fish Sci. Aquac. 2014, 22, 193–206. [Google Scholar] [CrossRef]
- Wu, H.; Chen, J.; Xu, J.; Zeng, G.; Sang, L.; Liu, Q.; Yin, Z.; Dai, J.; Yin, D.; Liang, J.; et al. Effects of dam construction on biodiversity: A review. J. Clean. Prod. 2019, 221, 480–489. [Google Scholar] [CrossRef]
- Van Uhm, D.; Siegel, D. The illegal trade in black caviar. Trends Organ. Crime 2016, 19, 67–87. [Google Scholar] [CrossRef] [Green Version]
- Boscari, E.; Vitulo, N.; Ludwig, A.; Caruso, C.; Mugue, N.S.; Suciu, R.; Onara, D.F.; Papetti, C.; Marino, I.A.; Zane, L.; et al. Fast genetic identification of the Beluga sturgeon and its sought-after caviar to stem illegal trade. Food Control. 2017, 75, 145–152. [Google Scholar] [CrossRef]
- Lougovois, V.P.; Kyrana, V.R. Freshness quality and spoilage of chill-stored fish. Food policy. Control. Res. 2005, 1, 35–86. [Google Scholar]
- Zhao, N.; Yang, X.; Li, Y.; Wu, H.; Chen, Y.; Gao, R.; Xiao, F.; Bai, F.; Wang, J.; Liu, Z.; et al. Effects of protein oxidation, cathepsins, and various freezing temperatures on the quality of superchilled sturgeon fillets. Mar. Life Sci. Technol. 2021, 4, 117–126. [Google Scholar] [CrossRef]
- Hou, W.; Han, Q.; Gong, H.; Liu, W.; Wang, H.; Zhou, M.; Min, T.; Pan, S. Analysis of volatile compounds in fresh sturgeon with different preservation methods using electronic nose and gas chromatography/mass spectrometry. RSC Adv. 2019, 9, 39090–39099. [Google Scholar] [CrossRef]
- Ghelichi, S.; Hajfathalian, M.; Bekhit, A.E.D.A. Caviar: Processing, composition, safety, and sensory attributes. In Fish Roe; Academic Press: Cambridge, MA, USA, 2022; pp. 183–209. [Google Scholar]
- Bhaskar, S.; Kavle, R.R.; Bekhit AE, D.A.; Agyei, D. Prospects for processing of fish roe and caviar using novel techniques. In Fish Roe; Academic Press: Cambridge, MA, USA, 2022; pp. 383–400. [Google Scholar]
- Li, X.; Xie, W.; Bai, F.; Wang, J.; Zhou, X.; Gao, R.; Xu, X.; Zhao, Y. Influence of thermal processing on flavor and sensory profile of sturgeon meat. Food Chem. 2021, 374, 131689. [Google Scholar] [CrossRef]
- Nieva-Echevarría, B.; Goicoechea, E.; Manzanos, M.J.; Guillén, M.D. Effects of different cooking methods on the lipids and volatile components of farmed and wild European sea bass (Dicentrarchus labrax). Food Res. Int. 2018, 103, 48–58. [Google Scholar] [CrossRef]
- Gong, C.; Li, Y.; Gao, R.; Xiao, F.; Zhou, X.; Wang, H.; Xu, H.; Wang, R.; Huang, P.; Zhao, Y. Preservation of sturgeon using a photodynamic non-thermal disinfection technology mediated by curcumin. Food Biosci. 2020, 36, 100594. [Google Scholar] [CrossRef]
- Han, X.; Liu, A.; Lin, Y.; Ye, K.; Zhang, Y.; Li, J.; Fang, Y.; Huang, G. Simultaneous separation of protein and oil from the liver of sturgeon (Acipenser baerii) by three-phase partitioning. J. Food Process. Preserv. 2021, 46, e16259. [Google Scholar] [CrossRef]
- Liu, F.; Dong, X.; Shen, S.; Shi, Y.; Ou, Y.; Cai, W.; Chen, Y.; Zhu, B. Changes in the digestion properties and protein conformation of sturgeon myofibrillar protein treated by low temperature vacuum heating during in vitro digestion. Food Funct. 2021, 12, 6981–6991. [Google Scholar] [CrossRef] [PubMed]
- Wei, J.; Wu, Z.; Chai, T.; He, F.; Chen, Y.; Dong, X.; Shi, Y. Effect of the combination of low temperature vacuum heating with tea polyphenol on AGEs in sturgeon fillets. Int. J. Food Sci. Technol. 2022, 56, 4065–4075. [Google Scholar] [CrossRef]
- Zhou, P.; Feng, Q.; Yang, X.; Gao, R.; Li, Y.; Bai, F.; Wang, J.; Zhou, X.; Wang, H.; Xiao, F.; et al. Sous vide pretreatment in cooking sturgeon fish burger: Effects on physicochemical properties and sensory characteristics. Int. J. Food Sci. Technol. 2020, 56, 2973–2982. [Google Scholar] [CrossRef]
- Williot, P.; Sabeau, L.; Gessner, J.; Arlati, G.; Bronzi, P.; Gulyas, T.; Berni, P. Sturgeon farming in Western Europe: Recent developments and perspectives. Aquat. Living Resour. 2001, 14, 367–374. [Google Scholar] [CrossRef]
- Vasconi, M.; Tirloni, E.; Stella, S.; Coppola, C.; Lopez, A.; Bellagamba, F.; Bernardi, C.; Moretti, V.M. Comparison of Chemical Composition and Safety Issues in Fish Roe Products: Application of Chemometrics to Chemical Data. Foods 2020, 9, 540. [Google Scholar] [CrossRef]
- Alak, G.; Kaynar, Ö.; Atamanalp, M. The impact of salt concentrations on the physicochemical and microbiological changes of rainbow trout caviar. Food Biosci. 2021, 41, 100976. [Google Scholar] [CrossRef]
- McHugh, T. How Caviar Is Processed. Food Technology Magazine; Institute of Food Technology: Chicago, IL, USA, 2020; Volume 74, Available online: https://www.ift.org/news-and-publications/food-technology-magazine/issues/2020/february/columns/how-caviar-is-processed (accessed on 9 November 2022).
- Moradi, Y. HACCP in Iranian Caviar. Emir. J. Food Agric. 2003, 15, 72–79. [Google Scholar] [CrossRef]
- Ghaly, A.E.; Dave, D.; Budge, S.; Brooks, M.S. Fish Spoilage Mechanisms and Preservation Techniques: Review. Am. J. Appl. Sci. 2010, 7, 859–877. [Google Scholar] [CrossRef]
- Hosseini, S.V.; Abedian-Kenari, A.; Rezaei, M.; Nazari, R.M.; Feás, X.; Rabbani, M. Influence of the in vivo addition of alpha-tocopheryl acetate with three lipid sources on the lipid oxidation and fatty acid composition of Beluga sturgeon, Huso huso, during frozen storage. Food Chem. 2010, 118, 341–348. [Google Scholar] [CrossRef]
- Rostamzad, H.; Shabanpour, B.; Kashaninejad, M.; Shabani, A. Antioxidative activity of citric and ascorbic acids and their preventive effect on lipid oxidation in frozen Persian sturgeon fillets. Lat. Am. Appl. Res. 2011, 41, 135–140. [Google Scholar]
- Chen, Y.-W.; Cai, W.-Q.; Shi, Y.-G.; Dong, X.-P.; Bai, F.; Shen, S.-K.; Jiao, R.; Zhang, X.-Y.; Zhu, X. Effects of different salt concentrations and vacuum packaging on the shelf-stability of Russian sturgeon (Acipenser gueldenstaedti) stored at 4 °C. Food Control 2020, 109, 106865. [Google Scholar] [CrossRef]
- Oliveira, A.C.M.; Balaban, M.; O’Keefe, S.F. Composition and Consumer Attribute Analysis of Smoked Fillets of Gulf Sturgeon (Ancipenser oxyrinchus desotoi) Fed Different Commercial Diets. J. Aquat. Food Prod. Technol. 2006, 15, 33–48. [Google Scholar] [CrossRef]
- Sarah, H.; Hadiseh, K.; Gholamhossein, A.; Bahareh, S. Effect of green tea (Camellia sinenses) extract and onion (Allium cepa) juice on lipid degradation and sensory acceptance of Persian sturgeon (Acipenser persicus) fillets. Int. Food Res. J. 2010, 17, 751–761. [Google Scholar]
- Manju, S.; Jose, L.; Gopal, T.S.; Ravishankar, C.; Lalitha, K. Effects of sodium acetate dip treatment and vacuum-packaging on chemical, microbiological, textural and sensory changes of Pearlspot (Etroplus suratensis) during chill storage. Food Chem. 2007, 102, 27–35. [Google Scholar] [CrossRef]
- García, M.R.; Cabo, M.L.; Herrera, J.R.; Ramilo-Fernández, G.; Alonso, A.A.; Balsa-Canto, E. Smart sensor to predict retail fresh fish quality under ice storage. J. Food Eng. 2017, 197, 87–97. [Google Scholar] [CrossRef] [Green Version]
- Karoui, R.; Hassoun, A.; Ethuin, P. Front face fluorescence spectroscopy enables rapid differentiation of fresh and frozen-thawed sea bass (Dicentrarchus labrax) fillets. J. Food Eng. 2017, 202, 89–98. [Google Scholar] [CrossRef]
- Hassoun, A.; Karoui, R. Monitoring changes in whiting (Merlangius merlangus) fillets stored under modified at-mosphere packaging by front face fluorescence spectroscopy and instrumental techniques. Food Chem. 2016, 200, 343–353. [Google Scholar] [CrossRef] [PubMed]
- Hassoun, A.; Karoui, R. Quality Evaluation of Fish and Other Seafood by Traditional and Nondestructive Instrumental Methods: Advantages and Limitations. Crit. Rev. Food Sci. Nutr. 2015, 57, 1976–1998. [Google Scholar] [CrossRef] [PubMed]
- Karoui, R.; Hassoun, A. Efficiency of Rosemary and Basil Essential Oils on the Shelf-Life Extension of Atlantic Mackerel (Scomber scombrus) Fillets Stored at 2 °C. J. AOAC Int. 2017, 100, 335–344. [Google Scholar] [CrossRef] [PubMed]
- Blecker, C.; Habib-Jiwan, J.-M.; Karoui, R. Effect of heat treatment of rennet skim milk induced coagulation on the rheological properties and molecular structure determined by synchronous fluorescence spectroscopy and turbiscan. Food Chem. 2012, 135, 1809–1817. [Google Scholar] [CrossRef] [PubMed]
- Karoui, R.; Dufour, É.; De Baerdemaeker, J. Front face fluorescence spectroscopy coupled with chemometric tools for monitoring the oxidation of semi-hard cheeses throughout ripening. Food Chem. 2007, 101, 1305–1314. [Google Scholar] [CrossRef]
- Karoui, R.; Hammami, M.; Rouissi, H.; Blecker, C. Mid infrared and fluorescence spectroscopies coupled with factorial discriminant analysis technique to identify sheep milk from different feeding systems. Food Chem. 2011, 127, 743–748. [Google Scholar] [CrossRef] [PubMed]
- Karoui, R.; Mouazen, A.M.; Ramon, H.; Schoonheydt, R.; De Baerdemaeker, J. Feasibility study of discriminating the manufacturing process and sampling zone in ripened soft cheeses using attenuated total reflectance MIR and fiber optic diffuse reflectance VIS–NIR spectroscopy. Food Res. Int. 2006, 39, 588–597. [Google Scholar] [CrossRef]
- Karoui, R.; Schoonheydt, R.; Decuypere, E.; Nicolai, B.; De Baerdemaeker, J. Front face fluorescence spectroscopy as a tool for the assessment of egg freshness during storage at a temperature of 12.2 °C and 87% relative humidity. Anal. Chim. Acta 2007, 582, 83–91. [Google Scholar] [CrossRef]
- Karoui, R.; Nicolaï, B.; De Baerdemaeker, J. Monitoring the Egg Freshness During Storage Under Modified Atmosphere by Fluorescence Spectroscopy. Food Bioprocess Technol. 2007, 1, 346–356. [Google Scholar] [CrossRef]
- Karoui, R.; Kemps, B.; Bamelis, F.; De Ketelaere, B.; Merten, K.; Schoonheydt, R.; Decuypere, E.; De Baerdemaeker, J. Development of a rapid method based on front face fluorescence spectroscopy for the monitoring of egg freshness: 1—Evolution of thick and thin egg albumens. Eur. Food Res. Technol. 2006, 223, 303–312. [Google Scholar] [CrossRef]
- Boughattas, F.; Vilkova, D.; Kondratenko, E.; Karoui, R. Targeted and untargeted techniques coupled with chemo-metric tools for the evaluation of sturgeon (Acipenser gueldenstaedtii) freshness during storage at 4 °C. Food Chem. 2020, 312, 126000. [Google Scholar] [CrossRef]
- Ottavian, M.; Fasolato, L.; Facco, P.; Barolo, M. Foodstuff authentication from spectral data: Toward a spe-cies-independent discrimination between fresh and frozen–thawed fish samples. J. Food Eng. 2013, 119, 765–775. [Google Scholar] [CrossRef]
- Vilkova, D.; Kondratenko, E.; Chèné, C.; Karoui, R. Effect of multiple freeze–thaw cycles on the quality of Russian sturgeon (Acipenser gueldenstaedtii) determined by traditional and emerging techniques. Eur. Food Res. Technol. 2021, 248, 95–107. [Google Scholar] [CrossRef]
- Jiang, Z.; Rui-Zhang Guan, S.-Y.H. Comparative studies on the characteristics of the antilymphocyte sera. Pol. Med. J. 2008, 10, 320–326. [Google Scholar]
- Noman, A.; Ali, A.H.; Al-Bukhaiti, W.Q.; Mahdi, A.A.; Xia, W. Structural and physicochemical characteristics of lyophilized Chinese sturgeon protein hydrolysates prepared by using two different enzymes. J. Food Sci. 2020, 85, 3313–3322. [Google Scholar] [CrossRef]
- Pinilla, C.M.B.; Brandelli, A.; López-Caballero, M.E.; Montero, P.; Gómez-Guillén, M.D.C. Structural features of myofibrillar fish protein interacting with phosphatidylcholine liposomes. Food Res. Int. 2020, 137, 109687. [Google Scholar] [CrossRef] [PubMed]
- Badiani, A.; Stipa, S.; Nanni, N.; Gatta, P.P.; Manfredini, M. Physical Indices, Processing Yields, Compositional Parameters and Fatty Acid Profile of Three Species of Cultured Sturgeon (Genus Acipenser). J. Sci. Food Agric. 1997, 74, 257–264. [Google Scholar] [CrossRef]
- Badiani, A.; Anfossi, P.; Fiorentini, L.; Gatta, P.P.; Manfredini, M.; Nanni, N.; Stipa, S.; Tolomelli, B. Nutritional composition of cultured sturgeon (Acipenser spp.). J. Food Compos. Anal. 1996, 9, 171–190. [Google Scholar] [CrossRef]
- Stansby, M.E. Chemical characteristics of fish caught in the northeast Pacific Ocean. Mar. Fish. Rev. 1976, 38, 7210949. [Google Scholar]
- Paleari, M.A.; Beretta, G.; Grimaldi, P.; Vaini, F. Composition of muscle tissue of farmed white sturgeon (Acipenser transmontanus) with particular reference to lipidic content. J. Appl. Ichthyol. 1997, 13, 63–66. [Google Scholar] [CrossRef]
- Palmegiano, G.B.; Agradi, E.; Forneris, G.; Gai, F.; Gasco, L.; Rigamonti, E.; Sicuro, B.; Zoccarato, I. Spirulina as a nutrient source in diets for growing sturgeon (Acipenser baeri). Aquac. Res. 2005, 36, 188–195. [Google Scholar] [CrossRef]
- Dyall, S.C. Long-chain omega-3 fatty acids and the brain: A review of the independent and shared effects of EPA, DPA and DHA. Front. Aging Neurosci. 2015, 7, 52. [Google Scholar] [CrossRef] [PubMed]
- Harris, W.S.; Del Gobbo, L.; Tintle, N.L. The Omega-3 Index and relative risk for coronary heart disease mortality: Estimation from 10 cohort studies. Atherosclerosis 2017, 262, 51–54. [Google Scholar] [CrossRef]
- Bloomer, R.J.; E Larson, D.; Fisher-Wellman, K.H.; Galpin, A.J.; Schilling, B.K. Effect of eicosapentaenoic and docosahexaenoic acid on resting and exercise-induced inflammatory and oxidative stress biomarkers: A randomized, placebo controlled, cross-over study. Lipids Health Dis. 2009, 8, 36. [Google Scholar] [CrossRef]
- Bouwens, M.; van de Rest, O.; Dellschaft, N.; Bromhaar, M.G.; de Groot, L.C.; Geleijnse, J.M.; Müller, M.; Afman, L.A. Fish-oil supplementation induces antiinflammatory gene expression profiles in human blood mononuclear cells. Am. J. Clin. Nutr. 2009, 90, 415–424. [Google Scholar] [CrossRef] [PubMed]
- Gong, Y.; Huang, Y.; Gao, L.; Lu, J.; Hu, Y.; Xia, L.; Huang, H. Nutritional composition of caviar from three commercially farmed sturgeon species in China. J. Food Nutr. Res. 2013, 1, 108–112. [Google Scholar] [CrossRef]
- Mol, S.; Turan, S. Comparison of Proximate, Fatty Acid and Amino Acid Compositions of Various Types of Fish Roes. Int. J. Food Prop. 2008, 11, 669–677. [Google Scholar] [CrossRef]
- Crawford, M.A.; Golfetto, I.; Ghebremeskel, K.; Min, Y.; Moodley, T.; Poston, L.; Phylactos, A.; Cunnane, S.; Schmidt, W. The potential role for arachidonic and docosahexaenoic acids in protection against some central nervous system injuries in preterm infants. Lipids 2003, 38, 303–315. [Google Scholar] [CrossRef]
- Lukiw, W.J.; Bazan, N.G. Docosahexaenoic Acid and the Aging Brain. J. Nutr. 2008, 138, 2510–2514. [Google Scholar] [CrossRef]
- Vilgis, T.A. The physics of the mouthfeel of caviar and other fish roe. Int. J. Gastron. Food Sci. 2019, 19, 100192. [Google Scholar] [CrossRef]
- Swanson, D.; Block, R.; Mousa, S.A. Omega-3 Fatty Acids EPA and DHA: Health Benefits Throughout Life. Adv. Nutr. 2012, 3, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Simopoulos, A.P. The importance of the omega-6/omega-3 fatty acid ratio in cardiovascular disease and other chronic diseases. Exp. Biol. Med. 2008, 233, 674–688. [Google Scholar] [CrossRef]
- Simopoulos, A.P. The omega-6/omega-3 fatty acid ratio: Health implications. Oléagineux Corps Gras Lipides 2010, 17, 267–275. [Google Scholar] [CrossRef]
- Abraha, B.; Mahmud, A.; Admassu, H.; Yang, F.; Tsighe, N.; Girmatsion, M.; Xia, W.; Magoha, P.; Yu, P.; Jiang, Q.; et al. Production and Quality Evaluation of Biscuit Incorporated with Fish Fillet Protein Concentrate. J. Nutr. Food Sci. 2018, 8, 100074. [Google Scholar] [CrossRef]
Sturgeon Species | Siberian (A. baerii) | White (A. transmontanus) | White (A. transmontanus) |
---|---|---|---|
Farmed for | Caviar production | Caviar production | Meat production |
Gender | Female | Female | Male |
Average fish weight | 5–8 kg | 30–50 kg | 6–10 kg |
n | 5 | 5 | 5 |
Proximate composition | |||
Moisture | 75.5 ± 1.6 | 75.2 ± 3.3 | 77.7 ± 1.1 |
Ash | 1.3 ± 0.2 | 1.2 ± 0.3 | 1.1 ± 0.0 |
Lipid | 5.6 ± 1.7 | 3.9 ± 2.5 | 2.6 ± 0.8 |
Protein | 17.6 ± 0.5 A | 19.6 ± 0.8 B | 18.6 ± 0.5 A,B ** |
Fatty Acid (g/100 g) | Sign. | |||
---|---|---|---|---|
14:0 | 1.3 ± 0.1 | 1.9 ± 0.6 | 1.7 ± 1.3 | |
16:0 | 15.5 ± 0.7 | 17.6 ± 0.8 | 16.9 ± 1.9 | |
18:0 | 2.4 ± 0.5 A | 3.9 ± 1.4 A | 5.9 ± 1.2 B | ** |
ΣSFA | 19.2 ± 0.6 A | 23.4 ± 1.6 B | 24.5 ± 3.3 B | ** |
16:1n7 | 3.3 ± 0.6 | 3.4 ± 1.1 | 2.9 ± 2.0 | |
18:1n9 | 37.5 ± 2.6 A | 34.0 ± 2.3 A | 25.0 ± 6.3 B | ** |
18:1n7 | 2.8 ± 0.1 | 3.1 ± 0.1 | 2.9 ± 0.3 | |
20:1n9 | 1.8 ± 0.1 A | 2.2 ± 0.5 A | 0.5 ± 1.1 B | ** |
ΣMUFA | 45.5 ± 2.8 A | 42.7 ± 3.5 A | 31.3 ± 5.5 B | ** |
18:2n6 | 16.1 ± 0.3 | 11.9 ± 0.7 | 14.1 ± 5.1 | |
18:3n6 | 1.3 ± 0.4 A | 0.4 ± 0.1 B | 0.4 ± 0.2 B | ** |
18:3n3 | 2.7 ± 0.4 A | 1.6 ± 0.4 B | 1.9 ± 0.8 A,B | * |
20:2n6 | 0.9 ± 0.2 | 0.7 ± 0.2 | 0.8 ± 0.3 | |
20:3n6 | 0.5 ± 0.2 A,B | 0.3 ± 0.0 A | 0.6 ± 0.2 B | * |
20:4n6 | 1.6 ± 0.4 A | 2.0 ± 0.8 A | 3.6 ± 0.9 B | ** |
20:3n3 | 0.2 ± 0.1 | 0.2 ± 0.0 | 0.2 ± 0.2 | |
20:5n3 | 3.9 ± 0.8 A | 5.7 ± 0.8 A,B | 8.6 ± 4.5 B | * |
22:5n3 | 0.9 ± 0.6 | 1.4 ± 0.3 | 1.8 ± 0.7 | |
22:6n3 | 7.3 ± 1.5 A | 9.7 ± 1.9 A,B | 12.3 ± 3.2 B | * |
ΣPUFA | 35.3 ± 2.7 A | 33.9 ± 2.1 A | 44.2 ± 2.9 B | ** |
Σ n3 | 15.0 ± 2.2 A | 18.5 ± 1.5 A,B | 24.7 ± 7.4 B | * |
Σ n6 | 20.4 ± 1.0 | 15.4 ± 1.2 | 19.5 ± 5.0 | |
n3/n6 | 0.7 ± 0.1 | 1.2 ± 0.1 | 1.4 ± 0.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Raposo, A.; Alturki, H.A.; Alkutbe, R.; Raheem, D. Eating Sturgeon: An Endangered Delicacy. Sustainability 2023, 15, 3511. https://doi.org/10.3390/su15043511
Raposo A, Alturki HA, Alkutbe R, Raheem D. Eating Sturgeon: An Endangered Delicacy. Sustainability. 2023; 15(4):3511. https://doi.org/10.3390/su15043511
Chicago/Turabian StyleRaposo, António, Hmidan A. Alturki, Rabab Alkutbe, and Dele Raheem. 2023. "Eating Sturgeon: An Endangered Delicacy" Sustainability 15, no. 4: 3511. https://doi.org/10.3390/su15043511
APA StyleRaposo, A., Alturki, H. A., Alkutbe, R., & Raheem, D. (2023). Eating Sturgeon: An Endangered Delicacy. Sustainability, 15(4), 3511. https://doi.org/10.3390/su15043511