Urban Honey: A Review of Its Physical, Chemical, and Biological Parameters That Connect It to the Environment
Abstract
:1. Introduction
2. Review Method
3. Urban Honey Characterization and Its Environment Link
3.1. Physical-Chemical Characterization
3.2. Macro, Trace and Heavy Elements
3.3. Polycyclic Aromatic Hydrocarbons (PAHs) and Polychlorinated Biphenyls (PCBs)
3.4. Pesticides
3.5. Microbiological Parameters
3.6. Total Phenolic Content
4. Conclusions and Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Moore, L.J.; Kosut, M. Among the colony: Ethnographic fieldwork, urban bees and intra-species mindfulness. Ethnography 2014, 15, 516–539. [Google Scholar] [CrossRef]
- Benjamin, A.; McCallum, B. Bees in the City. The Urban Beekeepers’ Handbook; Guardian Books: London, UK, 2011. [Google Scholar]
- Lorenz, S.; Stark, K. Saving the honeybees in Berlin? A case study of the urban beekeeping boom. Environ. Sociol. 2015, 1, 116–126. [Google Scholar] [CrossRef]
- Hungerford, N.L.; Fletcher, M.T.; Tsai, H.H.; Hnatko, D.; Swann, L.J.; Kelly, C.L.; Tan, B.L. Occurrence of environmental contaminants (pesticides, herbicides, PAHs) in Australian/Queensland Apis mellifera honey. Food Addit. Contam. B Surveill. 2021, 14, 193–205. [Google Scholar] [CrossRef] [PubMed]
- Devany, L.; Littlewood, J.R.; Curry, N.R.; Geens, A.J. Urban Beekeeping Schemes for Sustainable Food Production and Biodiversity. In COBRA 2006-Proceedings of the Annual Research Conference of the Royal Institution of Chartered Surveyors. Available online: https://www.researchgate.net/profile/John-Littlewood/publication/290802729_Urban_beekeeping_schemes_for_sustainable_food_production_and_biodiversity/links/5f69bf0d92851c14bc8e016c/Urban-beekeeping-schemes-for-sustainable-food-production-and-biodiversity.pdf (accessed on 22 December 2022).
- Peterson Roest, B. Bees in the D: A message of conservation from an urban environment. Challenges 2019, 10, 19. [Google Scholar] [CrossRef]
- Bennett, A.B.; Lovell, S. Landscape and local site variables differentially influence pollinators and pollination services in urban agricultural sites. PLoS ONE 2019, 14, e0212034. [Google Scholar] [CrossRef]
- Siemaszko, M.; Zych, M. Urban ecosystems-a place for pollinators? A mini-review and social implications. Miestų Želdynų Formavimas 2017, 14, 193–201. [Google Scholar]
- Llodra-Llabrés, J.; Cariñanos, P. Enhancing pollination ecosystem service in urban green areas: An opportunity for the conservation of pollinators. Urban For. Urban Green. 2022, 74, 127621. [Google Scholar] [CrossRef]
- Sadowska, M.; Gogolewska, H.; Pawelec, N.; Sentkowska, A.; Krasnodębska-Ostręga, B. Comparison of the contents of selected elements and pesticides in honey bees with regard to their habitat. Environ. Sci. Pollut. Res. 2019, 26, 371–380. [Google Scholar] [CrossRef]
- Garbuzov, M.; Ratnieks, F.L. Lattice fence and hedge barriers around an apiary increase honey bee flight height and decrease stings to people nearby. J. Apic. Res. 2014, 53, 67–74. [Google Scholar] [CrossRef]
- Peters, K.A. Keeping bees in the city? Disappearing bees and the explosion of urban agriculture inspire urbanites to keep honeybees: Why city leaders should care and what they should do about it. Drake J. Agri. L. 2012, 17, 597–644. [Google Scholar]
- Sari, M.F.; Gurkan Ayyildiz, E.; Esen, F. Determination of polychlorinated biphenyls in honeybee, pollen, and honey samples from urban and semi-urban areas in Turkey. Environ. Sci. Pollut. Res. 2020, 27, 4414–4422. [Google Scholar] [CrossRef] [PubMed]
- Smith, K.E.; Weis, D.; Amini, M.; Shiel, A.E.; Lai, V.W.M.; Gordon, K. Honey as a biomonitor for a changing world. Nat. Sustain. 2019, 2, 223–232. [Google Scholar] [CrossRef]
- Bartha, S.; Taut, I.; Goji, G.; Vlad, I.A.; Dinulică, F. Heavy metal content in polyfloralhoney and potential health risk. A case study of Copșa Mică, Romania. Int. J. Environ. Res. Public Health 2020, 17, 1507. [Google Scholar] [CrossRef] [PubMed]
- Jovetić, M.S.; Redžepović, A.S.; Nedić, N.M.; Vojt, D.; Đurđić, S.Z.; Brčeski, I.D.; Milojković-Opsenica, D.M. Urban honey-the aspects of its safety. Arh. Hig. Rada Toksikol. 2018, 69, 264–274. [Google Scholar] [CrossRef] [PubMed]
- Passarella, S.; Guerriero, E.; Quici, L.; Ianiri, G.; Cerasa, M.; Notardonato, I.; Protano, C.; Vitali, M.; Russo, M.V.; De Cristofaro, A.; et al. PAHs presence and source apportionment in honey samples: Fingerprint identification of rural and urban contamination by means of chemometric approach. Food Chem. 2022, 382, 132361. [Google Scholar] [CrossRef]
- Günes, M.E.; Sari, M.F.; Esen, F. Organochlorine pesticides in honeybee, pollen and honey in Bursa, Turkey. Food Addit. Contam. B Surveill. 2021, 14, 126–132. [Google Scholar] [CrossRef]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G.; PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. Ann. Intern. Med. 2009, 151, 264–269. [Google Scholar] [CrossRef]
- Preti, R.; Tarola, A.M. Polyfloral honey from urban beekeeping: Two-year case study of polyphenols profile and antioxidant activity. Br. Food J. 2021, 123, 4224–4239. [Google Scholar] [CrossRef]
- Nicewicz, A.W.; Nicewicz, Ł.; Pawłowska, P. Antioxidant capacity of honey from the urban apiary: A comparison with honey from the rural apiary. Sci. Rep. 2021, 11, 9695. [Google Scholar] [CrossRef]
- Matović, K.; Ćirić, J.; Kaljević, V.; Nedić, N.; Jevtić, G.; Vasković, N.; Baltić, M.Ž. Physicochemical parameters and microbiological status of honey produced in an urban environment in Serbia. Environ. Sci. Pollut. Res. 2018, 25, 14148–14157. [Google Scholar] [CrossRef]
- Kavanagh, S.; Gunnoo, J.; Passos, T.M.; Stout, J.C.; White, B. Physicochemical properties and phenolic content of honey from different floral origins and from rural versus urban landscapes. Food Chem. 2019, 272, 66–75. [Google Scholar] [CrossRef] [PubMed]
- Codex Alimentarius Commission Standards. CODEX STAN 12-1981. Revisions 1987, 2001. Amended 2019; FAO/WHO Food Standards Programme: Rome, Italy, 2019. [Google Scholar]
- Lambert, O.; Piroux, M.; Puyo, S.; Thorin, C.; Larhantec, M.; Delbac, F.; Pouliquen, H. Bees, honey and pollen as sentinels for lead environmental contamination. Environ. Pollut. 2012, 170, 254–259. [Google Scholar] [CrossRef] [PubMed]
- Sheldon, M.; Pinion, C., Jr.; Klyza, J.; Zimeri, A.M. Pesticide contamination in Central Kentucky urban honey: A pilot study. J. Environ. Health 2019, 82, 8–13. [Google Scholar]
- Gałczyńska, M.; Gamrat, R.; Bosiacki, M.; Sotek, Z.; Stasińska, M.; Ochmian, I. Micro and macroelements in honey and atmospheric pollution (NW and Central Poland). Resources 2021, 10, 86. [Google Scholar] [CrossRef]
- Batelková, P.; Borkovcová, I.; Čelechovská, O.; Vorlová, L.; Bartáková, K. Polycyclic aromatic hydrocarbons and risk elements in honey from the South Moravian region (Czech Republic). Acta Vet. Brno 2012, 81, 169–174. [Google Scholar] [CrossRef]
- Hungerford, N.L.; Tinggi, U.; Tan, B.L.; Farrell, M.; Fletcher, M.T. Mineral and Trace element analysis of Australian/Queensland Apis mellifera honey. Int. J. Environ. Res. Public Health 2020, 17, 6304. [Google Scholar] [CrossRef]
- Borsuk, G.; Sulborska, A.; Stawiarz, E.; Olszewski, K.; Wiącek, D.; Ramzi, N.; Nawrocka, A.; Jędryczka, M. Capacity of honeybees to remove heavy metals from nectar and excrete the contaminants from their bodies. Apidologie 2021, 52, 1098–1111. [Google Scholar] [CrossRef]
- Conti, M.E.; Canepari, S.; Finoia, M.G.; Mele, G.; Astolfi, M.L. Characterization of Italian multifloral honeys on the basis of their mineral content and some typical quality parameters. J. Food Compos. Anal. 2018, 74, 102–113. [Google Scholar] [CrossRef]
- Perugini, M.; Manera, M.; Grotta, L.; Abete, M.C.; Tarasco, R.; Amorena, M. Heavy metal (Hg, Cr, Cd, and Pb) contamination in urban areas and wildlife reserves: Honeybees as bioindicators. Biol. Trace Elem. Res. 2011, 140, 170–176. [Google Scholar] [CrossRef]
- Skorbiłowicz, E.; Skorbiłowicz, M.; Cieśluk, I. Bees as bioindicators of environmental pollution with metals in an urban area. J. Ecol. Eng. 2018, 19, 229–234. [Google Scholar] [CrossRef]
- Mejías, E.; Garrido, T. Analytical procedures for determining heavy metal. In Honey Analysis; de Alencar, V., Ed.; INTECH: London, UK, 2017; pp. 311–324. [Google Scholar]
- European Union. Commission Regulation (EU) 2018/73 of 16 January 2018 amending Annexes II and III to Regulation (EC) No 396/2005 of the European Parliament and of the Council as regards maximum residue levels for mercury compounds in or on certain products. Off. J. Eur. Union 2018, L13, 8–20. [Google Scholar]
- Bilandžić, N.; Sedak, M.; Đokić, M.; Kolanović, B.S.; Varenina, I.; Božić, Đ.; Simic, B.; Koncurat, A.; Brstilo, M. Lead content in multifloral honey from central Croatia over a three-year period. Bull. Environ. Contam. Toxicol. 2012, 88, 985–989. [Google Scholar] [CrossRef]
- European Union. Commission Regulation (EU) 2021/1317 of 9 August 2021 amending Regulation (EC) No 1881/2006 as regards maximum levels of lead in certain foodstuffs. Off. J. Eur. Union 2021, L286, 1–4. [Google Scholar]
- Dobrinas, S.; Birghila, S.; Coatu, V. Assessment of polycyclic aromatic hydrocarbons in honey and propolis produced from various flowering trees and plants in Romania. J. Food Compos. Anal. 2008, 21, 71–77. [Google Scholar] [CrossRef]
- Falco, G.; Domingo, J.L.; Llobet, J.M.; Teixido, A.; Casa, C.; Muller, L. Polycyclic aromatic hydrocarbons in foods: Human exposure through the diet in Catalonia, Spain. J. Food Prot. 2003, 66, 2325–2331. [Google Scholar] [CrossRef] [PubMed]
- Abella, V.; Pérez, T.; Scotece, M.; Conde, J.; Pirozzi, C.; Pino, J.; Lago, F.; González-Gay, M.A.; Mera, A.; Gómez, R.; et al. Pollutants make rheumatic diseases worse: Facts on polychlorinated biphenyls (PCBs) exposure and rheumatic diseases. Life Sci. 2016, 157, 140–144. [Google Scholar] [CrossRef]
- Sari, M.F.; Esen, F.; Tasdemir, Y. Levels of polychlorinated biphenyls (PCBs) in honeybees and bee products and their evaluation with ambient air concentrations. Atmos. Environ. 2021, 244, 117903. [Google Scholar] [CrossRef]
- Sari, M.F.; Esen, F. Concentration levels and an assessment of human health risk of polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs) in honey and pollen. Environ. Sci. Pollut. Res. Int. 2022, 29, 66913–66921. [Google Scholar] [CrossRef] [PubMed]
- Simon-Delso, N.; Amaral-Rogers, V.; Belzunces, L.P.; Bonmatin, J.M.; Chagnon, M.; Downs, C.; Furlan, L.; Gibbons, D.W.; Giorio, C.; Girolami, V.; et al. Systemic insecticides (neonicotinoids and fipronil): Trends, uses, mode of action and metabolites. Environ. Sci. Pollut. Res. 2015, 22, 5–34. [Google Scholar] [CrossRef]
- Kavanagh, S.; Henry, M.; Stout, J.C.; White, B. Neonicotinoid residues in honey from urban and rural environments. Environ. Sci. Pollut. Res. 2021, 28, 28179–28190. [Google Scholar] [CrossRef]
- Shendy, A.H.; Al-Ghobashy, M.A.; Mohammed, M.N.; Alla, S.A.G.; Lotfy, H.M. Simultaneous determination of 200 pesticide residues in honey using gas chromatography–tandem mass spectrometry in conjunction with streamlined quantification approach. J. Chromatogr. A 2016, 1427, 142–160. [Google Scholar] [CrossRef] [PubMed]
- USEPA IRIS. Reference Dose (RfD): Description and Use in Health Risk Assessments, Background Document 1A, Integrated Risk Information System (IRIS); USEPA: Washington, DC, USA, 1993.
- Gomes, S.; Dias, L.G.; Moreira, L.L.; Rodrigues, P.; Estevinho, L. Physicochemical, microbiological and antimicrobial properties of commercial honeys from Portugal. Food Chem. Toxicol. 2010, 48, 544–548. [Google Scholar] [CrossRef] [PubMed]
- Kaluza, B.F.; Wallace, H.; Heard, T.A.; Klein, A.M.; Leonhardt, S.D. Urban gardens promote bee foraging over natural habitats and plantations. Ecol. Evol. 2016, 6, 1304–1316. [Google Scholar] [CrossRef] [PubMed]
- Karabagias, I.K.; Dimitriou, E.; Kontakos, S.; Kontominas, M.G. Phenolic profile, colour intensity, and radical scavenging activity of Greek unifloral honeys. Eur. Food Res. Technol. 2016, 242, 1201–1210. [Google Scholar] [CrossRef]
- Egerer, M.; Kowarik, I. Confronting the modern gordian knot of urban beekeeping. Trends Ecol. Evol. 2020, 35, 956–959. [Google Scholar] [CrossRef]
- Cobb, A. Living with Bees: A Look into the Relationships between People and Native Bees in Western Nepal. Independent Study Project (ISP) Collection. 3181. Available online: https://digitalcollections.sit.edu/isp_collection/3181 (accessed on 22 December 2022).
- De Meio Reggiani, M.C.; Villar, L.B.; Vigier, H.P.; Brignole, N.B. An evolutionary approach for the optimization of the beekeeping value chain. Comput. Electron. Agric. 2022, 194, 106787. [Google Scholar] [CrossRef]
Physical-Chemical Parameters | Country (Number of Samples) [Reference] | |||
---|---|---|---|---|
Italy (n = 6) [20] | Poland (n = 30) [21] | Serbia (n = 13) [22] | Ireland (n = 10) [23] | |
pH | 3.63 ± 0.08 a 4.16 ± 0.07 b | 4.08 ± 0.30 | nd | 3.53–4.51 |
Free acidity (mEq/kg) | 32.26 ± 0.44 a 26.42 ± 2.15 b | nd | From 9.31 ± 0.58 to 43.7 ± 2.7 | nd |
Lactone (mEq/kg) | 9.99 ± 1.11 a 12.28 ± 1.60 b | nd | nd | nd |
Total acidity (mEq/kg) | 42.25 ± 1.53 a 38.70 ± 1.77 b | nd | nd | nd |
HMF (mg/kg) | 26.71 ± 1.69 a 26.68 ± 2.71 b | nd | From 0.19 ± 0.03 to 17.86 ± 2.86 | nd |
Color intensity (mAU) | 161.45 ± 7.61 a 174.71 ± 8.01 b | nd | nd | nd |
Color (Pfund mm) | nd | nd | nd | 71.42–158.14 |
Water (%m/m) | 15.53 ± 0.67 a 14.83 ± 0.92 b | nd | nd | nd |
Water-insoluble content (%) | nd | nd | From 0.002 ± 0.0004 to 0.04 ± 0.01 | nd |
Sucrose (%m/m) | 2.36 ± 0.25 a 1.97 ± 0.41 b | nd | From 0.80 ± 0.06 to 4.56 ± 0.34 | nd |
Reducing sugars (%) | nd | nd | From 54.59 ± 1.25 to 77.40 ± 1.55 | nd |
Sugar (% Brix) | nd | nd | nd | 65.42–85.00 |
Moisture content (%) | nd | 15.42 ± 1.02 | From 14.80 ± 0.50 to 19.22 ± 0.65 | 12.90–20.90 |
Ash (%) | nd | nd | From 0.07 ± 0.02 to 1.71 ± 0.48 | nd |
Electrical conductivity (ms/cm) | nd | 0.55 ± 0.04 | From 0.20 ± 0.01 to 1.33 ± 0.07 | 125.60–617.67 |
Diastase activity (Schade units) | nd | nd | From 29.24 ± 2.98 to 57.58 ± 5.87 | nd |
Chemical Elements and Heavy Elements (mg/kg) | Country (Number of Samples) [Reference] | |||
---|---|---|---|---|
Australia (n = 60) [4] | Poland (n = 18) [27] | Serbia (n = 23) [16] | Czechia (n = 10) [28] | |
Macrometals | ||||
Calcium (Ca) | 85.2 ± 39.9 | 74.6 | nd | nd |
Potassium (K) | 965 ± 651 | 1411 | nd | nd |
Magnesium (Mg) | 28.7 ± 19.6 | 21.6 | nd | nd |
Sodium (Na) | 99.7 ± 82.5 | 15.3 | nd | nd |
Phosphorus (P) | 51.5 ± 67.1 | 96.9 | nd | nd |
Trace elements | ||||
Boron (B) | 4.7 ± 2.2 | 4.71 | nd | nd |
Barium (Ba) | 0.3 ± 0.2 | 0.10 | nd | nd |
Copper (Cu) | 0.2 ± 0.4 | 0.29 | <0.015–1.781 | nd |
Iron (Fe) | 3.1 ± 8.0 | 2.50 | <0.012–10.054 | nd |
Nickel (Ni) | 0.0331 ± 0.107 | 0.03 | <0.010–0.538 | nd |
Sulphur (S) | nd | 42.2 | nd | nd |
Selenium (Se) | 0.0052 ± 0.002 | nd | nd | nd |
Strontium (Sr) | 0.4 ± 0.3 | 0.14 | nd | nd |
Vanadium (V) | 0.0052 ± 0.001 | nd | nd | nd |
Zinc (Zn) | 6.0 ± 16.6 | 3.47 | <0.002–4.346 | nd |
Heavy elements | ||||
Silver (Ag) | 0.005 ± 0 | nd | nd | nd |
Aluminium (Al) | 1.2 ± 1.5 | nd | nd | nd |
Arsenic (As) | 0.0026 ± 0.001 | <LOD | <0.001–0.009 | <0.001–0.00435 |
Cadmium (Cd) | 0.0031 ± 0.004 | <LOD | <0.002–0.009 | 0.00095–0.03235 |
Chromium (Cr) | 0.0077 ± 0.007 | 0.03 | <0.005–0.833 | nd |
Cobalt (Co) | 0.0167 ± 0.044 | 0.03 | nd | nd |
Mercury (Hg) | 0.0025 ± 0 | nd | <0.002–0.257 | 0.00324–0.01131 |
Manganese (Mn) | 3.8 ± 4.1 | 0.45 | 0.079–2.428 | nd |
Molybdenum (Mo) | 0.0115 ± 0.029 | nd | nd | nd |
Lead (Pb) | 0.0286 ± 0.074 | 0.07 | <0.003–0.107 | 0.0228–0.17785 |
Antimony (Sb) | 0.0051 ± 0.001 | nd | nd | nd |
Tin (Sn) | 0.0331 ± 0.049 | nd | nd | nd |
PAHs (µg/kg) | Country (Number of Samples) [Reference] | |
---|---|---|
Serbia (n = 23) [16] | Romania (n = 18) [38] | |
Ace | <0.3–2.2 | 4.0–284.0 |
Acy | nd | 2.0–32.0 |
An | <0.04–0.36 | 472.0–653.0 |
B[ghy]P | <2.0 | <LOQ-1.0 |
B[α]An | <0.1–0.4 | <LOQ |
B[α]Py | <0.2–0.5 | 1.0–141.0 |
B[β]Fl | <0.3 | nd |
B[κ]Fl | <0.06–0.32 | 6.0–155.0 |
Chry | <0.9–1.2 | <LOQ |
dB[αh]An | 0.7–1.8 | <LOQ-59.0 |
Fl | <0.2–0.3 | 5.0–31.0 |
F | <0.2–0.8 | 1.0–163.0 |
I [123-cd]Py | <0.2–0.4 | 0.8–23.0 |
Np | <0.8–11.6 | 170.0–665.0 |
Ph | 0.2–1.6 | 43.0–625.0 |
Py | <0.8–1.5 | 5.0–89.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Quiralte, D.; Zarzo, I.; Fernandez-Zamudio, M.-A.; Barco, H.; Soriano, J.M. Urban Honey: A Review of Its Physical, Chemical, and Biological Parameters That Connect It to the Environment. Sustainability 2023, 15, 2764. https://doi.org/10.3390/su15032764
Quiralte D, Zarzo I, Fernandez-Zamudio M-A, Barco H, Soriano JM. Urban Honey: A Review of Its Physical, Chemical, and Biological Parameters That Connect It to the Environment. Sustainability. 2023; 15(3):2764. https://doi.org/10.3390/su15032764
Chicago/Turabian StyleQuiralte, David, Inmaculada Zarzo, Maria-Angeles Fernandez-Zamudio, Héctor Barco, and Jose M. Soriano. 2023. "Urban Honey: A Review of Its Physical, Chemical, and Biological Parameters That Connect It to the Environment" Sustainability 15, no. 3: 2764. https://doi.org/10.3390/su15032764
APA StyleQuiralte, D., Zarzo, I., Fernandez-Zamudio, M.-A., Barco, H., & Soriano, J. M. (2023). Urban Honey: A Review of Its Physical, Chemical, and Biological Parameters That Connect It to the Environment. Sustainability, 15(3), 2764. https://doi.org/10.3390/su15032764