Consumer Willingness to Recycle The Wasted Batteries of Electric Vehicles in the Era of Circular Economy
Abstract
:1. Introduction
2. Literature Review and Hypotheses
2.1. Recycling Modes of WBEVs
2.2. Literature Review on Consumers’ WTR WBEVs
2.3. Variables, Study Architecture, and Hypotheses
3. The Statistical Results for Consumers’ WTR for WBEVs and Influencing Factors
3.1. PLS-SEM Modeling
3.2. Descriptive Statistics
3.3. The Structural Equation Model
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
EVs | Electric vehicles |
EV | Electric vehicle |
EOL | End-of-life |
WBEVs | Wasted batteries of electric vehicles |
WBEV | Wasted battery of electric vehicle |
EPR | Extended producer responsibility |
CNKI | China National Knowledge Infrastructure |
WOS | Web of Science |
4S stores | Automobile sales service stores |
TPB | Theory of planned behavior |
GP | Perception of government policy efficacy |
EA | Environment attitude |
PB | Perception of benefit |
PL | Perception of loss |
RI | Recycling intention |
PLS-SEM | Partial least squares structural equation modeling |
SEM | Structural equation modeling |
CB-SEM | Covariance-based structural equation modeling |
References
- Rajaeifar, M.A.; Ghadimi, P.; Raugei, M.; Wu, Y.; Heidrich, O. Challenges and Recent Developments in Supply and Value Chains of Electric Vehicle Batteries: A Sustainability Perspective. Resour. Conserv. Recy. 2022, 180, 106–144. [Google Scholar] [CrossRef]
- Gu, X.; Zhou, L.; Huang, H.; Shi, X.; Ieromonachou, P. Electric Vehicle Battery Secondary Use Under Government Subsidy: A Closed-Loop Supply Chain Perspective. Int. J. Prod. Econ. 2021, 234, 108035. [Google Scholar] [CrossRef]
- Winslow, K.M.; Laux, S.J.; Townsend, T.G. A Review on the Growing Concern and Potential Management Strategies of Waste Lithium-ion Batteries. Resour. Conserv. Recy. 2018, 129, 263–277. [Google Scholar] [CrossRef]
- Tang, Y.Y.; Zhang, Q.; Li, Y.M.; Wang, G.; Li, Y. Recycling Mechanisms and Policy Suggestions for Spent Electric Vehicles’ Power Battery -A case of Beijing. J. Clean Prod. 2018, 186, 388–406. [Google Scholar] [CrossRef]
- Rogulski, Z.; Czerwinski, A. Used Batteries Collection and Recycling in Poland. J. Power Sources 2006, 159, 454–458. [Google Scholar] [CrossRef]
- Ordonez, J.; Gago, E.J.; Girard, A. Processes and Technologies for the Recycling and Recovery of Spent Lithium-ion Batteries. Renew. Sust. Energ. Rev. 2016, 60, 195–205. [Google Scholar] [CrossRef]
- Huang, B.; Pan, Z.F.; Su, X.Y.; An, L. Recycling of Lithium-ion Batteries: Recent Advances and Perspectives. J. Power Sources 2018, 399, 274–286. [Google Scholar] [CrossRef]
- Ogushi, Y.; Kandlikar, M. Assessing Extended Producer Responsibility LAWS in JAPAN. Environ. Sci. Technol. 2007, 41, 4502–4508. [Google Scholar] [CrossRef]
- Sun, S.Q.; Jin, C.X.; He, W.Z.; Li, G.M.; Zhu, H.C.; Huang, J.W. Management Status of Waste Lithium-ion Batteries in China and A Complete Closed-circuit Recycling Process. Sci. Total Environ. 2021, 776, 145913. [Google Scholar] [CrossRef]
- Hoarau, Q.; Lorang, E. An Assessment of the European Regulation on Battery Recycling for Electric Vehicles. Energy Policy 2022, 162, 112770. [Google Scholar] [CrossRef]
- Lee, J.W.; Haram, M.; Ramasamy, G.; Thiagarajah, S.P.; Ngu, E.E.; Lee, Y.H. Technical Feasibility and Economics of Repurposed Electric Vehicles Batteries for Power Peak Shaving. J. Energy Storage 2021, 40, 102752. [Google Scholar] [CrossRef]
- Dong, B.Q.; Ge, J.P. What Affects Consumers’ Intention to Recycle Retired EV Batteries in China? J. Clean Prod. 2022, 359, 132065. [Google Scholar] [CrossRef]
- Long, R.Y.; Yang, J.H.; Chen, H.; Li, Q.W.; Fang, W.Q.; Wang, L. Co-evolutionary Simulation Study of Multiple Stakeholders in the Take-out Waste Recycling Industry Chain. J. Environ. Manag. 2019, 231, 701–713. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A. Exploring Young Adults’ e-waste Recycling Behaviour Using an Extended Theory of Planned Behaviour Model: A Cross-cultural Study. Resour. Conserv. Recy. 2019, 141, 378–389. [Google Scholar] [CrossRef]
- Dhir, A.; Malodia, S.; Awan, U.; Sakashita, M.; Kaur, P. Extended Valence Theory Perspective on Consumers’ E-waste Recycling Intentions in Japan. J. Clean Prod. 2021, 312, 127443. [Google Scholar] [CrossRef]
- Corvellec, H.; Stowell, A.F.; Johansson, N. Critiques of the Circular Economy. J. Ind. Ecol. 2022, 26, 421–432. [Google Scholar] [CrossRef]
- Wang, H.M.; Schandl, H.; Wang, X.Z.; Ma, F.M.; Yue, Q.; Wang, G.Q.; Wang, Y.; Wei, Y.; Zheng, R.Y. Measuring Progress of China’s Circular Economy. Resour. Conserv. Recycl. 2020, 163, 105070. [Google Scholar] [CrossRef]
- Fellner, J.; Lederer, J. Recycling Rate-the Only Practical Metric for a Circular Economy? Waste Manag. 2020, 113, 319–320. [Google Scholar] [CrossRef]
- Ranjbari, M.; Saidani, M.; Esfandabadi, Z.S.; Peng, W.X.; Lam, S.S.; Aghbashlo, M.; Quatraro, F.; Tabatabaei, M. Two Decades of Research on Waste Management in the Circular Economy: Insights from Bibliometric, Text mining, and Content Analyses. J. Clean. Prod. 2021, 314, 128009. [Google Scholar] [CrossRef]
- He, L.; Sun, B.Z. Exploring the EPR System for Power Battery Recycling from A Supply-side Perspective: An Evolutionary Game Analysis. Waste Manag. 2022, 140, 204–212. [Google Scholar] [CrossRef]
- Zan, X.; Zhang, D.Y. Analysis on the Optimal Recycling Path of Chinese Lead-Acid Battery under the Extended Producer Responsibility System. Sustainability 2022, 14, 4950. [Google Scholar] [CrossRef]
- Li, X. Collection Mode Choice of Spent Electric Vehicle Batteries: Considering Collection Competition and Third-party Economies of Scale. Sci. Rep. 2022, 12, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Lyu, X.C.; Xu, Y.Y.; Sun, D. An Evolutionary Game Research on Cooperation Mode of the NEV Power Battery Recycling and Gradient Utilization Alliance in the Context of China’s NEV Power Battery Retired Tide. Sustainability 2021, 13, 4165. [Google Scholar] [CrossRef]
- Wang, W.; Wu, Y.F. An Overview of Recycling and Treatment of Spent LiFePO4 Batteries in China. Resour. Conserv. Recycl. 2017, 127, 233–243. [Google Scholar] [CrossRef]
- Ceballos, D.M.; Cote, D.; Bakhiyi, B.; Flynn, M.A.; Zayed, J.; Gravel, S.; Herrick, R.F.; Labreche, F. Overlapping Vulnerabilities in Workers of the Electronics Recycling Industry Formal Sector: A Commentary. Am. J. Ind. Med. 2020, 63, 955–962. [Google Scholar] [CrossRef]
- Ceballos, D.M.; Dong, Z. The Formal Electronic Recycling Industry: Challenges and Opportunities in Occupational and Environmental Health Research. Environ. Int. 2016, 95, 157–166. [Google Scholar] [CrossRef]
- Tong, X.; Wang, T.; Chen, Y.; Wang, Y. Towards an Inclusive Circular Economy: Quantifying the Spatial Flows of E-waste through the Informal Sector in China. Resour. Conserv. Recycl. 2018, 135, 163–171. [Google Scholar] [CrossRef]
- Liu, H.H.; Lei, M.; Deng, H.H.; Leong, G.K.; Huang, T. A Dual Channel, Quality-Based Price Competition Model for the Weee Recycling Market with Government Subsidy. Omega-Int. J. Manage. S. 2016, 59, 290–302. [Google Scholar] [CrossRef]
- Ezeah, C.; Fazakerley, J.A.; Roberts, C.L. Emerging Trends in Informal Sector Recycling in Developing and Transition Countries. Waste Manag. 2013, 33, 2509–2519. [Google Scholar] [CrossRef]
- Chi, X.; Streicher-Porte, M.; Wang, M.Y.L.; Reuter, M.A. Informal Electronic Waste Recycling: A Sector Review with Special Focus on China. Waste Manag. 2011, 31, 731–742. [Google Scholar] [CrossRef]
- Gu, Y.; Wu, Y.; Xu, M.; Wang, H.; Zuo, T. The Stability and Profitability of the Informal WEEE Collector in Developing Countries: A Case Study of China. Resour. Conserv. Recycl. 2016, 107, 18–26. [Google Scholar] [CrossRef]
- Chen, M.F.; Tung, P.J. The Moderating Effect of Perceived Lack of Facilities on Consumers’ Recycling Intentions. Environ. Behav. 2010, 42, 824–844. [Google Scholar] [CrossRef]
- Dixit, S.; Badgaiyan, A.J. Towards Improved Understanding of Reverse Logistics—Examining Mediating Role of Return Intention. Resour. Conserv. Recycl. 2016, 107, 115–128. [Google Scholar] [CrossRef]
- Gaur, J.; Mani, V. Antecedents of Closed-loop Supply Chain in Emerging Economies: A Conceptual Framework Using Stakeholder’s Perspective. Resour. Conserv. Recycl. 2018, 139, 219–227. [Google Scholar] [CrossRef]
- Budijati, S.M.; Subagyo; Wibisono, M.A.; Masruroh, N.A. Influence of Government and Economic Drivers on Consumers’ Intentions to Participate in A Take Back Program. Inter. J. Logist Syst. Manag. 2016, 23, 343–362. [Google Scholar] [CrossRef]
- Liu, T.T.; Zhang, Q.; Zheng, Z.C.; Wu, S.Y.; Weng, Z.X. Stakeholder Analysis of the Waste Electrical and Electronic Equipment Internet Recycling Industry. Int. J. Env. Res. Public Health 2022, 19, 10003. [Google Scholar] [CrossRef]
- Sarath, P.; Bonda, S.; Mohanty, S.; Nayak, S.K. Mobile Phone Waste Management and Recycling: Views and Trends. Waste Manag. 2015, 46, 536–545. [Google Scholar] [CrossRef] [PubMed]
- Wan, C.; Shen, G.Q.; Choi, S. The Place-based Approach to Recycling Intention: Integrating Place Attachment into the Extended Theory of Planned Behavior. Resour. Conserv. Recycl. 2021, 169, 105549. [Google Scholar] [CrossRef]
- Wang, Z.H.; Guo, D.X.; Wang, X.M. Determinants of Residents’ E-waste Recycling Behaviour Intentions: Evidence from China. J. Clean Prod. 2016, 137, 850–860. [Google Scholar] [CrossRef]
- Nguyen, H.T.T.; Hung, R.J.; Lee, C.H.; Nguyen, H.T.T. Determinants of Residents’ E-Waste Recycling Behavioural Intention: A Case Study from Vietnam. Sustainability 2019, 11, 164. [Google Scholar] [CrossRef] [Green Version]
- Halder, P.; Singh, H. Predictors of Recycling Intentions among the Youth: A Developing Country Perspective. Recycling 2018, 3, 38. [Google Scholar] [CrossRef]
- Echegaray, F.; Hansstein, F.V. Assessing the Intention-behaviour Gap in Electronic Waste Recycling: The Case of Brazil. J. Clean Prod. 2017, 142, 180–190. [Google Scholar] [CrossRef]
- Sujata, M.; Khor, K.S.; Ramayah, T.; Teoh, A.P. The Role of Social Media on Recycling Behaviour. Sustain. Prod. Consump. 2019, 20, 365–374. [Google Scholar] [CrossRef]
- Kochan, C.G.; Pourreza, S.; Tran, H.; Prybutok, V.R. Determinants and Logistics of E-waste Recycling. Int. J. Logist. Manag. 2016, 27, 52–70. [Google Scholar] [CrossRef]
- Schwab, N.; Harton, H.C.; Cullum, J.G. The Effects of Emergent Norms and Attitudes on Recycling Behaviour. Environ. Behav. 2014, 46, 403–422. [Google Scholar] [CrossRef]
- Zhang, D.Y.; Cui, X.; Fan, X.Y.; Wu, Y.F. Study on the Factors Affecting Consumers’ Participation in Regulated Recycling of Waste Lead-Acid Batteries: Practice Research from China. Sustainability 2022, 14, 4353. [Google Scholar] [CrossRef]
- Sozoniuk, M.; Park, J.; Lumby, N. Investigating Residents’ Acceptance of Mobile Apps for Household Recycling: A Case Study of New Jersey. Sustainability 2022, 14, 10874. [Google Scholar] [CrossRef]
- Liu, Z.L.; Yang, J.Z. Predicting Recycling Behaviour in New York State: An Integrated Model. Environ. Manag. 2022, 70, 1023–1037. [Google Scholar] [CrossRef]
- Wang, C.; Zhu, T.T.; Yao, H.L.; Sun, Q. The Impact of Green Information on the Participation Intention of Consumers in Online Recycling: An Experimental Study. Sustainability 2020, 12, 2498. [Google Scholar] [CrossRef]
- Meneses, G.D.; Palacio, A.B. Recycling Behaviour—A Multidimensional Approach. Environ. Behav. 2005, 37, 837–860. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.L.; Bai, H.T.; Zhang, Q.; Jing, Q.N.; Xu, H. Why Are Obsolete Mobile Phones Difficult to Recycle in China? Resour. Conserv. Recycl. 2019, 141, 200–210. [Google Scholar] [CrossRef]
- Bai, H.; Wang, J.; Zeng, A.Z. Exploring Chinese Consumers’ Attitude and Behaviour Toward Smartphone Recycling. J. Clean Prod. 2018, 188, 227–236. [Google Scholar] [CrossRef]
- Zhang, X.D.; Gong, X.S.; Jiang, J. Dump or Recycle? Nostalgia and Consumer Recycling Behaviour. J. Bus. Res. 2021, 132, 594–603. [Google Scholar] [CrossRef]
- Flygansvaer, B.; Samuelsen, A.G.; Stoyle, R.V. The Power of Nudging: How Adaptations in Reverse Logistics Systems Can Improve End-consumer Recycling Behaviour. Int. J. Phys. Distrib. Logist. Manag. 2021, 51, 958–977. [Google Scholar] [CrossRef]
- Ayeleru, O.O.; Okonta, F.N.; Ntuli, F. Cost Benefit Analysis of a Municipal Solid Waste Recycling Facility in Soweto, South Africa. Waste Manag. 2021, 134, 263–269. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Choi, J.; Yi, Y.J.; Kim, H. Analysis of Influencing Factors in Purchasing Electric Vehicles Using a Structural Equation Model: Focused on Suwon City. Sustainability 2022, 14, 4744. [Google Scholar] [CrossRef]
- Bickham, S.B.; Francis, D.B. The Public’s Perceptions of Government Officials’ Communication in the Wake of the COVID-19 Pandemic. J. Creat. Commun. 2021, 16, 190–202. [Google Scholar] [CrossRef]
- Escario, J.J.; Rodriguez-Sanchez, C.; Casaló, L.V. The Influence of Environmental Attitudes and Perceived Effectiveness on Recycling, Reducing, and Reusing Packaging Materials in Spain. Waste Manag. 2020, 113, 251–260. [Google Scholar] [CrossRef]
- Kurz, T.; Linden, M.; Sheehy, N. Attitudinal and Community Influences on Participation in New Curbside Recycling Initiatives in Northern Ireland. Environ. Behav. 2007, 39, 367–391. [Google Scholar] [CrossRef]
- Crouzeix, J.P.; Keraghel, A.; Rahmani, N. Integration of Pseudomonotone Maps and the Revealed Preference Problem. Optimization 2011, 60, 783–800. [Google Scholar] [CrossRef]
- Munda, G. Environmental Economics, Ecological Economics, and the Concept of Sustainable Development. Environ. Value 1997, 6, 213–233. [Google Scholar] [CrossRef]
- Siebert, L.C.; Sbicca, A.; Aoki, A.R.; Lambert-Torres, G. A Behavioural Economics Approach to Residential Electricity Consumption. Energies 2017, 10, 768. [Google Scholar] [CrossRef]
- Leu, H.G.; Lin, S.H. Cost-benefit Analysis of Resource Material Recycling. Resour. Conserv. Recycl. 1998, 23, 183–192. [Google Scholar] [CrossRef]
- Dowlatshahi, S. A Cost-Benefit Analysis for the Design and Implementation of Reverse Logistics Systems: Case Studies Approach. Int. J. Prod. Res. 2010, 48, 1361–1380. [Google Scholar] [CrossRef]
- Yu, Z.L.T.; Deshazo, J.R.; Stenstrom, M.K.; Cohen, Y. Cost-Benefit Analysis of Onsite Residential Graywater Recycling: A Case Study on the City of Los Angeles. J. Am. Water Works Ass. 2015, 107, E436–E444. [Google Scholar] [CrossRef]
- Shaikh, S.; Thomas, K.; Zuhair, S.; Magalini, F. A Cost-benefit Analysis of the Downstream Impacts of E-waste Recycling in Pakistan. Waste Manag. 2020, 118, 302–312. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.J.; Zhang, Q.; Wang, H. Cost-benefit Analysis of Waste Photovoltaic Module Recycling in China. Waste Manag. 2020, 118, 491–500. [Google Scholar] [CrossRef]
- Nguyen, T.T.P.; Zhu, D.J.; Le, N.P. Factors Influencing Waste Separation Intention of Residential Households in A Developing Country: Evidence from Hanoi, Vietnam. Habitat Int. 2015, 48, 169–176. [Google Scholar] [CrossRef]
- Cudjoe, D.; Yuan, Q.Q.; Han, M.S. An Assessment of the Influence of Awareness of Benefits and Perceived Difficulties on Waste Sorting Intention in Beijing. J. Clean. Prod. 2020, 272, 123084. [Google Scholar] [CrossRef]
- Lange, F.; Brückner, C.; Kröger, B.; Beller, J.; Eggert, F. Wasting Ways: Perceived Distance to the Recycling Facilities Predicts Pro-Environmental Behaviour. Resour. Conserv. Recycl. 2014, 92, 246–254. [Google Scholar] [CrossRef]
- Knussen, C.; Yule, F.; MacKenzie, J.; Wells, M. An Analysis of Intentions to Recycle Household Waste: The Roles of Past Behaviour, Perceived Habit, and Perceived Lack of Facilities. J. Environ. Psychol. 2004, 24, 237–246. [Google Scholar] [CrossRef]
- Al Mamun, A.; Saufi, R.A.; Mohiuddin, M.; Fazal, S.A. Recycling Intentions and Behaviours Among Informal Micro-entrepreneurs in Kelantan, Malaysia. World J. Entrep. Manag. 2019, 15, 123–138. [Google Scholar] [CrossRef]
- Pei, Z. Roles of Neighborhood Ties, Community Attachment and Local Identity in Residents’ Household Waste Recycling Intention. J. Clean Prod. 2019, 241, 410–418. [Google Scholar] [CrossRef]
- El Maalmi, A.; Jenoui, K.; El Abbadi, L. Comparison Study Between CB-SEM and PLS-SEM for Sustainable Supply Chain Innovation Model. Adv. Techno. Humanit. 2022, 110, 537–552. [Google Scholar] [CrossRef]
- Siska, L. Comparing CB-SEM and PLS-SEM: A Case Showing Management Accounting Impact on Performance. Pol. J. Manag. Stud. 2017, 15, 240–249. [Google Scholar] [CrossRef]
- Dash, G.; Paul, J. CB-SEM vs PLS-SEM Methods for Research in Social Sciences and Technology Forecasting. Technol. Forecast. Soc. 2021, 173, 121092. [Google Scholar] [CrossRef]
- Hair, J.F.; Matthews, L.M.; Matthews, R.L.; Marko, S. PLS-SEM or CB-SEM: Updated Guidelines on Which Method to Use. Multivar. Data An. 2017, 1, 107–123. [Google Scholar] [CrossRef]
- Hair, J.F.; Sarstedt, M.; Pieper, T.M.; Ringle, C.M. The Use of Partial Least Squares Structural Equation Modeling in Strategic Management Research: A Review of Past Practices and Recommendations for Future Applications. Long Range Plann. 2012, 45, 320–340. [Google Scholar] [CrossRef]
- Chin, W.W. Issues and Opinion on Structural Equation Modeling. Mis Quart. 1998, 22, 1. [Google Scholar] [CrossRef]
- Urbach, N.; Ahlemann, F. Structural Equation Modeling in Information Systems Research Using Partial Least Squares. J. Inf. Technol. 2010, 11, 5–40. Available online: https://aisel.aisnet.org/jitta/vol11/iss2/2 (accessed on 18 September 2022).
- Bruno, J.M.; Bianchi, E.C.; Sanchez, C. Determinants of Household Recycling Intention: The Acceptance of Public Policy Moderated by Habits, Social Influence, and Perceived Time Risk. Environ. Sci. Policy 2022, 136, 1–8. [Google Scholar] [CrossRef]
- King, S.; Boxall, N.J. Lithium Battery Recycling in Australia: Defining the Status and Identifying Opportunities for the Development of a New Industry. J. Clean Prod. 2019, 215, 1279–1287. [Google Scholar] [CrossRef]
- Yong, C.; Rhee, S.W. Current Status and Perspectives on Recycling of End-of-life Battery of Electric Vehicle in Korea (Republic of). Waste Manag. 2020, 106, 261–270. [Google Scholar] [CrossRef]
- Deshwal, D.; Sangwan, P.; Dahiya, N. Economic Analysis of Lithium-Ion Battery Recycling in India. Wireless Pers. Commun. 2022, 124, 3263–3286. [Google Scholar] [CrossRef]
- Rathore, P.; Sarmah, S.P. Investigation of Factors Influencing Source Separation Intention towards Municipal Solid Waste among Urban Residents of India. Resour. Conserv. Recycl. 2021, 164, 105164. [Google Scholar] [CrossRef]
- Pedersen, J.T.S.; Manhice, H. The Hidden Dynamics of Household Waste Separation: An Anthropological Analysis of User Commitment, Barriers, and The Gaps Between a Waste System and Its Users. J. Clean Prod. 2020, 242, 116285. [Google Scholar] [CrossRef]
- Kattoua, M.G.; Al-Khatib, I.A.; Kontogianni, S. Barriers on the Propagation of Household Solid Waste Recycling Practices in Developing Countries: State of Palestine Example. J. Mater. Cycles Waste 2019, 21, 774–785. [Google Scholar] [CrossRef]
- Hage, O.; Sandberg, K.; Soderholm, P.; Berglund, C. The Regional Heterogeneity of Household Recycling: A Spatial-econometric Analysis of Swedish Plastic Packing Waste. Lett. Spat. Resour. Sci. 2018, 11, 245–267. [Google Scholar] [CrossRef]
- Chen, L.; Gao, M. Formal or Informal Recycling Sectors? Household Solid Waste Recycling Behaviour Based on Multi-agent Simulation. J. Environ. Manag. 2021, 294, 113006. [Google Scholar] [CrossRef]
- Li, X.; Du, J.B.; Cheng, Y.W.; Hanif, S.; Mu, D.; Cui, Y.M. Electric Vehicle Battery Recycling: System Dynamics Game Based Analysis for The Influencing Factors. Environ. J. 2019, 18, 1123–1136. [Google Scholar] [CrossRef]
- Zeng, D.; Dong, Y.; Cao, H.J.; Li, Y.K.; Wang, J.; Li, Z.B.; Hauschild, M.Z. Are the Electric Vehicles More Sustainable Than the Conventional Ones? Influences of The Assumptions and Modeling Approaches in the Case of Typical Cars in China. Resour. Conserv. Recycl. 2021, 167, 105210. [Google Scholar] [CrossRef]
- Wan, C.; Shen, G.Q. Perceived Policy Effectiveness and Recycling Behaviour: The Missing Link. Waste Manag. 2013, 33, 783–784. [Google Scholar] [CrossRef] [PubMed]
- Dutta, D.; Goel, S. Understanding the Gap Between Formal and Informal E-waste Recycling Facilities in India. Waste Manag. 2021, 125, 163–171. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Wu, X.; Dou, D.; Tang, X.; Leong, G.K. Determining Recycling Fees and Subsidies in China’s WEEE Disposal Fund with Formal and Informal Sectors. Sustainability 2018, 10, 2979. [Google Scholar] [CrossRef]
- Parajuly, K.; Thapa, K.; Cimpan, C.; Wenzel, H. Electronic Waste and Informal Recycling in Kathmandu, Nepal: Challenges and Opportunities. J. Mater. Cycles Waste 2018, 20, 656–666. [Google Scholar] [CrossRef]
- Steuer, B.; Ramusch, R.; Salhofer, S. Is There A Future for the Informal Recycling Sector in Urban China? Detritus 2018, 4, 189–200. [Google Scholar] [CrossRef]
- Habuer; Nakatani, J.; Moriguchi, Y. Resource-availability Scenario Analysis for Formal and Informal Recycling of End-of-life Electrical and Electronic Equipment in China. J. Mater. Cycles Waste 2017, 19, 599–611. [Google Scholar] [CrossRef]
- Aparcana, S.; Salhofer, S.; Linzner, R. Material Flow Analysis of Formal and Informal Household Waste Recycling Systems in Developing Countries. Case Studies from Peru. Waste Manag. 2013, 33, 774–775. [Google Scholar] [CrossRef]
- Fujimori, T.; Takigami, H.; Agusa, T.; Eguchi, A.; Bekki, K.; Yoshida, A.; Terazono, A.; Ballesteros, F.C. Impact of Metals in Surface Matrices from Formal and Informal Electronic-waste Recycling Around Metro Manila, the Philippines, and Intra-Asian Comparison. J. Hazard. Mater. 2012, 221, 139–146. [Google Scholar] [CrossRef]
- Nawaz, M.; Yousafzai, M.T.; Khan, S.; Ahmad, W.; Salman, M.; Han, H.; Ariza-Montes, A.; Vega-Munoz, A. Assessing the Formal and Informal Waste Recycling Business Processes through a Stakeholders Lens in Pakistan. Sustainability 2021, 13, 11717. [Google Scholar] [CrossRef]
- Nzeadibe, T.C. Solid Waste Reforms and Informal Recycling in Enugu Urban Area, Nigeria. Habitat Int. 2009, 33, 93–99. [Google Scholar] [CrossRef]
- Schlitz, N. Environmental Change and the Informal Plastic Recycling Networks of Kolkata. Singap. J. Trop. Geo. 2020, 41, 450–467. [Google Scholar] [CrossRef]
- Kulke, E.; Staffeld, R. Informal Production Systems—The Role of the Informal Economy in the Plastic Recycling and Processing Industry in Dhaka. Erde 2009, 140, 25–43. [Google Scholar] [CrossRef]
- Gong, B.G.; Gao, Y.L.; Li, K.W.; Liu, Z.; Huang, J. Cooperate or Compete? A Strategic Analysis of Formal and Informal Electric Vehicle Battery Recyclers Under Government Intervention. Int. J. Logist-Res. App. 2022. [Google Scholar] [CrossRef]
- Joshi, B.V.; Vipin, B.; Ramkumar, J.; Amit, R.K. Impact of Policy Instruments on Lead-acid Battery Recycling: A System Dynamics Approach. Resour. Conserv. Recycl. 2021, 169, 105528. [Google Scholar] [CrossRef]
- Cheng, Y.; Hao, H.; Tao, S.; Zhou, Y. Traceability Management Strategy of the EV Power Battery Based on the Blockchain. Sci. Program.-Neth. 2021, 2021, 5601833. [Google Scholar] [CrossRef]
Variables | ||||||
---|---|---|---|---|---|---|
0.84 | 0.87 | 0.90 | 0.69 | 0.96 | 0.95 | |
0.93 | 0.94 | 0.95 | 0.83 | 0.77 | 0.76 | |
0.90 | 0.90 | 0.93 | 0.77 | 0.68 | 0.76 | |
0.97 | 0.97 | 0.98 | 0.91 | - | - | |
0.97 | 0.97 | 0.98 | 0.91 | - | - |
Path | Total Indirect Effect | Total Effect | Path | Specific Indirect Effect |
---|---|---|---|---|
0.54 *** | 0.12 *** | |||
−0.45 *** | 0.21 *** | |||
0.26 *** | 0.15 *** | 0.20 *** | ||
0.36 *** | 0.08 *** | |||
−0.46 *** | ||||
0.19 *** | 0.23 *** | |||
0.21 *** | ||||
−0.45 *** |
Path | |||||||||
Δ | Δ | Δ | |||||||
0.13 *** | 0.26 *** | −0.14 * | 0.18 *** | 0.16 *** | 0.02 | 0.13 ** | 0.25 *** | −0.13 | |
0.47 *** | 0.22 *** | 0.25 ** | 0.44 *** | 0.29 *** | 0.14 | 0.52 *** | 0.25 *** | 0.28 *** | |
−0.40 *** | −0.49 *** | 0.08 | −0.34 *** | −0.49 *** | 0.15 *** | −0.46 *** | −0.47 *** | 0.01 | |
0.12 *** | 0.03 * | 0.09 *** | 0.13 *** | 0.06 *** | 0.07* | 0.12 *** | 0.03 ** | 0.09 *** | |
Path | |||||||||
Δ | Δ | Δ | |||||||
−0.41 *** | −0.47 *** | 0.06 | −0.41 *** | −0.32 *** | −0.09 | −0.44 *** | −0.73 *** | 0.28 ** | |
0.19*** | 0.08 | 0.12 * | 0.13 ** | 0.24 *** | −0.12 | 0.19 *** | −0.01 | 0.20 * | |
0.33 *** | 0.41 *** | −0.08 | 0.51 *** | 0.28 *** | 0.23 ** | 0.37 *** | 0.23 | 0.15 | |
−0.50 *** | −0.43 *** | −0.07 | −0.45 *** | −0.42 *** | −0.03 | −0.49 *** | −0.12 | −0.36 ** | |
0.26 *** | 0.16 *** | 0.10 * | 0.24 *** | 0.20 *** | 0.05 | 0.21 *** | 0.34 *** | −0.16 | |
−0.40 *** | −0.56 *** | 0.19 *** | −0.42 *** | −0.47 *** | 0.06 | −0.43 *** | −0.44 *** | −0.00 | |
0.16 *** | 0.28 *** | −0.11 ** | 0.17 *** | 0.15 *** | 0.02 | 0.19 *** | 0.32 *** | −0.12 | |
0.20 *** | 0.26 *** | −0.06 | 0.19 *** | 0.20 *** | −0.01 | 0.21 *** | 0.06 | 0.15 ** | |
0.06 *** | 0.09 *** | −0.03 | 0.13 *** | 0.05 *** | 0.08 * | 0.07 *** | 0.07 | 0.01 |
Path | |||||||||
---|---|---|---|---|---|---|---|---|---|
Yes | - | - | - | - | Yes | - | - | ||
Yes | Yes | - | - | - | Yes | - | Yes | ||
Yes | - | - | - | - | - | - | - | ||
Yes | - | - | - | - | - | - | Yes | ||
Yes | Yes | - | - | Yes | - | Yes | - | ||
Yes | - | - | - | - | - | - | Yes | ||
Yes | - | - | - | - | - | - | - | ||
Yes | - | - | Yes | - | Yes | - | - | ||
Yes | - | - | - | - | Yes | - | - | ||
Yes | - | - | - | - | - | - | Yes | ||
Yes | - | - | - | - | - | - | - | ||
Yes | Yes | - | Yes | Yes | - | Yes | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, M.; Huang, W. Consumer Willingness to Recycle The Wasted Batteries of Electric Vehicles in the Era of Circular Economy. Sustainability 2023, 15, 2630. https://doi.org/10.3390/su15032630
Guo M, Huang W. Consumer Willingness to Recycle The Wasted Batteries of Electric Vehicles in the Era of Circular Economy. Sustainability. 2023; 15(3):2630. https://doi.org/10.3390/su15032630
Chicago/Turabian StyleGuo, Miaomei, and Weilun Huang. 2023. "Consumer Willingness to Recycle The Wasted Batteries of Electric Vehicles in the Era of Circular Economy" Sustainability 15, no. 3: 2630. https://doi.org/10.3390/su15032630