Pre and Post Water Level Behaviour in Punjab: Impact Analysis with DiD Approach
Abstract
1. Introduction
2. Materials and Method
2.1. Study Period and Type of Data
2.2. Hydrogeology of Punjab
2.3. Model Specification and Description
2.4. Estimation Procedure
3. Results and Discussion
3.1. Pre-Monsoon, Post-Monsoon and Overall Scenario of Groundwater in Punjab
Years | Kandi Zone (31°53′ N, 75°90′ E) | Central Zone (30°84′ N, 75°59′ E) | South West Zone (30°34′ N, 74°76′ E) | Punjab (30°84′ N, 75°41′ E) | ||||
---|---|---|---|---|---|---|---|---|
June | October | June | October | June | October | June | October | |
1996 | 8.34 | 6.83 | 8.84 | 8.96 | 5.23 | 5.10 | 7.57 | 6.96 |
2000 | 8.05 | 7.57 | 8.95 | 9.87 | 5.03 | 5.26 | 7.34 | 7.57 |
2005 | 10.76 | 9.51 | 12.67 | 14.06 | 6.71 | 6.39 | 10.05 | 9.98 |
2010 | 10.68 | 9.91 | 16.57 | 17.09 | 8.26 | 7.78 | 11.84 | 11.59 |
2011 | 11.344 | 9.12 | 16.47 | 18.52 | 8.03 | 7.84 | 11.95 | 11.26 |
2012 | 11.86 | 10.04 | 17.59 | 19.20 | 7.29 | 8.82 | 11.02 | 13.68 |
2013 | 12.73 | 11.80 | 18.78 | 20.61 | 8.47 | 8.55 | 13.33 | 13.32 |
2014 | 12.21 | 12.05 | 18.24 | 21.42 | 8.57 | 9.12 | 12.67 | 14.19 |
2015 | 11.91 | 11.97 | 19.02 | 22.31 | 8.91 | 9.05 | 13.28 | 14.44 |
2016 | 12.73 | 14.24 | 19.86 | 23.30 | 8.73 | 9.96 | 13.44 | 15.83 |
2017 | 13.57 | 13.36 | 21.37 | 24.13 | 9.69 | 10.26 | 14.87 | 15.92 |
2018 | 14.72 | 14.36 | 21.89 | 24.86 | 10.36 | 11.09 | 15.66 | 16.77 |
Average depth (mbgl) | 10.93 A | 10.53 A | 16.00 B | 16.15 B | 7.41 C | 7.48 C | 11.45 D | 11.39 D |
Zone average depth | 10.73 a | 16.08 b | 7.44 c |
3.2. Estimates of Groundwater Depletion in Punjab
Districts | 1996 | 2018 | ||||
---|---|---|---|---|---|---|
Water Level (m) | Paddy Area | Water Level (m) | Paddy Area | |||
Area Million Hectares | % to Net Sown Area (NSA) | Area Million Hectares | % to Net Sown Area (NSA) | |||
Gurdaspur (32°03′ N, 75°27′ E) | 4.43 | 0.191 | 65.41 | 7.13 | 0.204 | 79.68 |
Hoshiarpur (31°32′ N, 75°57′ E) | 8.85 | 0.057 | 26.51 | 17.33 | 0.075 | 36.76 |
SAS Nagar (30°70′ N, 76°72′) | 6.35 | 0.029 | 61.70 | 22.80 | 0.031 | 40.26 |
Rupnagar (30°57′ N, 76°32′ E) | 5.51 | 0.037 | 48.05 | 13.99 | 0.040 | 49.38 |
SBS Nagar (31°09′ N, 76°04′ E) | 10.05 | 0.042 | 41.58 | 19.93 | 0.060 | 62.50 |
Kandi Zone (31°53′ N, 75°90′ E) | 6.83 | 0.356 | 48.63 | 14.36 | 0.410 | 57.42 |
Ludhiana (30°55′ N, 75°54′ E) | 10.08 | 0.230 | 76.67 | 21.06 | 0.258 | 86.28 |
Sangrur (30°12′ N, 75°53′ E) | 7.75 | 0.228 | 70.59 | 34.03 | 0.284 | 90.15 |
Jalandhar (31°19′ N, 35°18′ E) | 9.92 | 0.112 | 49.12 | 25.54 | 0.171 | 70.37 |
Patiala (30°2′ N, 76°25′ E) | 10.24 | 0.209 | 73.34 | 30.28 | 0.233 | 90.66 |
F. Sahib (30°64′ N, 76°39′ E) | 9.46 | 0.080 | 77.67 | 23.24 | 0.086 | 84.31 |
Amritsar (31°37′ N, 74°55′ E) | 5.57 | 0.154 | 67.84 | 14.74 | 0.180 | 82.19 |
Tarn Taran (31°28′ N, 74°58′ E) | 8.06 | 0.150 | 68.49 | 18.95 | 0.182 | 83.48 |
Moga (30°82′ N, 75°17′ E | 9.60 | 0.108 | 55.67 | 25.80 | 0.181 | 93.29 |
Kapurthala (31°23′ N, 75°25′ E) | 9.03 | 0.102 | 75.55 | 18.76 | 0.118 | 88.72 |
Barnala (30°38′ N, 75°55′ E) | 10.87 | 0.093 | 73.23 | 34.19 | 0.113 | 91.12 |
Central Zone (30°84′ N, 75°59′ E) | 8.96 | 1.466 | 68.47 | 24.86 | 1.806 | 85.84 |
Bathinda (30°11′ N, 75°00′ E) | 7.82 | 0.039 | 13.08 | 16.73 | 0.160 | 54.6 |
Mansa (29°99′ N, 75°39′ E) | 3.72 | 0.050 | 24.51 | 14.85 | 0.107 | 57.83 |
Faridkot (30°59′ N, 74°83′ E) | 4.32 | 0.038 | 28.78 | 9.14 | 0.115 | 90.55 |
Ferozepur (30°55′ N, 74°40′ E) | 4.72 | 0.233 | 50.43 | 10.15 | 0.294 | 62.42 |
Muktsar (30°30′ N, 74°43′ E) | 3.96 | 0.006 | 2.56 | 3.71 | 0.173 | 77.23 |
Southwest Zone (30°34′ N, 74°76′ E) | 5.10 | 0.366 | 27.52 | 11.09 | 0.849 | 65.31 |
Punjab (30°84′ N, 75°41′ E) | 8.06 | 2.188 | 52.06 | 19.11 | 3.065 | 74.43 |
3.3. Decreasing Groundwater Balance of Punjab
3.4. Impact of Sub Soil Water Act, 2009
Particular | Coefficient Value | |
---|---|---|
without Co-Variates | with Co-Variates | |
Act×treatment | 1.72 *** (0.44) | 1.53 *** (0.45) |
Pre-monsoon rain | No | Yes |
Ratio of canal irrigated area to total irrigated area | No | Yes |
Ratio of tube well irrigated area to total irrigated area | No | Yes |
Crop diversification index | No | Yes |
Population density | No | Yes |
District fixed effects | Yes | Yes |
Year fixed effects | Yes | Yes |
Observations | 400 | 400 |
R2 | 0.69 | 0.70 |
Particular | Coefficient Value | |
---|---|---|
without Co-Variates | with Co-Variates | |
Act×treatment | 1.55 *** (0.44) | 1.39 *** (0.45) |
Post monsoon rain | No | Yes |
Ratio of canal irrigated area to total irrigated area | No | Yes |
Ratio of tube well irrigated area to total irrigated area | No | Yes |
Crop diversification index | No | Yes |
Population density | No | Yes |
District fixed effects | Yes | Yes |
Year fixed effects | Yes | Yes |
Observations | 400 | 400 |
R2 | 0.71 | 0.72 |
4. Conclusions and Policy Implications
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Giordano, M. Global groundwater? Issues and solutions. Annu. Rev. Environ. Resour. 2009, 34, 153–178. [Google Scholar] [CrossRef]
- Diffenbaugh, N.S.; Swain, D.L.; Touma, D. Global warming increases California drought risk. Proc. Natl. Acad. Sci. USA 2015, 112, 3931–3936. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Lei, H.; Zhao, W.; Shen, Y.; Xiao, D. Comparison of the water budget for the typical cropland and pear orchard ecosystems in the North China Plain. Agric. Water Manag. 2018, 198, 53–64. [Google Scholar] [CrossRef]
- Tian, F.; Yang, Y.; Han, S. Using runoff slope-break to determine dominate factors of runoff decline in Hutuo River Basin, North China. Water Sci. Technol. 2009, 60, 2135–2144. [Google Scholar] [CrossRef]
- Sun, H.Y.; Zhang, X.Y.; Wang, E.L.; Chen, S.Y.; Shao, L.W. Quantifying the impact of irrigation on groundwater reserve and crop production—A case study in the North China Plain. Eur. J. Agron. 2015, 70, 48–56. [Google Scholar] [CrossRef]
- Jamshidzadeh, Z.; Mirbagheri, S.A. Evaluation of groundwater quantity and quality in the Kashan Basin, Central Iran. Desalination 2011, 270, 23–30. [Google Scholar] [CrossRef]
- Huang, Z.; Pan, Y.; Gong, H.; Yeh, P.J.; Li, X.; Zhou, D.; Zhao, W. Subregional-scale groundwater depletion detected by GRACE for both shallow and deep aquifers in North China Plain. Geophys. Res. Lett. 2015, 42, 1791–1799. [Google Scholar] [CrossRef]
- Galloway, D.L.; Burbey, T.J. Review: Regional land subsidence accompanying groundwater extraction. Hydrogeol. J. 2011, 19, 1459–1486. [Google Scholar] [CrossRef]
- Erban, L.E.; Gorelick, S.M.; Zebker, H.A.; Fendorf, S. Release of arsenic to deep groundwater in the Mekong Delta, Vietnam, linked to pumping-induced land subsidence. Proc. Natl. Acad. Sci. USA 2013, 110, 13751–13756. [Google Scholar] [CrossRef]
- Lei, S.; Jiao, J.J. Seawater intrusion and coastal aquifer management in China: A review. Environ. Earth Sci. 2014, 72, 2811–2819. [Google Scholar]
- Chinnasamy, P.; Muthuwatta, L.; Eriyagama, N.; Pavelic, P.; Lagudu, S. Modeling the potential for floodwater recharge to offset groundwater depletion: A case study from the Ramganga basin, India. Sustain. Water Resour. Manag. 2018, 4, 331–344. [Google Scholar] [CrossRef]
- O′Connor, D.; Hou, D. More haste, less speed in replenishing China′s groundwater. Nature 2019, 569, 487–488. [Google Scholar] [CrossRef]
- Davis, K.F.; Rulli, M.C.; Seveso, A.; D′Odorico, P. Increased food production and reduced water use through optimized crop distribution. Nat. Geosci. 2017, 10, 919–924. [Google Scholar] [CrossRef]
- Briscoe, J. Water Resources Management in Yemen—Results of a Consultation; Office Memorandum; World Bank: Washington, DC, USA, 1999. [Google Scholar]
- Postel, S. The Pillar of Sand: Can the Irrigation Miracle Last? Norton: New York, NY, USA, 1999. [Google Scholar]
- Kaur, B.; Sidhu, R.S.; Vatta, K. Optimal Crop Plans for Sustainable Water Use in Punjab. Agric. Econ. Res. Rev. 2010, 23, 273–284. [Google Scholar]
- Pahuja, S.; Catherine, T.; Stephen, F.; Hector, G. Deep Wells and Prudence: Towards Pragmatic Action for Addressing Groundwater Overexploitation in India; Study and Technical Assistance Initiative Report; World Bank: Washington, DC, USA, 2010. [Google Scholar]
- Shah, T.; Giordano, M.; Mukherji, A. Political Economy of the Energy-Groundwater Nexus in India: Exploring Issues and Assessing Policy Options. Hydrogeol. J. 2012, 20, 995–1006. [Google Scholar] [CrossRef]
- Badiani, R.; Jessoe, K.K.; Plant, S. Development and the Environment: The Implications of Agricultural Electricity Subsidies in India. J. Environ. Develop. 2012, 21, 44–262. [Google Scholar] [CrossRef]
- Kishore, P.; Singh, D.R.; Srivastava, S.; Kumar, P.; Jha, G.K. Impact of Subsoil Water Preservation Act, 2009 on Burgeoning Trend of Groundwater Depletion in Punjab, India. In Proceedings of the International Conference of Agricultural Economists, Virtual, 17–37 August 2021. [Google Scholar]
- Mukherji, A. Sustainable Groundwater Management in India Needs a Water-Energy-Food Nexus Approach. App. Econ. Perspect. Policy 2020, 44, 394–410. [Google Scholar] [CrossRef]
- Food Corporation of India. Procurement Data for Current Marketing Season, Government of India. 2020. Available online: https://fci.gov.in/procurements.php?view=87 (accessed on 20 December 2022).
- Kaur, B. Impact of Climate Change and Cropping Pattern on Ground Water Resources of Punjab. Ind. J. Agric. Econ. 2011, 66, 373–387. [Google Scholar]
- Kaur, S.; Vatta, K. Groundwater Depletion in Central Punjab: Pattern, Access and Adaptations. Curr. Sci. 2015, 108, 485–490. [Google Scholar]
- Kaur, B.; Vatta, K.; Sidhu, R.S. Optimising Irrigation Water Use in Punjab Agriculture: Role of Crop Diversification and Technology. Ind. J. Agric. Econ. 2015, 70, 307–318. [Google Scholar]
- Kumar, S.; Sidana, B.K. Farmers′ perceptions and adaptation strategies to climate change in Punjab agriculture. Ind. J. Agric. Sci. 2018, 88, 1573–1581. [Google Scholar]
- Bhardwaj, S.; Kaur, B. Groundwater Depletion and Role of Direct Seeded Rice in Water Saving: A Move Towards Sustainable Agriculture of Punjab. Econ. Aff. 2019, 64, 25–33. [Google Scholar] [CrossRef]
- Kumar, S.; Kaur, B. Impact of Climate Change on the Productivity of Rice and Wheat Crops in Punjab. Econ. Pol. Wkly. 2019, 54, 38–44. [Google Scholar]
- Sharma, Y.; Sidana, B.K.; Kaur, S.; Kumar, S. Role of public policy in sustaining groundwater: Impact of ′The Punjab Preservation of Sub Soil Water Act, 2009′. Agric. Econ. Res. Rev. 2021, 34, 121–131. [Google Scholar] [CrossRef]
- Sidana, B.K.; Kumar, S. Climate adaptation strategies: Optimizing farm-level water use and profitability in Punjab. Agric. Econ. Res. Rev. 2021, 34, 91–102. [Google Scholar] [CrossRef]
- Ranguwal, S.; Sidana, B.K.; Kumar, S. Carbon footprints of rice-wheat cultivation across farm size categories: Evidence from Punjab in India. J. Cereal Res. 2022, 14, 8–17. [Google Scholar] [CrossRef]
- Central Groundwater Board. Groundwater Yearbook—India 2017–2018; Ministry of Water Resources, River Development and Ganga Rejuvenation, Government of India: New Delhi, India, 2017. [Google Scholar]
- Tajarudin, H.A.; Makhtar, M.M.; Azmi, M.S.; Zainuddin, N.I.; Ali, D.H. Introduction to water and wastewater treatment. In Advanced Oxidation Processes (AOPs) in Water and Wastewater Treatment; IGI Global: Hershey, PA, USA, 2019; pp. 1–29. [Google Scholar]
- Sarkar, A. Groundwater Irrigation and Farm Power Policies in Punjab and West Bengal: Challenges and Opportunities. Energy Policy 2020, 140, 111437. [Google Scholar] [CrossRef]
- Singh, K. Act to Save Groundwater in Punjab: Its Impact on the water Table, Electricity Subsidy and Environment. Agric. Econ. Res. Rev. 2009, 22, 365–386. [Google Scholar]
- Bhagyashri, C.M.; Bhavana, N.U. Influence of Various Factors on the Fluctuation of Groundwater Level in Hard Rock Terrain and its Importance in the Assessment of Groundwater. J. Geol. Min. Res. 2011, 3, 305–317. [Google Scholar]
- Central Groundwater Board. Groundwater Resources of Punjab State; Water Resources & Environment Directorate, Water Resources Department, Mohali and Central Ground Water Board, North Western Region: Chandigarh, India, 2018. [Google Scholar]
- Rodell, M.; Velicogna, I.; Famiglietti, J.S. Satellite-based Estimates of Groundwater Depletion in India. Nature 2009, 460, 999–1002. [Google Scholar] [CrossRef]
- Shah, T.; Scott, C.; Berkoff, J.; Kishore, A.; Sharma, A. The Energy–Irrigation Nexus in South Asia: Groundwater Conservation and Power Sector Viability. In Irrigation Water Pricing: The Gap Between Theory and Practice; CABI Publishing: Wallingford, UK, 2007; pp. 208–232. [Google Scholar]
- Department of Soil and Water Engineering. Optimization of Ground Water Utilization. A Compilation of Research Conducted under AICRP Optimization of Ground Water Utilization through Wells and Pumps During 1982–1992; Punjab Agricultural University: Ludhiana, India, 1993. [Google Scholar]
- Hira, G.S.; Jalota, S.K.; Arora, V.K. Efficient management of water resources for sustainable cropping in Punjab. Res. Bull. 2004, 20. [Google Scholar]
- Central Ground Water Board (CGWB). Water Quality Issues and Challenges in Punjab. Ministry of Water Resources. Government of India. 2014. Available online: http://www.cgwb.gov.in/WQ/Punjab%20Book%20Final%20for%20Printing.pdf (accessed on 22 November 2014).
- Central Statistical Organisation. EnviStats-India 2018: Supplement on Environmental Accounts; Central Statistics Office, Ministry of Statistics & Programme Implementation, Government of India: New Delhi, India, 2018. [Google Scholar]
- Statistical Abstract of Punjab, Area under rice in Punjab, Economic and Statistical Organization of Punjab, Chandigarh. Available online: Esopb.gov.in (accessed on 20 December 2022).
- Kaur, R.; Sharma, M. Agricultural subsidies in India: Case study of electricity subsidy in Punjab State—An analysis. Int. J. Sci. Res. Publ. 2012, 2, 1–7. [Google Scholar]
- Baweja, S.; Aggarwal, R.; Brar, M.; Lal, R. Groundwater Depletion in Punjab, India. Encycl. Soil Sci. 2017, 3, 1–5. [Google Scholar]
- Perveen, S.; Krishnamurthy, C.K.; Sidhu, R.S.; Vatta, K.; Kaur, B.; Modi, V.; Fishman, R.; Polycarpou, L.; Lall, U. Restoring Groundwater in Punjab, India′s Breadbasket: Finding Agricultural Solutions for Water Sustainability; Columbia Water Center–White Paper; Columbia Water Center: New York, NY, USA, 2012. [Google Scholar]
- Panigrahy, S.; Ray, S.S.; Manjunath, K.R.; Pandey, P.S.; Sharma, S.K.; Sood, A.; Yadav, M.; Gupta, P.C.; Kundu, N.; Parihar, J.S. A Spatial Database of Cropping System and its Characteristics to Aid Climate Change Impact Assessment Studies. Ind. Soc. Remote Sens. 2011, 39, 355–364. [Google Scholar] [CrossRef]
- Tripathi, A.; Mishra, A.; Verma, G. Impact of Preservation of Subsoil Water Act on Groundwater Depletion: The Case of Punjab, India. Environ. Manag. 2016, 58, 48–59. [Google Scholar] [CrossRef]
- Vatta, K.; Sidhu, R.S.; Lall, U.; Birthal, P.S.; Taneja, G.; Kaur, B.; Devineni, N.; MacAlister, C. Assessing the Economic Impact of a Low-Cost Water-Saving Irrigation Technology in Indian Punjab: The Tensiometer. Water Int. 2018, 43, 305–321. [Google Scholar] [CrossRef]
- Sekhri, S. Sustaining Ground Water: Role of Policy Reforms in Promoting Conservation in India. In India Policy Forum; IIC: New Delhi, India, 2012. [Google Scholar]
- Scanlon, B.R.; Faunt, C.C.; Longuevergne, L.; Reedy, R.C.; Alley, W.M.; McGuire, V.L.; McMahon, P.B. Groundwater depletion and sustainability of irrigation in the US High Plains and Central Valley. Proc. Natl. Acad. Sci. USA 2012, 109, 9320–9325. [Google Scholar] [CrossRef]
- Feng, W.; Zhong, M.; Lemoine, J.M.; Biancale, R.; Hsu, H.T.; Xia, J. Evaluation of groundwater depletion in North China using the Gravity Recovery and Climate Experiment (GRACE) data and ground-based measurements. Water Resour. Res. 2013, 49, 2110–2118. [Google Scholar] [CrossRef]
- Famiglietti, J.S. The global groundwater crisis. Nat. Clim. Chang. 2014, 4, 945–948. [Google Scholar] [CrossRef]
- Zhang, Q. Strategies for developing green super rice. Proc. Natl. Acad. Sci. USA 2007, 104, 16402–16409. [Google Scholar] [CrossRef]
- Brown, L.; Halweil, B. China′s water shortage could shake world food security. World Watch Mag. 1998, 11, 10–21. [Google Scholar]
- Cai, H.; Chen, Q. Rice research in China in the early 21st century. Chin. Rice Res. Newsl. 2000, 8, 14–16. [Google Scholar]
- Bouman, B.A.M.; Humphreys, E.; Tuong, T.P.; Barker, R. Rice and water. Adv. Agron. 2007, 92, 187–237. [Google Scholar]
- Seckler, D.; Barker, R.; Amarasinghe, U.A. Water scarcity in the twenty-first century. Int. J. Water Resour. Dev. 1999, 15, 29–42. [Google Scholar] [CrossRef]
- Morris, B.L.; Lawrence, A.R.L.; Chilton, P.J.C.; Adams, B.; Calow, R.C.; Klinck, B.A. Groundwater and Its Susceptibility to Degradation: A Global Assessment of the Problem and Options for Management; UN Environment Programme: Nairobi, Kenya, 2003. [Google Scholar]
- Brown, L. Water tables falling and rivers running dry: International situation. Int. J. Environ. Consum. 2007, 3, 1–5. [Google Scholar]
- Singh, D.K.; Singh, A.K. Groundwater situation in India: Problems and perspectives. Int. J. Water Resour. Dev. 2002, 18, 563–580. [Google Scholar] [CrossRef]
- Jakeman, A.J.; Barreteau, O.; Hunt, R.J.; Rinaudo, J.D.; Ross, A. Integrated Groundwater Management Concepts, Approaches and Challenges; National Centre for Groundwater Research and Training; Springer: Berlin/Heidelberg, Germany, 2016; pp. 1–749. [Google Scholar]
- Berven, C.G. The Sustainable Groundwater Management Act′s Impact on Groundwater Withdrawal in the Sacramento Hydrologic Region; University of California: Berkeley, CA, USA, 2020. [Google Scholar]
High Rice Growing Districts (Treated) | Low Rice Growing Districts (Control) | ||
---|---|---|---|
Gurdaspur | Patiala | Jalandhar | Ferozepur |
Amritsar | Sangrur | SBS Nagar | Muktsar |
Tarn Taran | Barnala | Hoshiarpur | Moga |
Kapurthala | Faridkot | Rupnagar | Bathinda |
Ludhiana | F. Sahib | SAS Nagar | Mansa |
Zone | 1996–2007 | 2007–2018 | 1996–2018 | |||
---|---|---|---|---|---|---|
Total | Average/Year | Total | Average/Year | Total | Average/Year | |
Kandi Zone | 5.009 | 0.455 | 8.590 | 0.780 | 13.590 | 0.617 |
Central Zone | 30.604 | 2.782 | 34.021 | 3.092 | 64.626 | 2.937 |
South West Zone | 6.903 | 0.627 | 8.427 | 0.766 | 15.331 | 0.696 |
Punjab | 42.516 | 1.288 | 51.038 | 1.546 | 93.547 | 1.416 |
Particulars | High Rice Growing Districts | Low Rice Growing Districts | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Pre-Act (1999–2008) | Post-Act (2009–2018) | Pre-Act (1999–2008) | Post-Act (2009–2018) | |||||||||
1999 | 2008 | % Increase | 2009 | 2018 | % Increase | 1999 | 2008 | % Increase | 2009 | 2018 | % Increase | |
Rice area (million hectares) | 1.59 | 1.67 | 4.95 | 1.72 | 1.78 | 3.84 | 0.95 | 0.96 | 1.79 | 1.04 | 1.31 | 25.55 |
No. of electricity-operated tube wells (millions) | 0.48 | 0.61 | 25.82 | 0.63 | 0.81 | 26.93 | 0.276 | 0.37 | 34.78 | 0.39 | 0.56 | 40.70 |
Electric tube well density (million per ha of net sown area) | 0.23 | 0.29 | 28.82 | 0.30 | 0.39 | 29.41 | 0.13 | 0.18 | 34.42 | 0.19 | 0.27 | 40.84 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sharma, Y.; Sidana, B.K.; Kumar, S.; Kaur, S.; Sekhon, M.K.; Mahal, A.K.; Mehan, S. Pre and Post Water Level Behaviour in Punjab: Impact Analysis with DiD Approach. Sustainability 2023, 15, 2426. https://doi.org/10.3390/su15032426
Sharma Y, Sidana BK, Kumar S, Kaur S, Sekhon MK, Mahal AK, Mehan S. Pre and Post Water Level Behaviour in Punjab: Impact Analysis with DiD Approach. Sustainability. 2023; 15(3):2426. https://doi.org/10.3390/su15032426
Chicago/Turabian StyleSharma, Yogita, Baljinder Kaur Sidana, Sunny Kumar, Samanpreet Kaur, Milkho Kaur Sekhon, Amrit Kaur Mahal, and Sushant Mehan. 2023. "Pre and Post Water Level Behaviour in Punjab: Impact Analysis with DiD Approach" Sustainability 15, no. 3: 2426. https://doi.org/10.3390/su15032426
APA StyleSharma, Y., Sidana, B. K., Kumar, S., Kaur, S., Sekhon, M. K., Mahal, A. K., & Mehan, S. (2023). Pre and Post Water Level Behaviour in Punjab: Impact Analysis with DiD Approach. Sustainability, 15(3), 2426. https://doi.org/10.3390/su15032426