Hydrological Drought Severity in Different Return Periods in Rivers of Ardabil Province, Iran
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Methodology
2.2.1. Data Used
2.2.2. Streamflow Drought Index (SDI) Calculation
2.2.3. Analysis of SDI in Different Return Periods
2.2.4. Statistical Analysis and Mapping of Drought Events
3. Results
3.1. Analysis of Streamflow Drought Index (SDI)
3.2. Analysis of SDI in Different Return Periods
3.3. Results of Statistical Analysis and Mapping
4. Discussion
5. Management Implications and Future Perspectives
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Arunrat, N.; Sereenonchai, S.; Chaowiwat, W.; Wang, C. Climate change impact on major crop yield and water footprint under CMIP6 climate projections in repeated drought and flood areas in Thailand. Sci. Total Environ. 2022, 807, 150741. [Google Scholar] [CrossRef]
- Komori, D.; Nakamura, S.; Kiguchi, M.; Nishijima, A.; Yamazaki, D.; Suzuki, S.; Kawasaki, A.; Oki, K.; Oki, T. Characteristics of the 2011 Chao Phraya River flood in Central Thailand. Hydrol. Res. Lett. 2012, 6, 41–46. [Google Scholar] [CrossRef]
- Sharma, S.; Mujumdar, P. Increasing frequency and spatial extent of concurrent meteorological droughts and heatwaves in India. Sci. Rep. 2017, 7, 15582. [Google Scholar] [CrossRef] [Green Version]
- Nicholson, S.E. Climatic and environmental change in Africa during the last two centuries. Clim. Res. 2011, 17, 2. [Google Scholar] [CrossRef] [Green Version]
- Naeimi, M.; Ehghaghi, E. Drought Investigation and Management in Iran 2002. Report No. 48424.
- Vicente-Serrano, S.M.; López-Moreno, J.I.; Beguería, S.; Lorenzo-Lacruz, J. Accurate computation of a streamflow drought index. J. Hydrol. Eng. 2011, 17, 2. [Google Scholar] [CrossRef] [Green Version]
- Jahangir, M.H.; Yarahmadi, Y. Hydrological drought analyzing and monitoring by using Streamflow Drought Index (SDI) (case study: Lorestan, Iran). Arab. J. Geosci. 2020, 13, 110. [Google Scholar] [CrossRef]
- World Meteorological Organization (WMO). Report on Drought and Countries Affected by Drought during, 1974–1985; World Meteorological Organization: Geneva, Switzerland, 1986; Volume 118. [Google Scholar]
- UN Secretariat General. United Nations Convention to Combat Drought and Desertification in Countries Experiencing Serious Droughts and/or Desertification, Particularly in Africa. Treaty Series; United Nations: Paris, France, 1994. [Google Scholar]
- Food and Agriculture Organization. Guidelines: Land Evaluation for Rain Fed Agriculture; FAO Soils Bulletin: Rome, Italy, 1983; Volume 52. [Google Scholar]
- Heim, R.R. A review of twentieth-century drought indices used in the United States. Bull. Am. Meteorol. Soc. 2002, 83, 8. [Google Scholar] [CrossRef] [Green Version]
- Mishra, A.K.; Singh, V.P. A review of drought concept. J. Hydrol. 2010, 391, 202–216. [Google Scholar] [CrossRef]
- Hannaford, J.; Lloyd Hughes, B.; Keef, C.; Parry, S.; Prudhomme, C. Examining the large-scale spatial coherence of European drought using regional indicators of precipitation and streamflow deficit. Hydrol. Process. 2011, 25, 7. [Google Scholar] [CrossRef]
- Dai, A. Drought under global warming: A review. Wiley Interdiscip. Rev. Clim. Chang. 2011, 2, 1. [Google Scholar] [CrossRef]
- Hashemi, S. The effect of periodic drought on groundwater resources in Ardabil plain. In Proceedings of the First International Conference on Innovation and Research in Arts and Humanities, Turkey, 18 May 2015. [Google Scholar]
- Abhishek; Kinouchi, T. Multidecadal land water and groundwater drought evaluation in Peninsular India. Remote Sens. 2022, 14, 1486. [Google Scholar] [CrossRef]
- Hayes, M.; Wilhite, D.; Svoboda, M.; Trnka, M. Investigating the connections between climate change, drought, and agricultural production. In Handbook on Climate Change and Agriculture; Edward Elgar Publishing: Cheltenham, UK, 2011; pp. 73–86. [Google Scholar]
- Jehanzaib, M.; Ali Shah, S.; Jiyoung, Y.; Kim, T.W. Investigating the impacts of climate change and human activities on hydrological drought using non-stationary approaches. J. Hydrol. 2020, 588, 125052. [Google Scholar] [CrossRef]
- Sheffield, J.; Wood, E.F.; Roderick, M.L. Little change in global drought over the past 60 years. Nature 2012, 491, 7424. [Google Scholar] [CrossRef]
- Van Loon, A.F.; Gleeson, T.; Clark, J.; Van Dijk, A.I.; Stahl, K.; Hannaford, J.; Di Baldassarre, G.; Teuling, A.J.; Tallaksen, L.M.; Uijlenhoet, R.; et al. Drought in the Anthropocene. Nat. Geosci. 2016, 9, 2. [Google Scholar] [CrossRef] [Green Version]
- Sharma, T.C.; Panu, U.S. Predicting return periods of hydrological droughts using the Pearson 3 distribution: A case from rivers in the Canadian prairies. Hydrol. Sci. J. 2014, 60, 10. [Google Scholar] [CrossRef]
- David, V.; Davidova, T. Assessment of summer drought in 2015 using different indices in the catchment of Blanice river. Procedia Eng. 2016, 162, 45–55. [Google Scholar] [CrossRef] [Green Version]
- Pathak, A.A.; Veerappa, C.; Dodamani, B.M. Comparison of two hydrological drought indices. Perspect. Sci. 2016, 8, 626–628. [Google Scholar] [CrossRef] [Green Version]
- Rahmouni, A.; Meddi, M.; Saaed, A.H. Hydrological drought forecasts using Markov chains and regression models (Case Study: North-west of Algeria). Russ. Meteorol. Hydrol. 2021, 46, 701–710. [Google Scholar] [CrossRef]
- Amini, H.; Esmali Ouri, A.; Mostafazadeh, R.; Sharari, M.; Zabihi, M. Hydrological drought assessment and analysis of its characteristic using the streamflow drought index (SDI) at hydrometry stations in the province of Ardabil. Watershed Manag. Res. 2018, 32, 3. [Google Scholar]
- Janbozorgi, M.; Hanifepour, M.; Khosravi, H. Temporal changes in meteorological-hydrological drought (Case study: Guilan Province). Water Soil Manag. Model. 2021, 1, 1–13. [Google Scholar]
- Tabari, H.; Nikbakht, J.; Hosseinzadeh Talaee, P. Hydrological drought assessment in Northwestern Iran based on Streamflow Drought Index (SDI). Water Resour. Manag. 2013, 27, 137–151. [Google Scholar] [CrossRef]
- Hong, X.; Guo, S.; Zhou, Y.; Xiong, L. Uncertainties in assessing hydrological drought using streamflow drought index for the upper Yangtze River basin. Stoch. Environ. Res. Risk Assess. 2015, 29, 1235–1247. [Google Scholar] [CrossRef]
- Malik, A.; Kumar, A.; Singh, R.P. Application of heuristic approaches for prediction of hydrological drought using multi-scalar streamflow drought index. Water Resour. Manag. 2019, 33, 3985–4006. [Google Scholar] [CrossRef]
- Abera Tareke, k.; Gebeyehu Awoke, A. Comparing surface water supply index and streamflow drought index for hydrological drought analysis in Ethiopia. Heliyon 2022, 8, e12000. [Google Scholar] [CrossRef]
- Katipoğlu, O.M. Prediction of streamflow drought index for short-term hydrological drought in the semi-arid Yesilirmak Basin using Wavelet transform and artificial intelligence techniques. Sustainability 2023, 15, 1109. [Google Scholar] [CrossRef]
- Ahsan, S.; Bhat, M.S.; Alam, A.; Sheikh, H.A.; Farooq, H. Hydrological extremes and climatic controls on streamflow in Jhelum basin, NW Himalaya. Theor. Appl. Climatol. 2023, 1–23. [Google Scholar] [CrossRef]
- Prajapati, V.K.; Khanna, M.; Singh, M.; Kaur, R.; Sahoo, R.N.; Singh, D.K. Evaluation of time scale of meteorological, hydrological and agricultural drought indices. Nat. Hazard 2021, 109, 89–109. [Google Scholar] [CrossRef]
- Koushki, R.; Rahimi, M.; Amiri, M.; Mohammadi, M.; Dastorani, J. Investigation of relationship between meteorological and hydrological drought in Karkheh watershed. Ecohydrology 2017, 4, 3. [Google Scholar]
- Mortezaii, G.; Lotfi, J.; Khalighi Sigarodi, S.; Saravi, M.; Nazari Samini, A. Analysis and evaluation of hydrological drought indicators in Kurdistan Province. Watershed Eng. Manag. 2020, 12, 2. [Google Scholar]
- Akbari, M.; Mirchi, A.; Roozbahani, A.; Gafurov, A.; Klove, B.; Torabi Haghighi, A. Desiccation of the transboundary hamun lakes between Iran and Afghanistan in response to hydro-climatic droughts and Anthropogenic Activities. J. Great Lakes Res. 2022, 48, 876–889. [Google Scholar] [CrossRef]
- Amini, H.; Esmali Ouri, A.; Mostafazadeh, R.; Sharari, M.; Zabihi, M. Hydrological drought response of regulated river flow under the influence of dam reservoir in Ardabil Province. Earth Space Phys. 2019, 45, 2. [Google Scholar]
- Kazemzadeh, M.; Malekian, A. Temporal monitoring of hydrological droughts in Ardebil Province. J. Soil Water Sci. 2015, 25, 1–12. [Google Scholar]
- Sobhani, B.; Ghafari Gilandeh, A.; Goldoost, A. Drought monitoring in Ardabil province using SEPI fuzzy index developed based on fuzzy logic. J. Appl. Res. Geogr. Sci. 2014, 15, 36. [Google Scholar]
- Sobhani, B.; Jafarzadehaliabad, L.; Zengir, V.S. Investigating the effects of drought on the environment in northwestern province of Iran, Ardabil, using combined indices, Iran. Model. Earth Syst. Environ. 2020, 6, 983–993. [Google Scholar] [CrossRef]
- Safarian Zengir, V.; Salahi, B.; Maleki Marsht, R.; Kianian, M. Analysis of standardized precipitation drought indices in the cities of Ardebil Province. Urban Ecol. Res. 2020, 11, 1. [Google Scholar]
- Mehri, S.; Mostafazadeh, R.; Esmaliouri, A.; Ghorbani, A. Spatial and temporal variations of Base Flow Index (BFI) for the Ardabil province river, Iran. J. Earth Space Phys. 2017, 43, 3. [Google Scholar]
- Da Rocha Júnior, R.L.; Dos Santos Silva, F.D.; Costa, R.L.; Gomes, H.B.; Pinto, D.D.C.; Herdies, D.L. Bivariate assessment of drought return periods and frequency in brazilian northeast using joint distribution by copula method. Geosciences 2023, 10, 135. [Google Scholar] [CrossRef] [Green Version]
- Parchami, N.; Mostafazadeh, R.; Esmali Ouri, A.; Imani, R. Spatial Variations of Hydrological Drought in Different Time Scales in Rivers of Ardabil Province. Hydrogeomorphology 2022. accepted manuscript. [Google Scholar]
- Mostafazadeh, R.; Moradzadeh, V.; Alaei, N.; Hazbavi, Z. Determining long-term memory using Hurst index for precipitation and discharge time series of selected stations in Ardabil Province. J. Water Soil Resour. Conserv. 2021, 11, 113–131. [Google Scholar]
- Nalbantis, I. Evaluation of a hydrological drought index. Eur. Water 2008, 23, 24. [Google Scholar]
- Nalbantis, N.; Tsakiris, G. Assessment of hydrological drought revisited. Water Resour. Manag. 2009, 23, 881–897. [Google Scholar] [CrossRef]
- Tigkas, D.; Vangelis, H.; Tsakiris, G. DrinC: A software for drought analysis based on drought indices. Earth Sci. India 2015, 8, 697–709. [Google Scholar] [CrossRef]
- Hoseini, Y. Determining the maximum flood discharge using the response surface methodology in Darrehrood Sub-basins, Ardebil Province. Watershed Manag. Res. 2022, 35, 88–104. [Google Scholar]
- Esmaili, S.A.R.; Mosaedi, A. Study of the effect of crossover structures and roughness coefficient on depth and flood plain of the urban watercourses (Case study: Zarkesh Watercourse, Mashhad). Water Soil Sci. 2022, 26, 223–238. [Google Scholar]
- Mostafazadeh, R.; Shahabi, M.; Zabihi, M. Analysis of meteorological drought using triple diagram model in the Kurdistan province, Iran. Geogr. Plan. Space 2015, 5, 17. [Google Scholar]
- Altunkaynak, A.; Wang, K.H. Triple diagram models for prediction of suspended solid concentration in Lake Okeechobee, Florida. J. Hydrol. 2010, 387, 165–175. [Google Scholar] [CrossRef]
- Sadeghi, S.H.R.; Mostafazadeh, R. Triple diagram models for changeability evaluation of precipitation and flow discharge for suspended sediment load in different time scales. Environ. Earth Sci. 2016, 75, 843. [Google Scholar] [CrossRef]
- Isaaks, E.; Srivastava, M. An Introduction to Applied Geostatistics; Oxford University Press: New York, NY, USA, 1989; 561p. [Google Scholar]
- Altunkaynak, A.; Ozger, M.; Sen, Z. Triple diagram model of level fluctuations in Lake Van, Turkey. Hydrol. Earth Syst. Sci. 2003, 7, 2. [Google Scholar] [CrossRef] [Green Version]
- Sen, Z.; Altunkaynak, A.; Ozger, M. El Nino Southern Oscillation (ENSO) templates and streamflow prediction. Hydrol. Eng. 2004, 9, 5. [Google Scholar] [CrossRef]
- Mostafazadeh, R.; Nasiri Khiavi, A. Spatio-temporal assessment of river Flow discharge variability indices in some watersheds of Ardabil Province. Hydrogeomorphology 2019, 5, 23–44. [Google Scholar]
- Falkenmark, M.; Wang-Erlandsson, L.; Rockström, J. Understanding of water resilience in the Anthropocene. J. Hydrol. X 2019, 2, 100009. [Google Scholar] [CrossRef]
County | River | Hydrometric Station | Watershed Area (km2) | Mean Discharge (m3/s) | Elevation (m) | Latitude | Longitude |
---|---|---|---|---|---|---|---|
Degree Minute Second | |||||||
Ardabil | Noran Chay | Atashgah | 44 | 0.115 | 1773 | 38°13′05″ | 48°03′23″ |
Gharasou | Aladizgeh | 22 | 0.193 | 1347 | 37°13′00″ | 48°35′22″ | |
Saghezchi Chay | Eiril | 8 | 0.234 | 1375 | 38°13′23″ | 48°34′30″ | |
Shahrivar Chay | Barogh | 96 | 0.165 | 1410 | 38°18′17″ | 48°10′06″ | |
Balikhloo Chay | Polealmas | 1070 | 2.976 | 1440 | 38°09′00″ | 48°11′01″ | |
Gharasou | Samian | 4004 | 4.938 | 1290 | 38°22′53″ | 48°14′48″ | |
Soola Chay | Sola | 44 | 0.161 | 1352 | 38°23′14″ | 48°29′04″ | |
Agh Chay | Shamsabad | 128 | 0.317 | 1493 | 37°59′53″ | 48°15′14″ | |
Yadibolok Chay | Amoghin | 110 | 0.199 | 1385 | 38°15′07″ | 48°10′40″ | |
Ghori Chay | Kouzetopraghi | 812.5 | 0.947 | 1394 | 38°07′28″ | 48°22′01″ | |
Balikhloo Chay | Gilandeh | 1683 | 2.498 | 1332 | 38°18′26″ | 48°21′43″ | |
Lay Chay | Lai | 36 | 0.123 | 2068 | 38°07′00″ | 47°54′03″ | |
Narges Chay | Nanekaran | 40 | 0.083 | 1350 | 38°22′17″ | 48°31′32″ | |
Dam output | Neor | 44 | 0.166 | 2499 | 38°00′53″ | 48°33′43″ | |
Nir Chay | Nir | 256 | 1.205 | 1624 | 38°02′02″ | 47°59′38″ | |
Namin Chay | Namin | 44 | 0.086 | 1459 | 38°25′45″ | 48°29′06″ | |
Viladaragh Chay | Viladaragh | 94 | 0.072 | 1800 | 38°10′38″ | 48°03′19″ | |
Hir Chay | Hir | 178 | 0.289 | 1575 | 38°04′55″ | 48°30′28″ | |
Khalkhal | Harv Chay | Abgarm | 590 | 2.127 | 1535 | 38°41′45″ | 48°44′25″ |
Shahrood | Doro | 158 | 0.650 | 1651 | 37°24′38″ | 48°41′48″ | |
Firozabad Chay | Firozabad | 1515 | 2.956 | 1153 | 37°35′08″ | 48°13′35″ | |
Meshgin Shahr | Gharasou | Arbabkandi | 4800 | 2.271 | 1116 | 38°29′41″ | 48°01′58″ |
Khiav Chay | Polesoltani | 98 | 0.733 | 1420 | 38°23′56″ | 47°41′39″ | |
Gharasou | Doost Bigloo | 7311 | 6.498 | 780 | 38°33′02″ | 47°32′18″ | |
Moghan | Darehrood | Mashiran | 11,267 | 12.602 | 705 | 38°41′10″ | 47°32′01″ |
State | Description | Range |
---|---|---|
1 | No drought | 0 ≤ SDI |
2 | Mild drought | −1 ≤ SDI < 0 |
3 | Moderate drought | −1.5 ≤ SDI < −1 |
4 | Severe drought | −2 ≤ SDI < −1.5 |
5 | Extreme drought | SDI ≤ −2 |
Station | SDI 1-Month | SDI 3-Month | SDI 6-Month | |||
---|---|---|---|---|---|---|
Maximum | Average | Maximum | Average | Maximum | Average | |
Abgarm | −1.97 | −1.13 | −1.78 | −0.91 | −1.39 | −0.70 |
Aladizgeh | −2.45 | −1.55 | −2.06 | −1.10 | −2.11 | −0.70 |
Amoghin | −2.15 | −1.31 | −2.54 | −0.90 | −1.56 | −0.66 |
Arbabkandi | −1.79 | −1.09 | −1.76 | −0.88 | −1.52 | −0.65 |
Atashgah | −2.12 | −1.27 | −1.61 | −1.01 | −1.49 | −0.73 |
Barogh | −2.66 | −1.17 | −2.39 | −1.06 | −2.01 | −0.73 |
Doro | −2.33 | −0.99 | −2.33 | −0.75 | −2.24 | −0.60 |
Doost Bigloo | −2.20 | −1.09 | −2.16 | −0.81 | −1.99 | −0.48 |
Firozabad | −2.21 | −1.29 | −1.68 | −0.86 | −1.60 | −0.62 |
Gilandeh | −1.88 | −0.63 | −1.88 | −0.45 | −2.12 | −0.38 |
Hir | −3.00 | −1.22 | −3.04 | −0.87 | −2.57 | −0.57 |
Eiril | −3.66 | −1.22 | −3.71 | −1.03 | −1.65 | −0.69 |
Kouzetopraghi | −1.89 | −0.81 | −1.92 | −0.66 | −1.46 | −0.46 |
Lai | −2.48 | −1.01 | −2.52 | −0.80 | −1.83 | −0.58 |
Mashiran | −2.99 | −1.14 | −2.24 | −0.78 | −1.86 | −0.51 |
Namin | −1.79 | −1.05 | −1.81 | −0.91 | −1.57 | −0.63 |
Nanekaran | −2.59 | −1.17 | −2.36 | −0.81 | −1.76 | −0.60 |
Nir | −3.56 | −1.29 | −3.00 | −0.92 | −2.03 | −0.58 |
Polealmas | −2.94 | −1.08 | −2.96 | −0.79 | −2.54 | −0.53 |
Polesoltani | −2.93 | −1.11 | −2.54 | −0.78 | −3.54 | −0.44 |
Neor | −1.91 | −0.78 | −2.30 | −0.64 | −3.81 | −0.39 |
Shamsabad | −2.41 | −0.92 | −2.33 | −0.68 | −1.87 | −0.51 |
Samian | −2.30 | −0.94 | −2.12 | −0.61 | −2.07 | −0.44 |
Sola | −2.06 | −1.10 | −1.65 | −0.84 | −1.56 | −0.58 |
Viladaragh | −3.13 | −1.37 | −2.37 | −0.88 | −1.35 | −0.56 |
Stations | Time Scale | ||
---|---|---|---|
1-Month | 3-Month | 6-Month | |
Abgarm | Fisher–Tippett Type III | Poisson-Type | Generalized Laplace |
Aladizgeh | Cauchy | Mirrored Gumbel | Laplace |
Amoghin | Kumaraswamy | Laplace | Poisson |
Arbabkandi | Square-Normal | Gumbel | Laplace |
Atashgah | Laplace | Cauchy | Composite Laplace |
Barogh | Laplace | Fisher–Tippett 2 | Poisson |
Doro | Generalized Laplace | Generalized Gumbel | Generalized Extreme Value (GEV) |
Doost Bigloo | Mirrored Fisher–Tippett Type III | Generalized Mirrored Poisson | Composite Laplace |
Firozabad | Generalized Mirrored Poisson | Mirrored Generalized Gumbel | Generalized Mirrored Poisson |
Gilandeh | Root-Normal | Generalized Laplace | Log-Normal Optimized |
Hir | Fisher–Tippett 2 | Generalized Laplace | Root-Normal |
Eiril | Fisher–Tippett 2 | Fisher–Tippett 2 | Generalized Mirrored Poisson |
Kouzetopraghi | Generalized Laplace | Generalized Mirrored Poisson | Generalized Laplace |
Lai | Generalized Extreme Value (GEV) | Mirrored Generalized Gumbel | Generalized Mirrored Poisson |
Mashiran | Mirrored Frechet Type | Generalized Laplace | Root-Normal |
Namin | Generalized Mirrored Poisson | Generalized Mirrored Poisson | Generalized Mirrored Poisson |
Nanekaran | Generalized Laplace | Generalized Laplace | Generalized Mirrored Poisson |
Nir | Generalized Laplace | Optimized Normal | Mirrored Generalized Gumbel |
Polealmas | Generalized Mirrored Poisson | Generalized Gumbel | Composite Laplace |
Polesoltani | Optimized Normal | Mirrored Generalized Gumbel | Generalized Laplace |
Neor | Poisson-Type | Mirrored Generalized Gumbel | Generalized Laplace |
Shamsabad | Generalized Laplace | Generalized Mirrored Poisson | Poisson-Type |
Samian | Mirrored Generalized Gumbel | Generalized Mirrored Poisson | Generalized Laplace |
Sola | Generalized Gumbel | Generalized mirrored Poisson | Generalized Mirrored Poisson |
Viladaragh | Composite Laplace | Generalized Laplace | Generalized Mirrored Poisson |
Return Period | 1-Month | 3-Month | 6-Month | |||
---|---|---|---|---|---|---|
Maximum | Minimum | Maximum | Minimum | Maximum | Minimum | |
2 | 1.54 | 0.39 | 1.87 | 0.01 | 1.07 | 0.003 |
Aladizgeh | Gilandeh | Aladizgeh | Gilandeh | Neor | Polesoltani | |
5 | 2.13 | 1.27 | 1.89 | 1.04 | 1.48 | 0.28 |
Polealmas | Gilandeh | Eiril | Gilandeh | Barogh | Gilandeh | |
10 | 3.05 | 1.65 | 2.76 | 1.46 | 2.02 | 1.00 |
Eiril | Namin | Eiril | Atashgah | Aladizgeh | Gilandeh | |
25 | 4.82 | 1.71 | 4.08 | 1.70 | 4.33 | 1.48 |
Eiril | Namin | Eiril | Sola | Neor | Viladaragh | |
50 | 6.62 | 1.73 | 5.23 | 1.73 | 6.86 | 1.53 |
Eiril | Namin | Eiril | Sola | Neor | Viladaragh | |
100 | 10.38 | 1.74 | 6.55 | 1.74 | 8.94 | 1.55 |
Aladizgeh | Namin | Eiril | Sola | Neor | Viladaragh |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ghabelnezam, E.; Mostafazadeh, R.; Hazbavi, Z.; Huang, G. Hydrological Drought Severity in Different Return Periods in Rivers of Ardabil Province, Iran. Sustainability 2023, 15, 1993. https://doi.org/10.3390/su15031993
Ghabelnezam E, Mostafazadeh R, Hazbavi Z, Huang G. Hydrological Drought Severity in Different Return Periods in Rivers of Ardabil Province, Iran. Sustainability. 2023; 15(3):1993. https://doi.org/10.3390/su15031993
Chicago/Turabian StyleGhabelnezam, Elnaz, Raoof Mostafazadeh, Zeinab Hazbavi, and Guangwei Huang. 2023. "Hydrological Drought Severity in Different Return Periods in Rivers of Ardabil Province, Iran" Sustainability 15, no. 3: 1993. https://doi.org/10.3390/su15031993
APA StyleGhabelnezam, E., Mostafazadeh, R., Hazbavi, Z., & Huang, G. (2023). Hydrological Drought Severity in Different Return Periods in Rivers of Ardabil Province, Iran. Sustainability, 15(3), 1993. https://doi.org/10.3390/su15031993