An Analysis of the Impact of International R&D Spillovers and Technology Innovation in China
Abstract
:1. Introduction
2. Literature Reviews
3. Methodology and Variables
3.1. Model Specification
3.2. Measurement of International R&D Spillovers and Control Variables
3.3. Econometric Issue
4. Empirical Results
4.1. Overall Level
4.2. Regional Innovation Index Classification
4.2.1. Innovation Performance Results
4.2.2. Innovation Environment Results
4.2.3. Corporation Innovation Results
4.2.4. Knowledge Creation and Knowledge Acquisition Results
4.3. Robustness Check
- (1)
- For the choice of depreciation rate, we use 9.6% in the main text. However, in previous studies, multiple values appeared, such as 5%, 15%, and 20%. Therefore, we replaced the depreciation rate and performed a robustness check. According to the results, the change in the depreciation rate did not change our results.
- (2)
- According to the studies of Chen et al. [10], Feng and Li [11], Hong et al. [12], Li et al. [13], and Zhou et al. [14], we find that they used country-level data and then the ratio of each province as a weighting value to measure the international R&D spillover effect of each province, which are reported in Equations (8) and (9). We recalculated the international R&D spillover using this method, and the results showed that the sign and significance did not change, except for a magnifying effect on the coefficients.
5. Conclusions
Endnote
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
FDI | Foreign Direct Investment |
R&D | Research and Development |
GDP | Gross Domestic Product |
SCI | Science Citation Index |
GVC | Global Value Chain |
GMM | General Methods of Moments |
MNC | Multinational Corporation |
WTP | World Trade Organization |
OLS | Ordinary Least Squares |
Appendix A
(1) | (2) | (3) | (4) | (5) | 2001– 2010 | 2011– 2020 | (8) | (9) | (10) | (11) | |
---|---|---|---|---|---|---|---|---|---|---|---|
Panel OLS | FE | System GMM | System GMM | System GMM | System GMM | System GMM | System GMM | System GMM | System GMM | System GMM | |
L.knowcreat | 0.460 | 0.226 * | −0.020 | 0.076 | 0.955 *** | 0.257 ** | 0.632 *** | 0.210 | 0.467 * | ||
(0.85) | (0.13) | (0.29) | (0.09) | (0.22) | (0.13) | (0.16) | (0.33) | (0.26) | |||
L. | −0.037 *** | −0.003 | −0.095 | −0.031 | 0.012 | 0.163 * | −0.046 | −0.001 | −0.008 | ||
(0.01) | (0.01) | (0.18) | (0.07) | (0.04) | (0.10) | (0.04) | (0.07) | (0.02) | |||
L. | 0.019 | 0.018 | 0.000 | 0.017 | −0.020 | −0.037 | −0.004 | −0.009 | |||
(0.02) | (0.02) | (0.02) | (0.02) | (0.05) | (0.07) | (0.02) | (0.04) | ||||
L.lnSD | 0.244 *** | 0.292 *** | 0.258 | 0.159 *** | 0.219 | 0.21 6 ** | −0.214 | 0.128 | 0.039 | 0.182 | 0.139 * |
(0.03) | (0.05) | (0.43) | (0.05) | (0.17) | (0.09) | (0.16) | (0.15) | (0.04) | (0.12) | (0.08) | |
L.lnedu | 1.543 *** | 0.903 ** | 0.886 | 1.193 *** | 1.685 *** | 1.347 * | −0.519 | 0.680 | 0.354 | 1.028 * | 0.875 |
(0.15) | (0.36) | (1.60) | (0.28) | (0.55) | (0.74) | (0.77) | (0.71) | (0.29) | (0.62) | (0.56) | |
L.lngeo | −1.286 *** | −1.150 *** | −1.331 | −0.948 *** | −0.086 *** | −0.753 *** | 1.621 | −0.785 | −0.011 | −0.858 | −0.866 ** |
(0.10) | (0.28) | (1.94) | (0.22) | (0.03) | (0.27) | (1.02) | (0.63) | (0.01) | (0.54) | (0.35) | |
L. | −0.028 | ||||||||||
(0.02) | |||||||||||
L. | 0.057 | ||||||||||
(0.10) | |||||||||||
L. | −0.035 *** | ||||||||||
(0.01) | |||||||||||
L. | 0.085 ** | ||||||||||
(0.04) | |||||||||||
east# | 0.002 | ||||||||||
(0.00) | |||||||||||
east#L. | 0.001 | ||||||||||
(0.00) | |||||||||||
_cons | 37.898 *** | 33.524 *** | 40.646 | 27.983 *** | 0.000 | 21.402 ** | −50.076 | 23.365 | 0.000 | 25.229 | 25.869 ** |
(2.99) | (8.04) | (59.02) | (6.50) | (0.00) | (8.39) | (31.03) | (19.37) | (0.00) | (16.23) | (10.49) | |
N | 422 | 422 | 391 | 402 | 401 | 177 | 215 | 391 | 378 | 395 | 396 |
Adj R-sq | 0.70 | 0.36 | |||||||||
AR(1) | 0.050 | 0.004 | 0.026 | 0.025 | 0.077 | 0.046 | 0.046 | 0.092 | 0.012 | ||
AR(2) | 0.201 | 0.193 | 0.427 | 0.737 | 0.163 | 0.523 | 0.156 | 0.424 | 0.136 | ||
Hansen | 0.579 | 0.865 | 0.986 | 0.554 | 0.549 | 0.500 | 0.698 | 0.104 | 0.816 | ||
Sargan | 0.676 | 0.912 | 0.971 | 0.463 | 0.119 | 0.113 | 0.736 | 0.098 | 0.807 |
(1) | (2) | (3) | (4) | (5) | 2000– 2010 | 2011– 2020 | (8) | (9) | (10) | (11) | |
---|---|---|---|---|---|---|---|---|---|---|---|
Panel OLS | FE | System GMM | System GMM | System GMM | System GMM | System GMM | System GMM | System GMM | System GMM | System GMM | |
L.lninvget | 0.708 *** | 0.417 *** | 0.860 *** | 0.240 | 0.189 | 0.427 *** | 0.892 ** | 0.331 | 0.108 | ||
(0.18) | (0.10) | (0.16) | (0.16) | (0.40) | (0.14) | (0.38) | (0.21) | (0.10) | |||
L. | −0.011 | −0.010 | 0.081 | 0.076 ** | 0.029 | −0.027 | 0.046 | −0.334 | 0.154 * | ||
(0.01) | (0.01) | (0.05) | (0.04) | (0.03) | (0.07) | (0.16) | (0.22) | (0.09) | |||
L. | 0.128 *** | 0.111*** | −0.091 | −0.027 | 0.123 * | −0.032 | 0.356 ** | 0.692 | −0.393 | ||
(0.02) | (0.02) | (0.09) | (0.02) | (0.07) | (0.07) | (0.18) | (0.64) | (0.28) | |||
L.lnSD | 0.068 ** | 0.092 *** | −0.066 | 0.292 * | −0.055 | 0.021 | −0.002 | 0.097 | −0.036 | 0.263 | −0.002 |
(0.03) | (0.03) | (0.04) | (0.17) | (0.04) | (0.14) | (0.17) | (0.14) | (0.11) | (0.18) | (0.09) | |
L.lnedu | 1.255 *** | 1.333 *** | 0.327 | −0.160 | 0.135 | 0.555 | 6.959 | 1.879 * | −0.036 | 1.326 | 1.288 ** |
(0.19) | (0.18) | (0.38) | (1.06) | (0.34) | (0.37) | (4.46) | (1.05) | (1.12) | (1.22) | (0.65) | |
L.lngeo | −1.362 *** | −1.494 *** | −0.018 | −1.041 *** | 0.002 | −0.531 | −3.226 ** | −2.029 ** | 0.015 | −4.097 | 0.431 |
(0.12) | (0.17) | (0.02) | (0.22) | (0.02) | (0.35) | (1.35) | (0.94) | (0.06) | (2.63) | (0.98) | |
L. | 0.055 | ||||||||||
(0.04) | |||||||||||
L. | −0.350 | ||||||||||
(0.24) | |||||||||||
L. | −0.004 | ||||||||||
(0.05) | |||||||||||
L. | −0.023 | ||||||||||
(0.14) | |||||||||||
east#L. | −0.086 | ||||||||||
(0.12) | |||||||||||
east#L. | 0.084* | ||||||||||
(0.05) | |||||||||||
_cons | 40.469 *** | 44.345 *** | 0.000 | 33.322 *** | 0.000 | 14.795 | 91.739 ** | 59.885 ** | 0.000 | 118.921 | −9.231 |
(3.71) | (5.35) | (0.00) | (7.94) | (0.00) | (11.03) | (36.41) | (27.93) | (0.00) | (73.29) | (27.26) | |
N | 422 | 422 | 391 | 398 | 387 | 196 | 223 | 383 | 382 | 387 | 374 |
Adj R-sq | 0.60 | 0.37 | |||||||||
AR(1) | 0.006 | 0.000 | 0.006 | 0.032 | 0.022 | 0.106 | 0.027 | 0.067 | 0.104 | ||
AR(2) | 0.167 | 0.290 | 0.136 | 0.163 | 0.782 | 0.142 | 0.165 | 0.235 | 0.250 | ||
Hansen | 0.556 | 0.993 | 0.759 | 0.491 | 0.928 | 0.702 | 0.135 | 0.864 | 0.754 | ||
Sargan | 0.658 | 0.173 | 0.826 | 0.339 | 0.856 | 0.299 | 0.779 | 0.497 | 0.207 |
(1) | (2) | (3) | (4) | (5) | 2000– 2010 | 2011– 2020 | (8) | (9) | (10) | (11) | |
---|---|---|---|---|---|---|---|---|---|---|---|
Panel OLS | FE | System GMM | System GMM | System GMM | System GMM | System GMM | System GMM | System GMM | System GMM | System GMM | |
L.lninver | 0.237 ** | 0.196 * | 0.700 *** | 0.232 * | 0.385 *** | 0.256 *** | 0.397 *** | 0.172 ** | 0.201 *** | ||
(0.09) | (0.10) | (0.23) | (0.14) | (0.10) | (0.09) | (0.12) | (0.09) | (0.07) | |||
L. | −0.007 | −0.006 | −0.000 | 0.027 | −0.008 | −0.003 | 0.165*** | −0.041 | 0.004 | ||
(0.01) | (0.00) | (0.01) | (0.07) | (0.01) | (0.02) | (0.05) | (0.08) | (0.01) | |||
L | 0.051 *** | −0.026 * | 0.025 | 0.022 * | 0.049 ** | 0.008 | 0.063 | 0.012 | 0.007 | ||
(0.01) | (0.01) | (0.02) | (0.01) | (0.02) | (0.01) | (0.05) | (0.01) | (0.03) | |||
L.lnSD | 0.132 *** | 0.094 | 0.136 *** | 0.118 *** | −0.006 | 0.100 *** | 0.111* | 0.042 | 0.028 | 0.163 | 0.098 *** |
(0.02) | (0.09) | (0.03) | (0.03) | (0.06) | (0.03) | (0.06) | (0.06) | (0.06) | (0.11) | (0.03) | |
L.lnedu | 0.384 *** | 0.795 ** | 0.388 | 0.464 * | 0.223 * | 0.309 | 0.429 | 0.227 | 0.295 | 0.423 ** | 0.373 ** |
(0.11) | (0.37) | (0.24) | (0.25) | (0.12) | (0.24) | (0.37) | (0.28) | (0.20) | (0.20) | (0.19) | |
L.lngeo | −0.995 *** | −0.557 | −0.965 *** | −0.983 *** | −0.012 | −1.039 *** | −1.057*** | −0.549 *** | 0.008 | −1.069 ** | −0.743 *** |
(0.07) | (0.47) | (0.20) | (0.14) | (0.01) | (0.22) | (0.36) | (0.21) | (0.01) | (0.42) | (0.18) | |
L | 0.000 | ||||||||||
(0.00) | |||||||||||
L | 0.004 | ||||||||||
(0.01) | |||||||||||
L. | −0.039 | ||||||||||
(0.03) | |||||||||||
L | −0.087 | ||||||||||
(0.09) | |||||||||||
east#cL | 0.006 ** | ||||||||||
(0.00) | |||||||||||
1.east#cL. | 0.007 ** | ||||||||||
(0.00) | |||||||||||
_cons | 31.544 *** | 18.712 | 30.621 *** | 30.985 *** | 0.000 | 32.879 *** | 33.311 *** | 17.498 *** | 0.000 | 34.204 ** | 23.919 *** |
(2.20) | (13.44) | (6.16) | (4.38) | (0.00) | (6.83) | (11.03) | (6.47) | (0.00) | (13.66) | (5.60) | |
N | 422 | 422 | 406 | 407 | 387 | 177 | 223 | 396 | 377 | 387 | 383 |
Adj R-sq | 0.67 | 0.30 | |||||||||
AR(1) | 0.000 | 0.000 | 0.002 | 0.004 | 0.000 | 0.000 | 0.066 | 0.043 | 0.000 | ||
AR(2) | 0.433 | 0.307 | 0.272 | 0.315 | 0.495 | 0.513 | 0.255 | 0.606 | 0.801 | ||
Hansen | 0.434 | 0.238 | 0.135 | 0.100 | 0.265 | 0.724 | 0.495 | 0.367 | 0.707 | ||
Sargan | 0.198 | 0.066 | 0.101 | 0.127 | 0.206 | 0.702 | 0.297 | 0.264 | 0.116 |
(1) | (2) | (3) | (4) | (5) | 2000– 2010 | 2011– 2020 | (8) | (9) | (10) | (11) | |
---|---|---|---|---|---|---|---|---|---|---|---|
Panel OLS | FE | System GMM | System GMM | System GMM | System GMM | System GMM | System GMM | System GMM | System GMM | System GMM | |
L.lninvcor | 0.654 ** | 0.461 *** | 0.553 *** | 0.214 | 0.626 *** | 0.609 *** | 0.364 *** | 0.435 *** | 0.581 *** | ||
(0.26) | (0.06) | (0.10) | (0.16) | (0.14) | (0.20) | (0.08) | (0.10) | (0.07) | |||
L. | 0.012 | 0.000 | 0.006 | 0.137 ** | 0.071 ** | −0.036 | 0.012 ** | 0.051 *** | −0.006 | ||
(0.01) | (0.01) | (0.01) | (0.05) | (0.03) | (0.06) | (0.00) | (0.02) | (0.01) | |||
L. | 0.067 *** | −0.021 | 0.056 * | 0.037 | 0.069 ** | −0.051 | 0.012 | 0.022 | −0.047 | ||
(0.02) | (0.03) | (0.03) | (0.11) | (0.03) | (0.09) | (0.07) | (0.02) | (0.06) | |||
L.lnSD | 0.178 *** | 0.377 *** | 0.095 | 0.078 | −0.151 | 0.020 | 0.260 * | −0.047 | 0.042 | 0.009 | −0.077 |
(0.03) | (0.12) | (0.07) | (0.06) | (0.13) | (0.04) | (0.13) | (0.06) | (0.05) | (0.04) | (0.11) | |
L.lnedu | −0.218 | 1.450 *** | −0.195 | −0.077 | −0.137 | −0.037 | −0.148 | −0.414 | −0.207 | −0.230 | 5.331 |
(0.15) | (0.41) | (0.18) | (0.22) | (0.41) | (0.23) | (0.39) | (0.28) | (0.24) | (0.19) | (3.76) | |
L.lngeo | −1.494 *** | −2.754 *** | −0.765 * | −0.716 *** | 0.011 | −1.007 *** | −0.860 | 0.373 | −0.575 ** | −0.077 | −1.075 * |
(0.10) | (0.60) | (0.41) | (0.25) | (0.03) | (0.31) | (0.70) | (0.52) | (0.28) | (0.29) | (0.56) | |
L. | −0.008 | ||||||||||
(0.01) | |||||||||||
L. | 0.101 ** | ||||||||||
(0.05) | |||||||||||
L. | −0.016 | ||||||||||
(0.02) | |||||||||||
L. | 0.092 *** | ||||||||||
(0.03) | |||||||||||
east#L. | 0.007 ** | ||||||||||
(0.00) | |||||||||||
east#L. | 0.004 | ||||||||||
(0.00) | |||||||||||
_cons | 47.539 *** | 83.551 *** | 24.593 * | 22.617 *** | 0.000 | 31.768 *** | 27.266 | −11.114 | 18.568 ** | 3.289 | 26.339 ** |
(2.97) | (17.32) | (13.16) | (7.92) | (0.00) | (9.87) | (22.01) | (16.15) | (8.54) | (9.08) | (12.72) | |
N | 422 | 422 | 406 | 402 | 397 | 176 | 215 | 383 | 391 | 387 | 397 |
Adj R-sq | 0.68 | 0..43 | |||||||||
AR(1) | 0.019 | 0.000 | 0.001 | 0.006 | 0.038 | 0.011 | 0.000 | 0.000 | 0.000 | ||
AR(2) | 0.969 | 0.744 | 0.426 | 0.818 | 0.708 | 0.105 | 0.184 | 0.144 | 0.541 | ||
Hansen | 0.212 | 0.308 | 0.214 | 0.641 | 0.660 | 0.213 | 0.526 | 0.393 | 0.988 | ||
Sargan | 0.136 | 0.165 | 0.198 | 0.673 | 0.168 | 0.148 | 0.409 | 0.105 | 0.156 |
References
- Grossman, G.M.; Helpman, E. Trade, knowledge spillovers, and growth. Eur. Econ. Rev. 1991, 35, 517–526. [Google Scholar] [CrossRef] [Green Version]
- Romer, P.M. Endogenous technological change. J. Political Econ. 1990, 98, S71–S102. [Google Scholar] [CrossRef] [Green Version]
- de Castro, G.M.; Verde, M.D.; Sáez, P.L.; López, J.E.N. Technological Innovation. In Technological Innovation: An Intellectual Capital Based View; Palgrave Macmillan: London, UK, 2010; pp. 46–72. [Google Scholar]
- Krammer, S.M. International R&D spillovers in emerging markets: The impact of trade and foreign direct investment. J. Int. Trade Econ. Dev. 2010, 19, 591–623. [Google Scholar]
- Coe, D.T.; Helpman, E. International R&D spillovers. Eur. Econ. Rev. 1995, 39, 859–887. [Google Scholar]
- Aitken, B.J.; Harrison, A.E. Do Domestic Firms Benefit from Direct Foreign Investment? Evidence from Venezuela. Am. Econ. Rev. 1999, 89, 605–618. [Google Scholar] [CrossRef] [Green Version]
- Potterie, B.v.P.d.l.; Lichtenberg, F. Does Foreign Direct Investment Transfer Technology Across Borders? Rev. Econ. Stat. 2001, 83, 490–497. [Google Scholar] [CrossRef]
- Wang, Y.; Ning, L.; Li, J.; Prevezer, M. Foreign direct investment spillovers and the geography of innovation in Chinese regions: The role of regional industrial specialization and diversity. Reg. Stud. 2016, 50, 805–822. [Google Scholar] [CrossRef]
- Branstetter, L. Is foreign direct investment a channel of knowledge spillovers? Evidence from Japan’s FDI in the United States. J. Int. Econ. 2006, 68, 325–344. [Google Scholar]
- Chen, V.Z.; Li, J.; Shapiro, D.M. International reverse spillover effects on parent firms: Evidences from emerging-market MNEs in developed markets. Eur. Manag. J. 2012, 30, 204–218. [Google Scholar] [CrossRef]
- Feng, W.; Li, J. International technology spillovers and innovation quality: Evidence from China. Econ. Anal. Policy 2021, 72, 289–308. [Google Scholar] [CrossRef]
- Hong, J.; Zhou, C.; Wu, Y.; Wang, R.; Marinova, D. Technology gap, reverse technology spillover and domestic innovation performance in outward foreign direct investment: Evidence from China. China World Econ. 2019, 27, 1–23. [Google Scholar] [CrossRef]
- Li, M.; Li, D.; Lyles, M.; Liu, S. Chinese MNEs’ outward FDI and home country productivity: The moderating effect of technology gap. Glob. Strategy J. 2016, 6, 289–308. [Google Scholar] [CrossRef]
- Zhou, C.; Hong, J.; Wu, Y.; Marinova, D. Outward foreign direct investment and domestic innovation performance: Evidence from China. Technol. Anal. Strateg. Manag. 2018, 31, 81–95. [Google Scholar] [CrossRef]
- Lichtenberg, F.R.; Pottelsberghe de la Potterie, B.v. International R&D spillovers: A comment. Eur. Econ. Rev. 1998, 42, 1483–1491. [Google Scholar]
- Ali, M.; Cantner, U.; Roy, I. Knowledge spillovers through FDI and trade: The moderating role of quality-adjusted human capital. In Foundations of Economic Change; Springer: Berlin/Heidelberg, Germany, 2017; pp. 357–391. [Google Scholar]
- Bournakis, I.; Christopoulos, D.; Mallick, S. Knowledge spillovers and output per worker: An industry-level analysis for OECD countries. Econ. Inq. 2018, 56, 1028–1046. [Google Scholar] [CrossRef] [Green Version]
- Chee-Lip, T.; Azman-Saini, W.; IbrAhIM, S.; Ismail, N. R&D spillovers and the role of economic freedom. Int. J. Econ. Manag. 2015, 9, 41–60. [Google Scholar]
- Garrone, P.; Piscitello, L.; Wang, Y. Innovation Performance and International Knowledge Spillovers: Evidence from the Renewable Energy Sector in OECD Countries. Ind. Innov. 2014, 21, 574–598. [Google Scholar] [CrossRef]
- Kim, S.; Park, J. Foreign direct investment and international R&D spillovers in OECD countries revisited. J. Inst. Theor. Econ. 2017, 173, 431–453. [Google Scholar]
- Pöschl, J.; Foster-McGregor, N.; Stehrer, R. International R&D spillovers and business service innovation. World Econ. 2016, 39, 2025–2045. [Google Scholar]
- Seck, A. International technology diffusion and economic growth: Explaining the spillover benefits to developing countries. Struct. Change Econ. Dyn. 2012, 23, 437–451. [Google Scholar] [CrossRef]
- Ang, J.B.; Madsen, J.B. International R&D spillovers and productivity trends in the Asian miracle economies. Econ. Inq. 2013, 51, 1523–1541. [Google Scholar]
- De Marchi, V.; Giuliani, E.; Rabellotti, R. Do global value chains offer developing countries learning and innovation opportunities? Eur. J. Dev. Res. 2018, 30, 389–407. [Google Scholar] [CrossRef]
- Krammer, S.M.S. Assessing the relative importance of multiple channels for embodied and disembodied technological spillovers. Technol. Forecast. Soc. Chang. 2014, 81, 272–286. [Google Scholar] [CrossRef] [Green Version]
- Salim, A.; Razavi, M.R.; Afshari-Mofrad, M. Foreign direct investment and technology spillover in Iran: The role of technological capabilities of subsidiaries. Technol. Forecast. Soc. Chang. 2017, 122, 207–214. [Google Scholar] [CrossRef]
- Keller, W. Geographic localization of international technology diffusion. Am. Econ. Rev. 2002, 92, 120–142. [Google Scholar] [CrossRef] [Green Version]
- Connolly, M. The dual nature of trade: Measuring its impact on imitation and growth. J. Dev. Econ. 2003, 72, 31–55. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Buck, T. Innovation performance and channels for international technology spillovers: Evidence from Chinese high-tech industries. Res. Policy 2007, 36, 355–366. [Google Scholar] [CrossRef]
- Liu, X.; Lu, J.; Filatotchev, I.; Buck, T.; Wright, M. Returnee entrepreneurs, knowledge spillovers and innovation in high-tech firms in emerging economies. J. Int. Bus. Stud. 2010, 41, 1183–1197. [Google Scholar] [CrossRef]
- Li, X. Sources of External Technology, Absorptive Capacity, and Innovation Capability in Chinese State-Owned High-Tech Enterprises. World Dev. 2011, 39, 1240–1248. [Google Scholar] [CrossRef]
- Qin, X.; Du, D. Do External or Internal Technology Spillovers Have a Stronger Influence on Innovation Efficiency in China? Sustainability 2017, 9, 1574. [Google Scholar] [CrossRef] [Green Version]
- Fu, X.; Pietrobelli, C.; Soete, L. The Role of Foreign Technology and Indigenous Innovation in the Emerging Economies: Technological Change and Catching-up. World Dev. 2011, 39, 1204–1212. [Google Scholar] [CrossRef] [Green Version]
- Huang, J.; Cai, X.; Huang, S.; Tian, S.; Lei, H. Technological factors and total factor productivity in China: Evidence based on a panel threshold model. China Econ. Rev. 2019, 54, 271–285. [Google Scholar] [CrossRef]
- Liu, N.; Fan, F. Threshold effect of international technology spillovers on China’s regional economic growth. Technol. Anal. Strateg. Manag. 2020, 32, 923–935. [Google Scholar] [CrossRef]
- Chen, J.; Sheng, Y.; Liu, W.; Zhang, Y. An empirical study on FDI international knowledge spillovers and regional economic development in China. Front. Econ. China 2010, 5, 489–508. [Google Scholar] [CrossRef]
- Liu, J.-M.; He, C.-F. Innovating independently or following the frontier: Geographical evolution path of China’s high-tech export industry. Arid. Land Geogr. 2020, 43, 1077–1087, (In Chinese with English Abstract). [Google Scholar]
- Sun, Y.; Du, D. Determinants of industrial innovation in China: Evidence from its recent economic census. Technovation 2010, 30, 540–550. [Google Scholar] [CrossRef]
- Griliches, Z. Issues in Assessing the Contribution of Research and Development to Productivity Growth. Bell J. Econ. 1979, 10, 92–116. [Google Scholar] [CrossRef]
- Zhang, L. The knowledge spillover effects of FDI on the productivity and efficiency of research activities in China. China Econ. Rev. 2017, 42, 1–14. [Google Scholar] [CrossRef]
- AlAzzawi, S. Innovation, productivity and foreign direct investment-induced R&D spillovers. J. Int. Trade Econ. Dev. 2012, 21, 615–653. [Google Scholar]
- Tajoli, L.; Felice, G. Global value chains participation and knowledge spillovers in developed and developing countries: An empirical investigation. Eur. J. Dev. Res. 2018, 30, 505–532. [Google Scholar] [CrossRef]
- Yang, N.; Hong, J.; Wang, H.; Liu, Q. Global value chain, industrial agglomeration and innovation performance in developing countries: Insights from China’s manufacturing industries. Technol. Anal. Strateg. Manag. 2020, 32, 1307–1321. [Google Scholar] [CrossRef]
- Xiao, L.; Xie, D. Foreign technology import and growth of local innovation: Complementary or substitution—An analysis based on heterogeneous absorptive capacity. China Ind. Econ. 2016, 9, 75–92, (In Chinese with English Abstract). [Google Scholar]
- Duan, Y.; Liu, S.; Cheng, H.; Chin, T.; Luo, X. The moderating effect of absorptive capacity on transnational knowledge spillover and the innovation quality of high-tech industries in host countries: Evidence from the Chinese manufacturing industry. Int. J. Prod. Econ. 2021, 233, 108019. [Google Scholar] [CrossRef]
- Sha, W.B.; Li, Y. Reverse Technology Spillover Effects of OFDI, Knowledge Management and Regional Innovation Capabilities. World Econ. Stud. 2018, 7, 80–94. [Google Scholar]
- Liu, X.; Gao, T.; Wang, X. Regional Innovation Index of China: 2017; Springer: Berlin/Heidelberg, Germany, 2018. [Google Scholar]
- Fritsch, M. Measuring the quality of regional innovation systems: A knowledge production function approach. Int. Reg. Sci. Rev. 2002, 25, 86–101. [Google Scholar] [CrossRef] [Green Version]
- Roodman, D. How to do xtabond2: An introduction to difference and system GMM in Stata. Stata J. 2009, 9, 86–136. [Google Scholar] [CrossRef] [Green Version]
- Lai, M.; Wang, H.; Zhu, S. Double-edged effects of the technology gap and technology spillovers: Evidence from the Chinese industrial sector. China Econ. Rev. 2009, 20, 414–424. [Google Scholar] [CrossRef]
- Zhang, Y.; Cheng, Z.; He, Q. Time lag analysis of FDI spillover effect: Evidence from the Belt and Road developing countries introducing China’s direct investment. Int. J. Emerg. Mark. 2019, 15, 629–650. [Google Scholar] [CrossRef]
- Aghion, P.; Jaravel, X. Knowledge Spillovers, Innovation and Growth. Econ. J. 2015, 125, 533–573. [Google Scholar] [CrossRef]
- Yang, L.; Yang, W.; Tang, L. Can Foreign Trade Still Promote Manufacturing Sectors’ Technological Improvements in Chinese New Normal Period: An Empirical Analysis Based on the Manufacturing Industry Segment. Sci. Technol. Manag. Res. 2018, 38, 97–107, (In Chinese with English Abstract). [Google Scholar]
- Pietrucha, J.; Żelazny, R.; Kozłowska, M.; Sojka, O. Import and FDI as channels of international TFP spillovers. Equilib. Q. J. Econ. Econ. Policy 2018, 13, 55–72. [Google Scholar] [CrossRef] [Green Version]
- Ito, B.; Yashiro, N.; Xu, Z.; Chen, X.; Wakasugi, R. How do Chinese industries benefit from FDI spillovers? China Econ. Rev. 2012, 23, 342–356. [Google Scholar] [CrossRef] [Green Version]
- Goel, R.K. Seek foreign funds or technology? Relative impacts of different spillover modes on innovation. J. Technol. Transf. 2022. [Google Scholar] [CrossRef]
- News Source. Available online: http://paper.people.com.cn/rmrb/html/2018-05/19/nw.D110000renmrb_20180519_6-02.htm (accessed on 19 May 2018).
- Wang, C.C.; Wu, A. Geographical FDI knowledge spillover and innovation of indigenous firms in China. Int. Bus. Rev. 2016, 25, 895–906. [Google Scholar] [CrossRef]
Variable | Definition | Obs | Mean | Std. Dev. | Min | Max |
---|---|---|---|---|---|---|
lninv | Technological innovation | 459 | 3.335 | 0.352 | 2.709 | 4.129 |
International R&D spillover through inward FDI | 441 | 19.282 | 2.62 | 8.911 | 26.659 | |
International R&D spillover through imports | 449 | 20.833 | 1.971 | 15.78 | 24.925 | |
lnSD | Domestic R&D stock | 460 | 13.276 | 1.613 | 8.806 | 16.564 |
lnedu | average years of schooling in each province | 460 | 2.154 | 0.123 | 1.798 | 2.548 |
lngeo | International R&D spillover through geographical proximity | 460 | 31.898 | 0.204 | 31.525 | 32.144 |
east | East regions:1; inland regions:0 | 460 | 0.346 | 0.476 | 0 | 1 |
(1) | (2) | (3) | (4) | (5) | 2001– 2010 | 2011– 2020 | (8) | (9) | (10) | (11) | |
---|---|---|---|---|---|---|---|---|---|---|---|
Panel OLS | FE | System GMM | System GMM | System GMM | System GMM | System GMM | System GMM | System GMM | System GMM | System GMM | |
L.lninv | 0.570 *** | 0.522 *** | 0.918 *** | 0.549 *** | 0.520 *** | 0.571 *** | 0.527 *** | 0.786 ** | 0.768 *** | ||
(0.11) | (0.08) | (0.04) | (0.09) | (0.12) | (0.08) | (0.08) | (0.38) | (0.08) | |||
L. | 0.072 *** | −0.006 | 0.046 ** | 0.014 ** | 0.069 *** | 0.016 | 0.021 * | −0.003 | −0.047 | ||
(0.01) | (0.01) | (0.02) | (0.01) | (0.03) | (0.02) | (0.01) | (0.07) | (0.06) | |||
L. | −0.006 | 0.000 | 0.009 | 0.003 | 0.007 | −0.006 | −0.000 | 0.006 | 0.007 | ||
(0.00) | (0.00) | (0.01) | (0.01) | (0.03) | (0.01) | (0.00) | (0.01) | (0.01) | |||
L.lnSD | 0.130 *** | 0.196 *** | 0.083 *** | 0.046 * | −0.012 | 0.003 | 0.092 ** | 0.066 ** | 0.050 ** | 0.001 | 0.052 * |
(0.02) | (0.07) | (0.03) | (0.03) | (0.01) | (0.02) | (0.04) | (0.03) | (0.02) | (0.06) | (0.03) | |
L.lngeo | −1.023 *** | −1.133 *** | −0.378 ** | −0.629 *** | −0.030 *** | 0.265 | −0.478 * | −0.441 *** | −0.459 *** | 0.017 | 0.352 |
(0.06) | (0.34) | (0.18) | (0.13) | (0.01) | (0.22) | (0.26) | (0.15) | (0.14) | (0.05) | (0.54) | |
L.lnedu | 0.504 *** | 0.965 *** | 0.188 | 0.207 | 0.463 *** | 0.208 * | 0.244 | 0.154 | 0.321 ** | 0.062 | −1.247 |
(0.10) | (0.20) | (0.16) | (0.15) | (0.14) | (0.11) | (0.20) | (0.15) | (0.16) | (0.61) | (1.30) | |
L. | −0.001 | ||||||||||
(0.00) | |||||||||||
L. | 0.000 | ||||||||||
(0.02) | |||||||||||
L. | −0.011 | ||||||||||
(0.01) | |||||||||||
L. | 0.039 ** | ||||||||||
(0.02) | |||||||||||
east#L. | 0.005 | ||||||||||
(0.01) | |||||||||||
east#L. | 0.011 | ||||||||||
(0.01) | |||||||||||
_cons | 31.782 *** | 34.866 *** | 11.804 ** | 19.661 *** | 0.000 | −8.900 | 14.832 * | 13.871 *** | 14.252 *** | 0.000 | −7.621 |
(1.88) | (9.92) | (5.65) | (4.14) | (0.00) | (6.74) | (8.00) | (4.46) | (4.21) | (0.00) | (13.79) | |
N | 421 | 421 | 389 | 396 | 395 | 173 | 205 | 395 | 386 | 399 | 399 |
Adj R-sq | 0.79 | 0.33 | |||||||||
AR(1) | 0.000 | 0.000 | 0.001 | 0.002 | 0.001 | 0.000 | 0.000 | 0.061 | 0.001 | ||
AR(2) | 0.478 | 0.837 | 0.992 | 0.147 | 0.739 | 0.809 | 0.787 | 0.931 | 0.715 | ||
Hansen | 0.146 | 0.698 | 0.901 | 0.357 | 0.219 | 0.634 | 0.771 | 0.685 | 0.997 | ||
Sargan | 0.253 | 0.275 | 0.742 | 0.482 | 0.343 | 0.639 | 0.485 | 0.447 | 0.257 |
(1) | (2) | (3) | (4) | (5) | 2001– 2010 | 2011– 2020 | (8) | (9) | (10) | (11) | |
---|---|---|---|---|---|---|---|---|---|---|---|
Panel OLS | FE | System GMM | System GMM | System GMM | System GMM | System GMM | System GMM | System GMM | System GMM | System GMM | |
L.lninvper | 0.639 *** | 0.342 *** | 0.464 *** | 0.512 *** | 0.394 ** | 0.258 ** | 0.267 ** | 0.270 ** | 0.251 *** | ||
(0.15) | (0.10) | (0.08) | (0.11) | (0.16) | (0.11) | (0.11) | (0.11) | (0.08) | |||
L. | −0.006 | 0.010 * | 0.029 ** | 0.007 * | −0.004 | −0.013 | 0.001 | −0.004 | −0.002 | ||
(0.01) | (0.01) | (0.01) | (0.00) | (0.01) | (0.04) | (0.01) | (0.04) | (0.00) | |||
L. | 0.103 *** | 0.021 | 0.044 *** | 0.061 ** | 0.086 ** | 0.059 * | 0.061 *** | 0.049 ** | 0.067 ** | ||
(0.01) | (0.01) | (0.01) | (0.02) | (0.04) | (0.03) | (0.02) | (0.02) | (0.03) | |||
L.lnedu | 0.349 *** | 0.309 | −0.078 | 0.086 | −0.168 | 0.125 | −0.055 | 0.150 | 0.097 | 0.181 | −0.408 |
(0.13) | (0.33) | (0.16) | (0.20) | (0.42) | (0.17) | (0.14) | (0.25) | (0.32) | (0.24) | (1.10) | |
L.lnSD | 0.054 ** | 0.285 *** | 0.030 | 0.067 *** | 0.011 | −0.006 | 0.063 | 0.092 | 0.085 * | 0.061 | 0.059 |
(0.02) | (0.05) | (0.02) | (0.02) | (0.03) | (0.03) | (0.12) | (0.06) | (0.04) | (0.06) | (0.05) | |
L.lngeo | −0.187** | −0.623 ** | 0.015 * | −0.215 * | 0.021 | −0.792 *** | 0.176 | −0.453 | −0.323 | −0.282 | −0.126 |
(0.08) | (0.26) | (0.01) | (0.13) | (0.03) | (0.21) | (0.57) | (0.29) | (0.20) | (0.35) | (0.17) | |
L. | −0.000 | ||||||||||
(0.00) | |||||||||||
L. | −0.015 | ||||||||||
(0.04) | |||||||||||
L. | 0.006 | ||||||||||
(0.02) | |||||||||||
L. | 0.035 | ||||||||||
(0.03) | |||||||||||
east#L. | 0.003 | ||||||||||
(0.00) | |||||||||||
east#L. | 0.004 | ||||||||||
(0.00) | |||||||||||
_cons | 5.964 ** | 18.172 ** | 0.000 | 7.165 * | 0.000 | 24.962 *** | −5.247 | 14.541 | 10.680 * | 9.388 | 5.324 |
(2.52) | (7.54) | (0.00) | (3.85) | (0.00) | (6.64) | (18.28) | (9.19) | (6.03) | (10.58) | (4.61) | |
N | 422 | 422 | 391 | 407 | 397 | 174 | 210 | 387 | 388 | 387 | 383 |
Adj R-sq | 0.63 | 0.50 | |||||||||
AR(1) | 0.001 | 0.000 | 0.000 | 0.004 | 0.005 | 0.002 | 0.001 | 0.001 | 0.000 | ||
AR(2) | 0.149 | 0.129 | 0.115 | 0.982 | 0.125 | 0.362 | 0.274 | 0.365 | 0.260 | ||
Hansen | 0.280 | 0.824 | 0.698 | 0.832 | 0.489 | 0.147 | 0.101 | 0.338 | 0.964 | ||
Sargan | 0.370 | 0.838 | 0.880 | 0.914 | 0.196 | 0.157 | 0.110 | 0.154 | 0.475 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, M.; Choi, B. An Analysis of the Impact of International R&D Spillovers and Technology Innovation in China. Sustainability 2023, 15, 1968. https://doi.org/10.3390/su15031968
Wang M, Choi B. An Analysis of the Impact of International R&D Spillovers and Technology Innovation in China. Sustainability. 2023; 15(3):1968. https://doi.org/10.3390/su15031968
Chicago/Turabian StyleWang, Mengzhen, and Baekryul Choi. 2023. "An Analysis of the Impact of International R&D Spillovers and Technology Innovation in China" Sustainability 15, no. 3: 1968. https://doi.org/10.3390/su15031968
APA StyleWang, M., & Choi, B. (2023). An Analysis of the Impact of International R&D Spillovers and Technology Innovation in China. Sustainability, 15(3), 1968. https://doi.org/10.3390/su15031968