Dam Sustainability’s Interdependency with Climate Change and Dam Failure Drivers
Abstract
:1. Introduction
1.1. Background
1.2. Literature Review
1.2.1. Water Resources Sustainability
1.2.2. Estimation and Testing Sustainability Index
1.2.3. Sub-Indicators of Sustainability Pillars
1.3. Research Importance and Contribution
2. Methodology
2.1. Study Site Description
2.2. Wroclaw Taxonomic Method (WTM)
2.3. Granger Causality Test (GCT)
2.4. Selection and Classification of Indicators
2.4.1. Environmental Pillar Accounts for Six Variables
2.4.2. Social Pillar Accounts for Two Variables
2.4.3. Economic Pillar Accounts for Two Variables
2.4.4. Socioeconomic Pillar Accounts for Four Variables
3. Results and Discussions
3.1. Sustainability Index of the KTD
3.1.1. Sustainability Metrics Analysis throughout 2011–2022
3.1.2. The KTD Performance according to the ISD
- The high-performance category, with ISD values from 0.3120 to 0.4258, included 2013, 2021, and 2022;
- The medium-performance category, with ISD values from 0.1921 to 0.3120, included 2012, 2014, 2015, 2016, 2017, and 2018;
- The low-performance category, with ISD values from 0 to 0.1921, included 2011, 2019, and 2020.
3.2. Causality and Dependency towards Climate Change and Dam Failure Drivers
3.2.1. Dam Failure Drivers’ Interdependency with the ISD
3.2.2. Climate Change Drivers’ Interdependency with the ISD
4. Conclusions and Recommendations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Year | En1 | En2 | En3 | En4 | En5 | En6 | So1 | So2 | Ec1 | Ec2 | So-Ec1 | So-Ec2 | So-Ec3 | So-Ec4 | et | Wt | ISD |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2011 | 2.85 | 14.8 | 0.00 | 0.00 | 0.00 | 0.00 | 6.54 | 10.7 | 1.93 | 13.1 | 3.49 | 1.08 | 5.75 | 4.25 | 8.04 | 2.35 | 0.00 |
2012 | 0.50 | 4.34 | 0.53 | 0.18 | 0.00 | 0.00 | 1.20 | 10.7 | 2.50 | 6.54 | 2.43 | 0.48 | 3.68 | 10.4 | 6.60 | 1.59 | 0.27 |
2013 | 0.15 | 0.21 | 0.00 | 0.20 | 0.00 | 0.00 | 0.00 | 2.03 | 11.4 | 0.41 | 4.75 | 0.00 | 3.23 | 10.4 | 5.74 | 1.20 | 0.43 |
2014 | 0.07 | 1.98 | 0.82 | 1.65 | 0.00 | 0.00 | 0.07 | 1.65 | 6.96 | 1.21 | 13.9 | 2.99 | 6.96 | 10.4 | 6.99 | 1.78 | 0.19 |
2015 | 0.00 | 0.40 | 2.09 | 2.45 | 0.00 | 0.00 | 0.13 | 1.65 | 11.8 | 0.00 | 1.55 | 0.48 | 12.0 | 10.4 | 6.57 | 1.57 | 0.27 |
2016 | 0.05 | 0.86 | 0.81 | 2.55 | 0.00 | 0.00 | 5.52 | 1.65 | 11.1 | 0.02 | 1.55 | 7.66 | 6.34 | 5.55 | 6.61 | 1.59 | 0.26 |
2017 | 0.19 | 2.09 | 9.55 | 4.33 | 4.62 | 0.00 | 5.87 | 0.58 | 5.10 | 0.66 | 2.43 | 7.66 | 1.44 | 4.25 | 6.98 | 1.78 | 0.20 |
2018 | 1.07 | 0.03 | 8.47 | 4.59 | 0.00 | 0.00 | 6.28 | 0.58 | 6.36 | 3.26 | 0.39 | 7.66 | 1.74 | 0.00 | 6.36 | 1.47 | 0.31 |
2019 | 4.98 | 0.00 | 4.60 | 6.53 | 3.54 | 3.61 | 6.25 | 0.44 | 9.22 | 0.28 | 0.10 | 7.66 | 0.52 | 3.12 | 7.13 | 1.85 | 0.17 |
2020 | 11.0 | 1.36 | 1.53 | 7.92 | 4.34 | 10.6 | 6.27 | 0.18 | 5.91 | 0.78 | 0.00 | 1.08 | 0.00 | 3.12 | 7.36 | 1.97 | 0.13 |
2021 | 1.31 | 3.23 | 2.64 | 7.60 | 3.80 | 0.00 | 6.39 | 0.18 | 1.63 | 0.63 | 1.55 | 1.08 | 2.07 | 1.39 | 5.79 | 1.22 | 0.42 |
2022 | 5.74 | 0.39 | 6.69 | 10.4 | 4.24 | 0.00 | 6.45 | 0.00 | 0.00 | 0.52 | 0.00 | 0.12 | 0.01 | 0.95 | 5.96 | 1.29 | 0.39 |
Max | 11.0 | 14.8 | 9.55 | 10.4 | 4.62 | 10.6 | 6.54 | 10.7 | 11. | 13.1 | 13.9 | 7.66 | 12.0 | 10.4 | - | - | 0.43 |
Mean | 2.33 | 2.48 | 3.14 | 4.03 | 1.71 | 1.18 | 4.25 | 2.54 | 6.18 | 2.28 | 2.68 | 3.16 | 3.65 | 5.38 | - | - | 0.25 |
Min | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | - | 0.00 |
Std | 3.24 | 3.94 | 3.24 | 3.31 | 2.04 | 3.01 | 2.78 | 3.73 | 3.95 | 3.72 | 3.68 | 3.26 | 3.43 | 3.89 | - | - | 0.12 |
Mean +0.5 std | 3.95 | 4.45 | 4.76 | 5.69 | 2.73 | 2.69 | 5.64 | 4.40 | 8.16 | 4.14 | 4.53 | 4.79 | 5.37 | 7.32 | - | - | 0.31 |
Mean −0.5 std | 0.71 | 0.50 | 1.53 | 2.38 | 0.69 | 0.00 | 2.86 | 0.67 | 4.21 | 0.43 | 0.84 | 1.53 | 1.94 | 3.43 | - | - | 0.19 |
x Granger Causes y | x Variables | |||||||
---|---|---|---|---|---|---|---|---|
y Variables | Lag Order | ISD | DA | ASY | ADS | MAP | MXT | MNT |
ISD | 1 | ---- | 0.0310 | 0.4114 | 0.02006 | 0.603 | 0.6174 | 0.8656 |
2 | ---- | 0 | 0.04599 | 0.001892 | 0.03204 | 0.01134 | 0.7857 | |
3 | ---- | 0 | 0.1527 | 0.1769 | 0.2104 | 0.1701 | 0.7896 | |
DA | 1 | 0.8721 | ---- | 0.9811 | 0.0282 | 0.949 | 0.905 | 0.00175 |
2 | 0 | ---- | 0 | 0 | 0 | 0 | 0 | |
3 | 0 | ---- | 0 | 0 | 0 | 0 | 0 | |
ASY | 1 | 0.5324 | 0.0168 | ---- | 0.0282 | 0.8589 | 0.9432 | 0.6807 |
2 | 0.2007 | 0 | ---- | 0 | 0.3199 | 0 | 0.7082 | |
3 | 0.2865 | 0 | ---- | 0 | 0.9973 | 0 | 0.7666 | |
ADS | 1 | 0.7549 | 0.0169 | 0.9811 | ---- | 0.9002 | 0.9072 | 0.2175 |
2 | 0.5348 | 0 | 0 | ---- | 0.1785 | 0.1669 | 0.6801 | |
3 | 0.8138 | 0 | 0 | ---- | 0.03668 | 0 | 0.7624 | |
MAP | 1 | 0.7818 | 0.5313 | 0.9258 | 0.1054 | ---- | 0.8111 | 0.5786 |
2 | 0.5552 | 0 | 0.6841 | 0.02832 | ---- | 0.3559 | 0.7246 | |
3 | 0.4824 | 0 | 0.9994 | 0.02279 | ---- | 0.9983 | 0.7823 | |
MXT | 1 | 0.7879 | 0.2931 | 0.8871 | 0.06329 | 0.7564 | ---- | 0.7305 |
2 | 0.4222 | 0 | 0 | 0.02658 | 0.3656 | ---- | 0.7529 | |
3 | 0.4364 | 0 | 0 | 0 | 0.9973 | ---- | 0.7983 | |
MNT | 1 | 0.7767 | 0.0643 | 0.8704 | 0.1251 | 0.908 | 0.8411 | ---- |
2 | 0.827 | 0 | 0.9491 | 0.2178 | 0.8326 | 0.7737 | ---- | |
3 | 0.1271 | 0 | 0.005678 | 0.006199 | 0.05695 | 0.04133 | ---- |
References
- Kuhlman, T.; Farrington, J. What Is Sustainability? Sustainability 2010, 2, 3436–3448. [Google Scholar] [CrossRef]
- Grasso, M.; Tàbara, J.D. Towards a Moral Compass to Guide Sustainability Transformations in a High-End Climate Change World. Sustainability 2019, 11, 2971. [Google Scholar] [CrossRef]
- Silva, J.A. Wastewater Treatment and Reuse for Sustainable Water Resources Management: A Systematic Literature Review. Sustainability 2023, 15, 10940. [Google Scholar] [CrossRef]
- Karami, S.; Karami, E. Sustainability Assessment of Dams. Environ. Dev. Sustain. 2020, 22, 2919–2940. [Google Scholar] [CrossRef]
- Fluixá-Sanmartín, J.; Altarejos-García, L.; Morales-Torres, A.; Escuder-Bueno, I. Review Article: Climate Change Impacts on Dam Safety. Nat. Hazards Earth Syst. Sci. 2018, 18, 2471–2488. [Google Scholar] [CrossRef]
- Wu, J.; Wu, T. Sustainability Indicators and Indices: An Overview. In Handbook of Sustainability Management; World Science: Singapore, 2011; pp. 65–86. [Google Scholar]
- Al-Weshah, R. The Role of UNESCO in Sustainable Water Resources Management in the Arab World. Desalination 2003, 152, 1–13. [Google Scholar] [CrossRef]
- Hadadin, N.A. Dams in Jordan Current and Future Perspective. Can. J. Pure Appl. Sci. 2015, 9, 1–12. [Google Scholar]
- Bahmanpouri, F.; Daliri, M.; Khoshkonesh, A.; Montazeri Namin, M.; Buccino, M. Bed Compaction Effect on Dam Break Flow over Erodible Bed; Experimental and Numerical Modeling. J. Hydrol. 2020, 594, 125645. [Google Scholar] [CrossRef]
- Al-Weshah, R.A.; Yihdego, Y. Multi-Criteria Decision Approach for Evaluation, Ranking and Selection of Remediation Options: Case of Polluted Groundwater, Kuwait. Environ. Sci. Pollut. Res. 2018, 25, 36039–36045. [Google Scholar] [CrossRef]
- Burgherr, P.; Lordan-Perret, R.; Spada, A. A Multi-Criteria Decision Model for the Assessment of Sustainability and Governance Risks of Tailings Dams. In Proceedings of the 32nd European Safety and Reliability Conference (ESREL 2022), Dublin, Ireland, 28 August–1 September 2022; pp. 2621–2628. [Google Scholar]
- Karakuş, C.B.; Yıldız, S. Gis-Multi Criteria Decision Analysis-Based Land Suitability Assessment for Dam Site Selection. Int. J. Environ. Sci. Technol. 2022, 19, 12561–12580. [Google Scholar] [CrossRef]
- Florek, K.; Łukaszewicz, J.; Perkal, J.; Steinhaus, H.; Zubrzycki, S. Taksonomia Wrocławska. Przegl. Antropol. 1951, 17, 193–211. [Google Scholar]
- Senetra, A.; Szarek-Iwaniuk, P. The Implementation of the Wroclaw Taxonomic Method for the Identification and Evaluation of Problem Areas in the Warmia and Mazury Region in Poland—A Case Study. Soc. Econ. Plann. Sci. 2019, 67, 43–57. [Google Scholar] [CrossRef]
- Klóska, R.; Ociepa-Kicińska, E.; Czyżycki, R.; Szklarz, P. Regional Development in Poland in Taxonomic Terms. Sustainability 2020, 12, 4780. [Google Scholar] [CrossRef]
- Shojaie, A.; Fox, E.B. Granger Causality: A Review and Recent Advances. Annu. Rev. Stat. Appl. 2021, 9, 289–319. [Google Scholar] [CrossRef] [PubMed]
- Dietrich, A. Does Growth Cause Structural Change, or Is It the Other Way Around? A Dynamic Panel Data Analysis for Seven OECD Countries. Empir. Econ. 2011, 43, 915–944. [Google Scholar] [CrossRef]
- Gunjal, R.; Nayyer, S.S.; Wagh, S.; Stanković, A.M.; Singh, N. Granger Causality for Prediction in Dynamic Mode Decomposition: Application to Power Systems. Electr. Power Syst. Res. 2023, 225, 109865. [Google Scholar] [CrossRef]
- Dörgő, G.; Sebestyén, V.; Abonyi, J. Evaluating the Interconnectedness of the Sustainable Development Goals Based on the Causality Analysis of Sustainability Indicators. Sustainability 2018, 10, 3766. [Google Scholar] [CrossRef]
- Bildirici, M.; Genç, S.Y.; Boztuna, S. Sustainability, Natural Gas Consumption, and Environmental Pollution in the Period of Industry 4.0 in Turkey: MS-Granger Causality and Fourier Granger Causality Analysis. Sustainability 2023, 15, 10742. [Google Scholar] [CrossRef]
- Agovino, M.; Casaccia, M.; Ciommi, M.; Ferrara, M.; Marchesano, K. Agriculture, Climate Change and Sustainability: The Case of EU-28. Ecol. Indic. 2019, 105, 525–543. [Google Scholar] [CrossRef]
- Winton, R.S.; Calamita, E.; Wehrli, B. Reviews and Syntheses: Dams, Water Quality and Tropical Reservoir Stratification. Biogeosciences 2019, 16, 1657–1671. [Google Scholar] [CrossRef]
- Ta’any, R.A.; Ammari, T.G.; Jiries, A. Revegetation in Arid Zones: Environmental Impact of Treated Wastewater Irrigation in Al-Karak Province, Jordan. Pol. J. Environ. Stud. 2013, 22, 569–575. [Google Scholar]
- Abu Ghazaleh, S. Lake Lisan and the Dead Sea: Their Level Changes and the Geomorphology of Their Terraces. Ph.D. Thesis, Technische Universität Darmstadt, Hessen, Germany, 9 February 2011. [Google Scholar]
- Qutishat, T. Active Tectonic Movement of The Dead Sea Transform Fault Induced Soft-Sediments Deformation: Instances from The Quaternary Deposits At Wadi Al-Alkharazeh. Master’s Thesis, The University of Jordan, Amman, Jordan, 2022; pp. 1–180. [Google Scholar]
- Ambraseys, N. Earthquakes in the Mediterranean and Middle East; Cambridge University Press: Cambridge, UK, 2009. [Google Scholar]
- Zardari, M.A.; Mattsson, H.; Knutsson, S.; Khalid, M.S.; Ask, M.V.S.; Lund, B. Numerical Analyses of Earthquake Induced Liquefaction and Deformation Behaviour of an Upstream Tailings Dam. Adv. Mater. Sci. Eng. 2017, 2017, 1–12. [Google Scholar] [CrossRef]
- Utete, E.; Maposa, D.; Nare, H. Statistical Investigation of Reservoir-Induced Seismic Events in Mid-Zambezi Basin and Risk Assessment of Seismically Triggered Kariba Dam Failure. J. Seismol. 2022, 26, 1–19. [Google Scholar] [CrossRef]
- Pekel, J.-F.; Cottam, A.; Gorelick, N.; Belward, A.S. High-Resolution Mapping of Global Surface Water and Its Long-Term Changes. Nature 2016, 540, 418–422. [Google Scholar] [CrossRef]
- Rui, J.; Othengrafen, F. Examining the Role of Innovative Streets in Enhancing Urban Mobility and Livability for Sustainable Urban Transition: A Review. Sustainability 2023, 15, 5709. [Google Scholar] [CrossRef]
- Rahbeh, M.; Srinivasan, R.; Mohtar, R. Numerical and Conceptual Evaluation of Preferential Flow in Zarqa River Basin, Jordan. Ecohydrol. Hydrobiol. 2019, 19, 224–237. [Google Scholar] [CrossRef]
- Schmitt, R.J.P.; Rosa, L.; Daily, G.C. Global Expansion of Sustainable Irrigation Limited by Water Storage. Proc. Natl. Acad. Sci. USA 2022, 119, e2214291119. [Google Scholar] [CrossRef] [PubMed]
- Kumar, K.; Saini, R.P. A Review on Operation and Maintenance of Hydropower Plants. Sustain. Energy Technol. Assess. 2022, 49, 101704. [Google Scholar] [CrossRef]
- Al-Omari, S. Dam Break Risk Analysis Using Hec-Ras: A Case of King Talal Dam. Master’s Thesis, The University of Jordan, Amman, Jordan, 2020; pp. 1–90. [Google Scholar]
- OECD. Handbook on Constructing Composite Indicators: Methodology and User Guide; Joint Research Centre-European Commission, OECD Publishing: Seville, Spain, 2008. [Google Scholar]
- Chudy-Laskowska, K.; Pisula, T.; Liana, M.; Vasa, L. Taxonomic Analysis of the Diversity in the Level of Wind Energy Development in European Union Countries. Energies 2020, 13, 4371. [Google Scholar] [CrossRef]
- Olabi, A.G.; Obaideen, K.; Elsaid, K.; Wilberforce, T.; Sayed, E.T.; Maghrabie, H.M.; Abdelkareem, M.A. Assessment of the Pre-Combustion Carbon Capture Contribution into Sustainable Development Goals SDGs Using Novel Indicators. Renew. Sustain. Energy Rev. 2022, 153, 111710. [Google Scholar] [CrossRef]
- Al-Afeshat, A. Hydrological Analysis of Wadis Draining to the Gulf of Aqaba Using Hydrological Simulation Models. Master’s Thesis, The University of Jordan, Amman, Jordan, 2019; pp. 1–75. [Google Scholar]
- Hadadin, N.A.; Al-Adwan, S.R. Estimation of the Sediment Yield Using Hydrological Assessment Tool Model: A Case of Wadi Al-Arab Dam at the Northern Part of Jordan. Arabian J. Geosci. 2020, 13, 1–16. [Google Scholar] [CrossRef]
- Taani, Y. Sediments Transport Mitigation and Management in Wala Dam. Master’s Thesis, The University of Jordan, Amman, Jordan, 2022; pp. 1–70. [Google Scholar]
- AlSmadi, K. Sediments Transport Mitigation and Management in Wadi Shu’eib Dam. Master’s Thesis, The University of Jordan, Amman, Jordan, 2022; pp. 1–60. [Google Scholar]
- Shaheen, M. Accumulation of Sediments at King Talal Dam. Master’s Thesis, The University of Jordan, Amman, Jordan, 2017; pp. 1–100. [Google Scholar]
- Chow, V.T.; Maidment, D.R.; Mays, L.W. Applied Hydrology; McGraw-Hill Education: New York, NY, USA, 1988. [Google Scholar]
- MWI Ministry of Water and Irrigation. Available online: https://www.mwi.gov.jo/Ar/List/%D8%A7%D9%84%D8%AA%D9%82%D8%A7%D8%B1%D9%8A%D8%B1_%D8%A7%D9%84%D8%B3%D9%86%D9%88%D9%8A%D8%A9 (accessed on 1 April 2023).
- Hamilton, J.D.; Sitzia, B. Econometria Delle Serie Storiche; Monduzzi: Bologna, Spain, 1995. [Google Scholar]
- Dumitrescu, E.-I.; Hurlin, C. Testing for Granger Non-Causality in Heterogeneous Panels. Econ. Model. 2012, 29, 1450–1460. [Google Scholar] [CrossRef]
- Agovino, M.; Aldieri, L.; Garofalo, A.; Vinci, C.P. Quality and Quantity in the Innovation Process of Firms: A Statistical Approach. Qual. Quant. 2016, 51, 1579–1591. [Google Scholar] [CrossRef]
- Saidi, K.; Ben Mbarek, M. Nuclear Energy, Renewable Energy, CO2 Emissions and Economic Growth for Nine Developed Countries: Evidence from Panel Granger Causality Tests. Prog. Nucl. Energy 2016, 88, 364–374. [Google Scholar] [CrossRef]
- MEMR Ministry of Energy and Mineral Resources. Available online: https://www.memr.gov.jo/En/List/Open_Data (accessed on 1 May 2023).
- White, A.B.; Moore, B.J.; Gottas, D.J.; Neiman, P.J. Winter Storm Conditions Leading to Excessive Runoff above California’s Oroville Dam during January and February 2017. Bull. Am. Meteorol. Soc. 2019, 100, 55–70. [Google Scholar] [CrossRef]
- DOS Department of Statistics. Available online: http://www.dos.gov.jo/dos_home_a/main/linked-html/Emp_unEmp.htm (accessed on 1 July 2023).
- Filipović, S.; Lior, N.; Radovanović, M. The Green Deal—Just Transition and Sustainable Development Goals Nexus. Renew. Sustain. Energy Rev. 2022, 168, 112759. [Google Scholar] [CrossRef]
- McKee, T.B.; Doesken, N.J.; Kleist, J. The Relationship of Drought Frequency and Duration to Time Scales. In Proceedings of the Eighth Conference on Applied Climatology, Anaheim, CA, USA, 17–22 January 1993. [Google Scholar]
- Vicente-Serrano, S.M.; Beguería, S.; López-Moreno, J.I. A Multiscalar Drought Index Sensitive to Global Warming: The Standardized Precipitation Evapotranspiration Index. J. Clim. 2010, 23, 1696–1718. [Google Scholar] [CrossRef]
- Zwiers, F.W.; Alexander, L.V.; Hegerl, G.C.; Knutson, T.R.; Kossin, J.P.; Naveau, P.; Nicholls, N.; Schär, C.; Seneviratne, S.I.; Zhang, X. Climate Extremes: Challenges in Estimating and Understanding Recent Changes in the Frequency and Intensity of Extreme Climate and Weather Events. In Climate Science for Serving Society; Asrar, G.R., Hurrell, J.W., Eds.; Springer: Dordrecht, The Netherlands, 2013; pp. 339–389. [Google Scholar]
- Guimarães, R.N.; Moreira, V.R.; Cruz, J.R.A.; Saliba, A.P.M.; Amaral, M.C.S. History of Tailings Dam Failure: Impacts on Access to Safe Water and Influence on the Legislative Framework. Sci. Total Environ. 2022, 852, 158536. [Google Scholar] [CrossRef] [PubMed]
- Alrbaihat, M.R.; Abu-Afifeh, Q. Eco-Friendly Microplastic Removal through Physical and Chemical Techniques: A Review. Ann. Adv. Chem. 2023, 7, 14–24. [Google Scholar]
- Mehta, S.; Machado, F.; Kwizera, A.; Papazian, L.; Moss, M.; Azoulay, É.; Herridge, M. COVID-19: A Heavy Toll on Health-Care Workers. Lancet Respir. Med. 2021, 9, 226–228. [Google Scholar] [CrossRef]
- Salamah, E.; El-Hasan, T.; Abu-Jamah, M. Dam Safety in Jordan: Factors Affecting Dam Safety, Responsibilities and Required Actions. Engineering 2023, 15, 514–532. [Google Scholar] [CrossRef]
- Google Earth. Available online: https://earth.google.com/web/ (accessed on 1 August 2023).
Pillar | Effect on ISD | Description of the Indicator | Unit | Code |
---|---|---|---|---|
En | Decrease | Average pH of the dam’s effluent | - | En1 |
En | Decrease | Average TDS of the dam’s effluent | mg/L | En2 |
En | Decrease | Average BOD of the dam’s effluent | mg/L | En3 |
En | Decrease | Total discharged treated wastewater into the dam | MCM | En4 |
En | Decrease | Average seismic events’ magnitudes affecting the dam | Hz | En5 |
En | Decrease | Annual spillway events (days) | days | En6 |
So | Increase | Population increment rate | % | So1 |
So | Increase | Intersection densities at the areas adjacent to the dam | intersections/km2 | So2 |
Ec | Increase | Average daily irrigation uses relative to the daily storage | % | Ec1 |
Ec | Increase | King Talal Dam Hydroelectric Power Plant Efficiency | % | Ec2 |
So-Ec | Decrease | Unemployed Jordanians aged 15 years and over relative to the number of citizens in the area adjacent to the dam | % | So-Ec1 |
So-Ec | Decrease | Unemployed Jordanian women aged 15 years and over relative to the number of unemployed people in the area adjacent to the dam | % | So-Ec2 |
So-Ec | Increase | Jordanian workers in the agricultural sector aged 15 years and over relative to the number of citizens in the area adjacent to the dam | % | So-Ec3 |
So-Ec | Increase | Jordanian female workers in the agricultural sector aged 15 years and over relative to the number of workers in the area adjacent to the dam | % | So-Ec4 |
Indicator | Unit | Statistics | |||
---|---|---|---|---|---|
Mean | Standard Deviation | Maximum | Minimum | ||
En1 | Unitless | 8.02 | 0.18 | 8.42 | 7.81 |
En2 | mg/L | 1093.86 | 106.20 | 1373.78 | 964.82 |
En3 | mg/L | 6.15 | 1.39 | 8.42 | 4.11 |
En4 | MCM | 116.27 | 17.73 | 142.59 | 85.39 |
En5 | Hz | 0.94 | 1.12 | 2.40 | 0.00 |
En6 | days | 1.58 | 3.68 | 12.00 | 0.00 |
So1 | % | 4.30 | 2.74 | 9.24 | 2.23 |
So2 | intersections/km2 | 4.99 | 0.45 | 5.54 | 4.07 |
Ec1 | % | 0.84 | 0.16 | 1.21 | 0.65 |
Ec2 | % | 33.06 | 8.96 | 43.20 | 10.79 |
So-Ec1 | % | 3.72 | 0.32 | 4.50 | 3.30 |
So-Ec2 | % | 4.03 | 0.29 | 4.40 | 3.60 |
So-Ec3 | % | 3.84 | 0.83 | 5.20 | 2.30 |
So-Ec4 | % | 0.59 | 0.34 | 1.30 | 0.20 |
ISD | Unitless | 0.25 | 0.12 | 0.43 | 0.00 |
DA | years | 39.50 | 3.45 | 45.00 | 3.45 |
ASY | ton/ha | 9.31 | 3.27 | 14.50 | 1.20 |
ADS | MCM | 48.81 | 5.48 | 57.90 | 5.48 |
MAP | mm | 6.75 | 1.43 | 9.50 | 1.43 |
MXT | °C | 26.39 | 2.32 | 31.09 | 2.32 |
MNT | °C | 14.29 | 3.02 | 18.60 | 3.02 |
x Variables | y Variables | ||||||
---|---|---|---|---|---|---|---|
ISD | DA | ASY | ADS | MAP | MXT | MNT | |
ISD | - | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ |
DA | ✓ | - | ✓ | ✓ | ✗ | ✗ | ✓ |
ASY | ✓ | ✗ | - | ✗ | ✗ | ✗ | ✓ |
ADS | ✓ | ✓ | ✓ | - | ✓ | ✓ | ✓ |
MAP | ✓ | ✗ | ✗ | ✓ | - | ✗ | ✓ |
MXT | ✓ | ✗ | ✗ | ✗ | ✗ | - | ✓ |
MNT | ✗ | ✓ | ✗ | ✗ | ✗ | ✗ | - |
y Variables | x Variables | ||||||
---|---|---|---|---|---|---|---|
ISD | DA | ASY | ADS | MAP | MXT | MNT | |
ISD | −B 1 | −B 2 | −B 1, −C 2 | +B 2 | −B 2 | ||
DA | −B 1 | +C 1 | |||||
ASY | +B 1 | +B 1 | |||||
ADS | −B 1 | +B 3 | |||||
MAP | +B 2, +B 3 | ||||||
MXT | +A 1, +B 2 | ||||||
MNT | +A 1 | +C 3 | +C 3 | +A 3 | +B 3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abu-Afifeh, Q.; Rahbeh, M.; Al-Afeshat, A.; Al-Omari, S.; Qutishat, T.A.; Brezat, A.; Alkayed, A. Dam Sustainability’s Interdependency with Climate Change and Dam Failure Drivers. Sustainability 2023, 15, 16239. https://doi.org/10.3390/su152316239
Abu-Afifeh Q, Rahbeh M, Al-Afeshat A, Al-Omari S, Qutishat TA, Brezat A, Alkayed A. Dam Sustainability’s Interdependency with Climate Change and Dam Failure Drivers. Sustainability. 2023; 15(23):16239. https://doi.org/10.3390/su152316239
Chicago/Turabian StyleAbu-Afifeh, Qusay, Michel Rahbeh, Aya Al-Afeshat, Saif Al-Omari, Tala Amer Qutishat, Ali Brezat, and Ali Alkayed. 2023. "Dam Sustainability’s Interdependency with Climate Change and Dam Failure Drivers" Sustainability 15, no. 23: 16239. https://doi.org/10.3390/su152316239
APA StyleAbu-Afifeh, Q., Rahbeh, M., Al-Afeshat, A., Al-Omari, S., Qutishat, T. A., Brezat, A., & Alkayed, A. (2023). Dam Sustainability’s Interdependency with Climate Change and Dam Failure Drivers. Sustainability, 15(23), 16239. https://doi.org/10.3390/su152316239