Technological Innovations for Agricultural Production from an Environmental Perspective: A Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bibliometric Analysis
2.2. Information Search Method
2.3. Techniques Used
2.4. Inclusion Criteria
2.5. Exclusion Criteria
2.6. Quality of the Selected Articles
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Avila-Lopez, L.A.; Lyu, C.; Lopez-Leyva, S. Innovation and growth: Evidence from Latin American countries. J. Appl. Econ. 2019, 22, 287–303. [Google Scholar] [CrossRef]
- Yin, X.; Chen, J.; Li, J. Rural innovation system: Revitalize the countryside for a sustainable development. J. Rural. Stud. 2022, 93, 471–478. [Google Scholar] [CrossRef]
- Camino-Mogro, S.; Bermúdez-Barrezueta, N.; Armijos, M. Is FDI a potential tool for boosting firm’s performance? Firm level evidence from Ecuador. J. Evol. Econ. 2023, 33, 341–391. [Google Scholar] [CrossRef]
- Bhakta, I.; Phadikar, S.; Majumder, K. State-of-the-art technologies in precision agriculture: A systematic review. J. Sci. Food Agric. 2019, 99, 4878–4888. [Google Scholar] [CrossRef]
- Kabir, M.S.; Islam, S.; Ali, M.; Chowdhury, M.; Chung, S.O.; Noh, D.H. Environmental sensing and remote communication for smart farming: A review. Precis Agric. 2022, 4, 82. [Google Scholar]
- Eli-Chukwu, N.C. Applications of artificial intelligence in agriculture: A review. Eng. Technol. Appl. Sci. Res. 2019, 9, 4377–4383. [Google Scholar] [CrossRef]
- Martins, V.W.B.; Rampasso, I.S.; Anholon, R.; Quelhas, O.L.G.; Leal Filho, W. Knowledge management in the context of sustainability: Literature review and opportunities for future research. J. Clean. Prod. 2019, 229, 489–500. [Google Scholar] [CrossRef]
- Britt, K.E.; Kuhar, T.P.; Cranshaw, W.; McCullough, C.T.; Taylor, S.V.; Arends, B.R.; Burrack, H.; Pulkoski, M.; Owens, D.; Tolosa, T.A.; et al. Pest management needs and limitations for corn earworm (Lepidoptera: Noctuidae), an emergent key pest of hemp in the United States. J. Integr. Pest Manag. 2021, 12, 34. [Google Scholar] [CrossRef]
- Alvarez, A.L.; Weyers, S.L.; Goemann, H.M.; Peyton, B.M.; Gardner, R.D. Microalgae, soil and plants: A critical review of microalgae as renewable resources for agriculture. Algal Res. 2021, 54, 102200. [Google Scholar] [CrossRef]
- Schaffner, U.; Steinbach, S.; Sun, Y.; Skjøth, C.A.; de Weger, L.A.; Lommen, S.T.; Augustinus, B.A.; Bonini, M.; Karrer, G.; Šikoparija, B.; et al. Biological weed control to relieve millions from Ambrosia allergies in Europe. Nat. Commun. 2020, 11, 1745. [Google Scholar] [CrossRef]
- Bolfe, É.L.; Jorge, L.A.d.C.; Sanches, I.D.; Luchiari Júnior, A.; da Costa, C.C.; Victoria, D.d.C.; Inamasu, R.Y.; Grego, C.R.; Ferreira, V.R.; Ramirez, A.R. Precision and digital agriculture: Adoption of technologies and perception of Brazilian farmers. Agriculture 2020, 10, 653. [Google Scholar] [CrossRef]
- Vargas-Canales, J.M.; Palacios-Rangel, M.I.; García-Cruz, J.C.; Camacho-Vera, J.H.; Sánchez-Torres, Y.; Simón-Calderón, C. Analysis of the impact of the regional innovation system of protected agriculture in Hidalgo, Mexico. J. Agric. Educ. Ext. 2023, 29, 269–294. [Google Scholar]
- Misra, N.N.; Dixit, Y.; Al-Mallahi, A.; Bhullar, M.S.; Upadhyay, R.; Martynenko, A. IoT, big data, and artificial intelligence in agriculture and food industry. IEEE Internet Things J. 2020, 9, 6305–6324. [Google Scholar]
- Meshram, V.; Patil, K.; Meshram, V.; Hanchate, D.; Ramkteke, S.D. Machine learning in agriculture domain: A state-of-art survey. Artif. Intell. Life Sci. 2021, 1, 100010. [Google Scholar]
- Feng, X.; Yan, F.; Liu, X. Study of wireless communication technologies on Internet of Things for precision agriculture. Wirel. Pers. Commun. 2019, 108, 1785–1802. [Google Scholar]
- De Oliveira, M.E.; Corrêa, C.G. Virtual Reality and Augmented reality applications in agriculture: A literature review. In Proceedings of the 2020 22nd Symposium on Virtual and Augmented Reality (SVR), Porto de Galinhas, Brazil, 7–10 November 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 1–9. [Google Scholar] [CrossRef]
- Salam, A.; Salam, A. Internet of things in water management and treatment. In Internet of Things for Sustainable Community Development: Wireless Communications, Sensing, and Systems; Springer: Cham, Switzerland, 2020; pp. 273–298. [Google Scholar]
- Robinson, L.; Schulz, J.; Dodel, M.; Correa, T.; Villanueva-Mansilla, E.; Leal, S.; Magallanes-Blanco, C.; Rodriguez-Medina, L.; Dunn, H.S.; Levine, L.; et al. Digital inclusion across the Americas and Caribbean. Soc. Incl. 2020, 8, 244–259. [Google Scholar]
- Maisiri, W.; Darwish, H.; Van Dyk, L. An investigation of industry 4.0 skills requirements. S. Afr. J. Ind. Eng. 2019, 30, 90–105. [Google Scholar]
- Vassilakopoulou, P.; Hustad, E. Bridging digital divides: A literature review and research agenda for information systems research. Inf. Syst. Front. 2023, 25, 955–969. [Google Scholar]
- Hossian, A.A.; Alveal, M.; Merlino, H. Análisis del proceso de automatización y robotización en América Latina: Una propuesta de mejora en el marco de la educación y la Cuarta Revolución Industrial. In Revolución en la Formación y la Capacitación para el Siglo XXI. Volúmenes I y II; Instituto Antioqueño de Investigación (IAI), 2022; pp. 502–513. Available online: https://dialnet.unirioja.es/servlet/articulo?codigo=8718129 (accessed on 9 November 2023).
- Terán Bustamante, A.; Dávila Aragón, G.; Castañón Ibarra, R. Gestión de la tecnología e innovación: Un Modelo de Redes Bayesianas. Econ. Teoría Práctica 2019, 50, 63–100. [Google Scholar] [CrossRef]
- Reglitz, M. The human right to free internet access. J. Appl. Philos. 2020, 37, 314–331. [Google Scholar]
- Letts, L.; Wilkins, S.; Law, M.; Stewart, D.; Bosch, J.; Westmorland, M. Guidelines for Critical Review Form: Qualitative Studies (Version 2.0); 2007; Volume 17, pp. 1–12. Available online: https://www.canchild.ca/system/tenon/assets/attachments/000/000/360/original/qualguide.pdf (accessed on 9 November 2023).
- Smith, T. Critical Appraisal of Quantitative and Qualitative Research Literature. Radiographer 2009, 56, 6–10. Available online: https://onlinelibrary.wiley.com/doi/full/10.1002/j.2051-3909.2009.tb00102.x (accessed on 9 November 2023). [CrossRef]
- Pathan, M.; Patel, N.; Yagnik, H.; Shah, M. Artificial cognition for applications in smart agriculture: A comprehensive review. Artif. Intell. Agric. 2020, 4, 81–95. [Google Scholar]
- Cisternas, I.; Velásquez, I.; Caro, A.; Rodríguez, A. Systematic literature review of implementations of precision agriculture. Comput. Electron. Agric. 2020, 176, 105626. [Google Scholar] [CrossRef]
- Caro, M.D.M.; Romero, E.R.; Espinosa, M.A.C.; Guerrero, C.D. Evaluando contribuciones de usabilidad en soluciones TIC-IOT para la agricultura: Una perspectiva desde la bibliometría. Rev. Ibérica Sist. Tecnol. Informação 2020, E28, 681–692. [Google Scholar]
- Gardeazabal, A.; Lunt, T.; Jahn, M.M.; Verhulst, N.; Hellin, J.; Govaerts, B. Knowledge management for innovation in agri-food systems: A conceptual framework. Knowl. Manag. Res. Pract. 2023, 21, 303–315. [Google Scholar] [CrossRef]
- Toriyama, K. Development of precision agriculture and ICT application thereof to manage spatial variability of crop growth. Soil Sci. Plant Nutr. 2020, 66, 811–819. [Google Scholar] [CrossRef]
- Tobar Cuesta, B.A.; Moran Solís, M.J. Agricultura de precisión y redes de sensores inalámbricos, análisis de su implementación y ventajas en el Ecuador. Ser. Científica Univ. Cienc. Inform. 2022, 15, 54–69. Available online: https://dialnet.unirioja.es/servlet/articulo?codigo=8590742 (accessed on 9 November 2023).
- Srivastava, A.; Das, D.K. A comprehensive review on the application of Internet of Thing (IoT) in smart agriculture. Wirel. Pers. Commun. 2022, 122, 1807–1837. [Google Scholar]
- Cravero, A.; Sepúlveda, S. Use and adaptations of machine learning in big data—Applications in real cases in agriculture. Electronics 2021, 10, 552. [Google Scholar] [CrossRef]
- Ghazali, M.H.M.; Azmin, A.; Rahiman, W. Drone implementation in precision agriculture—A survey. Int. J. Emerg. Technol. Adv. Eng. 2022, 12, 67–7728. [Google Scholar] [CrossRef]
- Salamanca-Cano, A.K.; Durán-Díaz, P. Stakeholder Engagement around Water Governance: 30 Years of Decision-Making in the Bogotá River Basin. Urban Sci. 2023, 7, 81. [Google Scholar] [CrossRef]
- Krishnan, S.R.; Nallakaruppan, M.K.; Chengoden, R.; Koppu, S.; Iyapparaja, M.; Sadhasivam, J.; Sethuraman, S. Smart water resource management using Artificial Intelligence—A review. Sustainability 2022, 14, 13384. [Google Scholar] [CrossRef]
- Vargas-Crispin, W.S.; Montes-Raymundo, E.; Castrejón-Valdez, M.; Hinojosa-Benavides, R.A. Machine Learning como Herramienta para Determinar la Variación de los Recursos Hídricos. Sci. Res. J. CIDI 2021, 1, 56–69. [Google Scholar] [CrossRef]
- Sharma, B.B.; Kumar, N. Iot-based intelligent irrigation system for paddy crop using an internet-controlled water pump. Int. J. Agric. Environ. Inf. Syst. (IJAEIS) 2021, 12, 21–36. [Google Scholar] [CrossRef]
- Sun, A.Y.; Scanlon, B.R. How can Big Data and machine learning benefit environment and water management: A survey of methods, applications, and future directions. Environ. Res. Lett. 2019, 14, 073001. [Google Scholar] [CrossRef]
- Bhardwaj, A.; Dagar, V.; Khan, M.O.; Aggarwal, A.; Alvarado, R.; Kumar, M.; Irfan, M.; Proshad, R. Smart IoT and machine learning-based framework for water quality assessment and device component monitoring. Environ. Sci. Pollut. Res. 2022, 29, 46018–46036. [Google Scholar] [CrossRef]
- Lu, H.; Ma, X. Hybrid decision tree-based machine learning models for short-term water quality prediction. Chemosphere 2020, 249, 126169. [Google Scholar] [CrossRef]
- Yamaç, S.S.; Todorovic, M. Estimation of daily potato crop evapotranspiration using three different machine learning algorithms and four scenarios of available meteorological data. Agric. Water Manag. 2020, 228, 105875. [Google Scholar] [CrossRef]
- Bonilla Segovia, J.S.; Dávila Rojas, F.A.; Villa Quishpe, M.W. Study of Artificial Intelligence Techniques Applied for Soil Analysis in the Agricultural Sector. RECIMUNDO 2021, 5, 4–19. [Google Scholar] [CrossRef]
- Guirado, E.; Martínez-Valderrama, J. Potencial de la inteligencia artificial para avanzar en el estudio de la desertificación. Ecosistemas 2021, 30, 2250. [Google Scholar] [CrossRef]
- Subeesh, A.; Mehta, C.R. Automation and digitization of agriculture using artificial intelligence and internet of things. Artif. Intell. Agric. 2021, 5, 278–291. [Google Scholar] [CrossRef]
- Maroufpoor, S.; Maroufpoor, E.; Bozorg-Haddad, O.; Shiri, J.; Yaseen, Z.M. Soil moisture simulation using hybrid artificial intelligent model: Hybridization of adaptive neuro fuzzy inference system with grey wolf optimizer algorithm. J. Hydrol. 2019, 575, 544–556. [Google Scholar] [CrossRef]
- Singh, B.; Sihag, P.; Parsaie, A.; Angelaki, A. Comparative analysis of artificial intelligence techniques for the prediction of infiltration process. Geol. Ecol. Landsc. 2021, 5, 109–118. [Google Scholar] [CrossRef]
- Roy, J.; Saha, S. Integration of artificial intelligence with meta classifiers for the gully erosion susceptibility assessment in Hinglo river basin, Eastern India. Adv. Space Res. 2021, 67, 316–333. [Google Scholar] [CrossRef]
- John, K.; Abraham Isong, I.; Michael Kebonye, N.; Okon Ayito, E.; Chapman Agyeman, P.; Marcus Afu, S. Using machine learning algorithms to estimate soil organic carbon variability with environmental variables and soil nutrient indicators in an alluvial soil. Land 2020, 9, 487. [Google Scholar] [CrossRef]
- Shafie, A.; Fard, N.J.H.; Monavari, M.; Sabzalipour, S.; Fathian, H. Artificial neural network and multi-criteria decision-making methods for the remediation of soil oil pollution in the southwest of Iran. Model. Earth Syst. Environ. 2023, 1–8. [Google Scholar] [CrossRef]
- Peláez, M.J.P.; Molina, V.E.R. Desarrollo de la App Fertiun como herramienta móvil en la gestión óptima en el uso adecuado de fertilizantes en regiones dedicadas al cultivo de uva Isabela en el Valle del Cauca. Cienc. Tecnol. Agropecu. 2021, 6, 17–20. Available online: https://ojs.unipamplona.edu.co/ojsviceinves/index.php/rcyta/article/view/1078 (accessed on 9 November 2023).
- Maraveas, C. Incorporating artificial intelligence technology in smart greenhouses: Current State of the Art. Appl. Sci. 2022, 13, 14. [Google Scholar] [CrossRef]
- Jha, G.K.; Ranjan, P.; Gaur, M. A machine learning approach to recommend suitable crops and fertilizers for agriculture. In Recommender System with Machine Learning and Artificial Intelligence: Practical Tools and Applications in Medical, Agricultural and Other Industries; John Wiley & Sons: Hoboken, NJ, USA, 2020; pp. 89–99. [Google Scholar] [CrossRef]
- Bondre, D.A.; Mahagaonkar, S. Prediction of crop yield and fertilizer recommendation using machine learning algorithms. Int. J. Eng. Appl. Sci. Technol. 2019, 4, 371–376. Available online: http://ijeast.com/papers/371-376,Tesma405,IJEAST.pdf (accessed on 9 November 2023). [CrossRef]
- Thorat, T.; Patle, B.K.; Kashyap, S.K. Intelligent insecticide and fertilizer recommendation system based on TPF-CNN for smart farming. Smart Agric. Technol. 2023, 3, 100114. [Google Scholar] [CrossRef]
- Coulibali, Z.; Cambouris, A.N.; Parent, S.É. Site-specific machine learning predictive fertilization models for potato crops in Eastern Canada. PLoS ONE 2020, 15, e0230888. [Google Scholar] [CrossRef] [PubMed]
- Meng, L.; Liu, H.L.; Ustin, S.; Zhang, X. Predicting maize yield at the plot scale of different fertilizer systems by multi-source data and machine learning methods. Remote Sens. 2021, 13, 3760. [Google Scholar] [CrossRef]
- Silva, A.F.; Löfkvist, K.; Gilbertsson, M.; Os, E.V.; Franken, G.; Balendonck, J.; Pinho, T.M.; Boaventura-Cunha, J.; Coelho, L.; Jorge, P.; et al. Hydroponics monitoring through UV-VIS spectroscopy and artificial intelligence: Quantification of nitrogen, phosphorous and potassium. Chem. Proc. 2021, 5, 88. [Google Scholar] [CrossRef]
- Elahi, E.; Weijun, C.; Zhang, H.; Nazeer, M. Agricultural intensification and damages to human health in relation to agrochemicals: Application of artificial intelligence. Land Use Policy 2019, 83, 461–474. [Google Scholar] [CrossRef]
- Partel, V.; Kakarla, S.C.; Ampatzidis, Y. Development and evaluation of a low-cost and smart technology for precision weed management utilizing artificial intelligence. Comput. Electron. Agric. 2019, 157, 339–350. [Google Scholar] [CrossRef]
- Liu, J.; Abbas, I.; Noor, R.S. Development of deep learning-based variable rate agrochemical spraying system for targeted weeds control in strawberry crop. Agronomy 2021, 11, 1480. [Google Scholar] [CrossRef]
- Farooque, A.A.; Hussain, N.; Schumann, A.W.; Abbas, F.; Afzaal, H.; McKenzie-Gopsill, A.; Esau, T.; Zaman, Q.; Wang, X. Field evaluation of a deep learning-based smart variable-rate sprayer for targeted application of agrochemicals. Smart Agric. Technol. 2023, 3, 100073. [Google Scholar] [CrossRef]
- Tewari, V.K.; Pareek, C.M.; Lal, G.; Dhruw, L.K.; Singh, N. Image processing based real-time variable-rate chemical spraying system for disease control in paddy crop. Artif. Intell. Agric. 2020, 4, 21–30. [Google Scholar] [CrossRef]
- Negrete, J.C. Proposed Spray System for Family Agriculture with A Remote-Controlled UAV (Small Drone or Helicopter) and An Economical Sprinkler. J. Agron. Res. 2020, 3, 1–8. [Google Scholar] [CrossRef]
- Upadhyaya, A.; Jeet, P.; Sundaram, P.K.; Singh, A.K.; Saurabh, K.; Deo, M. Efficacy of drone technology in agriculture: A review: Drone technology in agriculture. J. AgriSearch 2022, 9, 189–195. [Google Scholar] [CrossRef]
- Delgado, J.A.; Short Jr, N.M.; Roberts, D.P.; Vandenberg, B. Big data analysis for sustainable agriculture on a geospatial cloud framework. Front. Sustain. Food Syst. 2019, 3, 54. [Google Scholar] [CrossRef]
- Nordin, M.N.; Jusoh, M.S.M.; Bakar, B.H.A.; Basri, M.S.H.; Kamal, F.; Ahmad, M.T.; Mail, M.F.; Masarudin, M.F.; Misman, S.N.; Teoh, C.C. Preliminary study on pesticide application in paddy field using drone sprayer. Adv. Agric. Food Res. J. 2021, 2. [Google Scholar] [CrossRef]
- Rehman, T.U.; Mahmud, M.S.; Chang, Y.K.; Jin, J.; Shin, J. Current and future applications of statistical machine learning algorithms for agricultural machine vision systems. Comput. Electron. Agric. 2019, 156, 585–605. [Google Scholar] [CrossRef]
- Ahmad, W.; Alharthy, R.D.; Zubair, M.; Ahmed, M.; Hameed, A.; Rafique, S. Toxic and heavy metals contamination assessment in soil and water to evaluate human health risk. Sci. Rep. 2021, 11, 17006. [Google Scholar] [CrossRef] [PubMed]
- Eswar, D.; Karuppusamy, R.; Chellamuthu, S. Drivers of soil salinity and their correlation with climate change. Curr. Opin. Environ. Sustain. 2021, 50, 310–318. [Google Scholar] [CrossRef]
- Wuepper, D.; Borrelli, P.; Finger, R. Countries and the global rate of soil erosion. Nat. Sustain. 2020, 3, 51–55. [Google Scholar] [CrossRef]
- Zhang, Y.; Ye, C.; Su, Y.; Peng, W.; Lu, R.; Liu, Y.; Huang, H.; He, X.; Yang, M.; Zhu, S. Soil Acidification caused by excessive application of nitrogen fertilizer aggravates soil-borne diseases: Evidence from literature review and field trials. Agric. Ecosyst. Environ. 2022, 340, 108176. [Google Scholar] [CrossRef]
- Mileusnić, Z.I.; Saljnikov, E.; Radojević, R.L.; Petrović, D.V. Soil compaction due to agricultural machinery impact. J. Terramech. 2022, 100, 51–60. [Google Scholar] [CrossRef]
- Pahalvi, H.N.; Rafiya, L.; Rashid, S.; Nisar, B.; Kamili, A.N. Chemical fertilizers and their impact on soil health. In Microbiota and Biofertilizers, Vol 2: Ecofriendly Tools for Reclamation of Degraded Soil Environs; Springer: Cham, Switzerland, 2021; pp. 1–20. [Google Scholar]
- Meena, R.S.; Kumar, S.; Datta, R.; Lal, R.; Vijayakumar, V.; Brtnicky, M.; Sharma, M.P.; Yadav, G.S.; Jhariya, M.K.; Jangir, C.K.; et al. Impact of agrochemicals on soil microbiota and management: A review. Land 2020, 9, 34. [Google Scholar] [CrossRef]
- Bibi, F.; Rahman, A. An Overview of Climate Change Impacts on Agriculture and their mitigation strategies. Agriculture 2023, 13, 1508. [Google Scholar] [CrossRef]
- Srivastava, S.K. Assessment of groundwater quality for the suitability of irrigation and its impacts on crop yields in the Guna district, India. Agric. Water Manag. 2019, 216, 224–241. [Google Scholar] [CrossRef]
- Sonone, S.S.; Jadhav, S.; Sankhla, M.S.; Kumar, R. Water contamination by heavy metals and their toxic effect on aquaculture and human health through food Chain. Lett. Appl. NanoBioSci. 2020, 10, 2148–2166. [Google Scholar]
- Madhav, S.; Ahamad, A.; Singh, A.K.; Kushawaha, J.; Chauhan, J.S.; Sharma, S.; Singh, P. Water pollutants: Sources and impact on the environment and human health. In Sensors in Water Pollutants Monitoring: Role of Material; Springer: Singapore, 2020; pp. 43–62. [Google Scholar]
- Javed, M.; Usmani, N. An overview of the adverse effects of heavy metal contamination on fish health. Proc. Natl. Acad. Sci. India Sect. B Biol. Sci. 2019, 89, 389–403.74. [Google Scholar] [CrossRef]
- Naseem, S.; Hui, W.; Sarfraz, M.; Mohsin, M. Repercussions of Sustainable Agricultural Productivity, Foreign Direct Investment, Renewable Energy, and Environmental Decay: Recent Evidence from Latin America and the Caribbean. Front. Environ. Sci. 2021, 9, 784570. [Google Scholar] [CrossRef]
- Altieri, M.A.; Masera, O. Sustainable rural development in Latin America: Building from the bottom-up. Ecol. Econ. 1993, 7, 93–121. [Google Scholar] [CrossRef]
- Martín, D.; de la Fuente, R. Global and Local Agendas: The Milan Urban Food Policy Pact and Innovative Sustainable Food Policies in Euro-Latin American Cities. Land 2022, 11, 202. Available online: https://www.mdpi.com/2073-445X/11/2/202/htm (accessed on 9 November 2023). [CrossRef]
- Carballo, A.E.; Beling, A.E.; Waldmüller, J.; Vanhulst, J.; Pilar MDel Gröbli, R. Digital farming, invisible farmers. Alternautas 2022, 9, 222–244. Available online: https://journals.warwick.ac.uk/index.php/alternautas/article/view/1177 (accessed on 9 November 2023).
- McCampbell, M. Agricultural digitalization and automation in low- and middle-income countries: Evidence from ten case studies. Agric. Appl. Econ. 2022. Available online: https://ageconsearch.umn.edu/record/330812 (accessed on 9 November 2023).
- Yakovlev, P. Latin American Economy at the Start of Digital Modernization. Mirovaia Ekon I Mezhdunarodnye Otnos. 2022, 66, 110–118. [Google Scholar] [CrossRef]
- Hejna, M.; Kapuścińska, D.; Aksmann, A. Pharmaceuticals in the aquatic environment: A review on eco-toxicology and the remediation potential of algae. Int. J. Environ. Res. Public Health 2022, 19, 7717. [Google Scholar] [CrossRef]
- Amarasiri, M.; Sano, D.; Suzuki, S. Understanding human health risks caused by antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARG) in water environments: Current knowledge and questions to be answered. Crit. Rev. Environ. Sci. Technol. 2020, 50, 2016–2059. [Google Scholar] [CrossRef]
- Moreno-Miranda, C.; Dries, L. Assessing the sustainability of agricultural production—A cross-sectoral comparison of the blackberry, tomato and tree tomato sectors in Ecuador. Int. J. Agric. Sustain. 2022, 20, 1373–1396. Available online: https://www.tandfonline.com/doi/abs/10.1080/14735903.2022.2082764 (accessed on 9 November 2023). [CrossRef]
- Prager, M.; Riveros, H. Non-Governmental Organizations and the State in Latin America: Rethinking Roles in Sustainable Agricultural Development; Routledge: London, UK, 1993; Available online: https://www.taylorfrancis.com/books/mono/10.4324/9780203974377/non-governmental-organizations-state-latin-america-anthony-bebbington-graham-thiele (accessed on 9 November 2023).
- Fageria, N.K.; Nascente, A.S. Management of Soil Acidity of South American Soils for Sustainable Crop Production. Adv Agron. 2014, 128, 221–275. [Google Scholar]
Title | Year | Authors | Database |
---|---|---|---|
Artificial cognition for applications in smart agriculture: A comprehensive review. | 2020 | [26] | Scopus |
Systematic literature review of implementations of precision agriculture. | 2020 | [27] | Scopus |
Machine learning in agriculture: A comprehensive updated review | 2021 | [28] | Google Scholar |
Knowledge management for innovation in agri-food systems: a conceptual framework | 2023 | [29] | Scopus |
Development of precision agriculture and ICT application thereof to manage spatial variability of crop growth | 2020 | [30] | Scopus |
Precision Agriculture and Wireless Sensor Networks: Analysis of Implementation and Advantages in Ecuador | 2021 | [31] | Latindex |
A comprehensive review on the application of Internet of Thing (IoT) in smart agriculture. | 2022 | [32] | Scopus |
Use and adaptations of machine learning in big data—Applications in real cases in agriculture. | 2021 | [33] | Scopus |
Drone implementation in precision agriculture–a survey. | 2022 | [34] | Scopus |
Title | Year | Authors | Database |
---|---|---|---|
Stakeholder Engagement around Water Governance: 30 Years of Decision-Making in the Bogotá River Basin. | 2023 | [35] | Scopus |
Smart water resource management using Artificial Intelligence—A review. | 2022 | [36] | Scopus |
Machine Learning as a Tool for Determining Water Resources Variation. | 2021 | [37] | Google Scholar |
Iot-based intelligent irrigation system for paddy crop using an internet-controlled water pump. | 2021 | [38] | Scopus |
How can Big Data and machine learning benefit environment and water management: a survey of methods, applications, and future directions. | 2019 | [39] | Scopus |
Smart IoT and machine learning-based framework for water quality assessment and device component monitoring. | 2022 | [40] | Scopus |
Hybrid decision tree-based machine learning models for short-term water quality prediction. | 2020 | [41] | Scopus |
Estimation of daily potato crop evapotranspiration using three different machine learning algorithms and four scenarios of available meteorological data. | 2020 | [42] | Scopus |
Title | Year | Authors | Database |
---|---|---|---|
Study of Artificial Intelligence Techniques Applied for Soil Analysis in the Agricultural Sector | 2021 | [43] | Latindex |
Potential of Artificial Intelligence to Advance Desertification Studies | 2021 | [44] | Scopus |
Automation and digitization of agriculture using artificial intelligence and internet of things | 2021 | [45] | Scopus |
Soil moisture simulation using hybrid artificial intelligent model: Hybridization of adaptive neuro fuzzy inference system with grey wolf optimizer algorithm | 2019 | [46] | Scopus |
Comparative analysis of artificial intelligence techniques for the prediction of infiltration process. | 2021 | [47] | Scopus |
Integration of artificial intelligence with meta classifiers for the gully erosion susceptibility assessment in Hinglo river basin, Eastern India | 2021 | [48] | Scopus |
Using machine learning algorithms to estimate soil organic carbon variability with environmental variables and soil nutrient indicators in an alluvial soil. | 2020 | [49] | Scopus |
Artificial neural network and multi-criteria decision-making methods for the remediation of soil oil pollution in the southwest of Iran | 2023 | [50] | Scopus |
Title | Year | Authors | Database |
---|---|---|---|
Development of the Fertiun App as a Mobile Tool for Optimal Management of Fertilizer Use in Regions Dedicated to Isabela Grape Cultivation in Valle del Cauca. | 2021 | [51] | Latindex |
Incorporating artificial intelligence technology in smart greenhouses | 2022 | [52] | Scopus |
Machine learning approach to recommend suitable crops and fertilizers for agriculture. Recommender System with Machine Learning and Artificial Intelligence: | 2020 | [53] | Scopus |
Prediction of crop yield and fertilizer recommendation using machine learning algorithms. | 2019 | [54] | Scopus |
Intelligent insecticide and fertilizer recommendation system based on TPF-CNN for smart farming | 2023 | [55] | Scopus |
Site-specific machine learning predictive fertilization models for potato crops in Eastern Canada. | 2020 | [56] | Scopus |
Predicting maize yield at the plot scale of different fertilizer systems by multi-source data and machine learning methods | 2021 | [57] | Scopus |
Hydroponics monitoring through UV-VIS spectroscopy and artificial intelligence: Quantification of nitrogen, phosphorous and potassium | 2021 | [58] | Scopus |
Title | Year | Authors | Database |
---|---|---|---|
Agricultural intensification and damages to human health in relation to agrochemicals: Application of artificial intelligence | 2019 | [59] | Scopus |
Development and evaluation of a low-cost and smart technology for precision weed management utilizing artificial intelligence | 2019 | [60] | Scopus |
Development of deep learning-based variable rate agrochemical spraying system for targeted weeds control in strawberry crop. | 2021 | [61] | Scopus |
Field evaluation of a deep learning-based smart variable-rate sprayer for targeted application of agrochemicals | 2023 | [62] | Scopus |
Image processing based real-time variable-rate chemical spraying system for disease control in paddy crop | 2020 | [63] | Scopus |
Proposed Spray System for Family Agriculture with A Remote-Controlled UAV (Small Drone or Helicopter) and An Economical Sprinkle | 2020 | [64] | Scopus |
Efficacy of drone technology in agriculture: A review: Drone technology in agriculture | 2020 | [65] | Scopus |
Preliminary study on pesticide application in paddy field using drone spraye | 2021 | [66] | Scopus |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Méndez-Zambrano, P.V.; Tierra Pérez, L.P.; Ureta Valdez, R.E.; Flores Orozco, Á.P. Technological Innovations for Agricultural Production from an Environmental Perspective: A Review. Sustainability 2023, 15, 16100. https://doi.org/10.3390/su152216100
Méndez-Zambrano PV, Tierra Pérez LP, Ureta Valdez RE, Flores Orozco ÁP. Technological Innovations for Agricultural Production from an Environmental Perspective: A Review. Sustainability. 2023; 15(22):16100. https://doi.org/10.3390/su152216100
Chicago/Turabian StyleMéndez-Zambrano, Patricio Vladimir, Luis Patricio Tierra Pérez, Rogelio Estalin Ureta Valdez, and Ángel Patricio Flores Orozco. 2023. "Technological Innovations for Agricultural Production from an Environmental Perspective: A Review" Sustainability 15, no. 22: 16100. https://doi.org/10.3390/su152216100
APA StyleMéndez-Zambrano, P. V., Tierra Pérez, L. P., Ureta Valdez, R. E., & Flores Orozco, Á. P. (2023). Technological Innovations for Agricultural Production from an Environmental Perspective: A Review. Sustainability, 15(22), 16100. https://doi.org/10.3390/su152216100