Can an Incentivized Command-and-Control Approach Improve Groundwater Management? An Analysis of Indian Punjab
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. The Context of Groundwater Exploitation in Indian Punjab
3.2. The Punjab Preservation of Subsoil Water Act 2009
A Pre–Post Comparison of the 2009 Act in Indian Punjab
3.3. The Punjab Water Resources (Management and Regulation) Act 2020
3.4. Issues to Be Addressed While Using C&C Approach as a Policy Instrument
3.5. An Approach to Regulating Groundwater Using CAC & I
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- UNESCO. UN World Water Development Report. 2022. Available online: https://www.unwater.org/publications/un-world-water-development-report-2022 (accessed on 25 June 2023).
- Hofste, R.W.; Reig, P.; Schleifer, L. 17 Countries, Home to One-Quarter of the World’s Population, Face Extremely High Water Stress; World Resources Institute: Washington, DC, USA, 2019. [Google Scholar]
- Mechlem, K. Groundwater governance: The role of legal frameworks at the local and national level—Established practice and emerging trends. Water 2016, 8, 347. [Google Scholar] [CrossRef]
- Owen, D. Taking groundwater. Wash. Univ. Law Rev. 2013, 91, 253. [Google Scholar] [CrossRef]
- Burchi, S.; Nanni, M. How groundwater ownership and rights influence groundwater intensive use management. In Intensive Use of Groundwater: Challenges and Opportunities; CRC Press: Boca Raton, FL, USA, 2003; pp. 227–240. [Google Scholar]
- Gregory, A.M. Groundwater and Its Future: Competing Interests and Burgeoning Markets. Stanf. Environ. Law J. 1992, 11, 229. [Google Scholar]
- Environmental Law Institute. Regulating Groundwater in India; Environmental Law News; Environmental Law Institute: Washington, DC, USA, 2013; p. 4. [Google Scholar]
- Prasad, K. Institutional Framework for Regulating Use of Ground Water in India; Central Ground Water Board: Faridabad, India, 2008.
- The Indian Easements Act. 1882. Available online: https://faolex.fao.org/docs/pdf/ind197502.pdf (accessed on 3 May 2023).
- Cullet, P. Model Groundwater (Sustainable Management) Bill, 2017: A new paradigm for groundwater regulation. Indian Law Rev. 2018, 2, 263–276. [Google Scholar] [CrossRef]
- Cullet, P. Groundwater law in India: Towards a framework ensuring equitable access and aquifer protection. J. Environ. Law 2014, 26, 55–81. [Google Scholar] [CrossRef]
- WRI India. Groundwater Regulation: A Challenge To Make the ‘Invisible Visible’ in India. 2022. Available online: https://wri-india.org/blog/groundwater-regulation-challenge-make-%E2%80%98invisible-visible%E2%80%99-india (accessed on 15 May 2023).
- Devineni, N.; Perveen, S.; Lall, U. Solving groundwater depletion in India while achieving food security. Nat. Commun. 2022, 13, 3374. [Google Scholar] [CrossRef] [PubMed]
- Dhawan, V. Water and agriculture in India. In Background Paper for the South Asia Expert Panel during the Global Forum for Food and Agriculture; OAV—German Asia-Pacific Business Association: Hamburg, Germany, 2017; Volume 28, pp. 80–85. [Google Scholar]
- Central Ground Water Board. Dynamic Ground Water Resources of India. 2022. Available online: http://cgwb.gov.in/sites/default/files/inline-files/2022-11-11-gwra_2022_1_compressed.pdf (accessed on 17 January 2023).
- Ashraf, S.; Nazemi, A.; AghaKouchak, A. Anthropogenic drought dominates groundwater depletion in Iran. Sci. Rep. 2021, 11, 9135. [Google Scholar] [CrossRef]
- Jia, X.; O’Connor, D.; Hou, D.; Jin, Y.; Li, G.; Zheng, C.; Ok, Y.S.; Tsang, D.C.; Luo, J. Groundwater depletion and contamination: Spatial distribution of groundwater resources sustainability in China. Sci. Total Environ. 2019, 672, 551–562. [Google Scholar] [CrossRef]
- Konikow, L.F.; Kendy, E. Groundwater depletion: A global problem. Hydrogeol. J. 2005, 13, 317–320. [Google Scholar] [CrossRef]
- Foster, S.; Chilton, J.; Nijsten, G.J.; Richts, A. Groundwater—A global focus on the ‘local resource’. Curr. Opin. Environ. Sustain. 2013, 5, 685–695. [Google Scholar] [CrossRef]
- Dangar, S.; Asoka, A.; Mishra, V. Causes and implications of groundwater depletion in India: A review. J. Hydrol. 2021, 596, 126103. [Google Scholar] [CrossRef]
- Sinha, R.; Joshi, S.K.; Kumar, S. Green revolution in northwest India. Geogr. You 2019, 19, 12–19. [Google Scholar]
- Bierkens, M.F.; Wada, Y. Non-renewable groundwater use and groundwater depletion: A review. Environ. Res. Lett. 2019, 14, 063002. [Google Scholar] [CrossRef]
- Wada, Y.; Van Beek, L.P.; Van Kempen, C.M.; Reckman, J.W.; Vasak, S.; Bierkens, M.F. Global depletion of groundwater re-sources. Geophys. Res. Res. Res. Lett. Lett. 2010, 37, L20402. [Google Scholar]
- Vörösmarty, C.J.; McIntyre, P.B.; Gessner, M.O.; Dudgeon, D.; Prusevich, A.; Green, P.; Glidden, S.; Bunn, S.E.; Sullivan, C.A.; Liermann, C.R.; et al. Global threats to human water security and river biodiversity. Nature 2010, 467, 555–561. [Google Scholar] [CrossRef] [PubMed]
- Richey, A.S.; Thomas, B.F.; Lo, M.H.; Reager, J.T.; Famiglietti, J.S.; Voss, K.; Swenson, S.; Rodell, M. Quantifying renewable groundwater stress with GRACE. Water Resour. Res. 2015, 51, 5217–5238. [Google Scholar] [CrossRef] [PubMed]
- Rodell, M.; Famiglietti, J.S.; Wiese, D.N.; Reager, J.T.; Beaudoing, H.K.; Landerer, F.W.; Lo, M.H. Emerging trends in global freshwater availability. Nature 2018, 557, 651–659. [Google Scholar] [CrossRef]
- Konikow, L.F. Long-term groundwater depletion in the United States. Groundwater 2015, 53, 2–9. [Google Scholar] [CrossRef]
- Bilal, H.; Govindan, R.; Al-Ansari, T. Investigation of groundwater depletion in the state of Qatar and its implication to energy, water, and food nexus. Water 2021, 13, 2464. [Google Scholar] [CrossRef]
- Jain, M.; Fishman, R.; Mondal, P.; Galford, G.L.; Bhattarai, N.; Naeem, S.; Lall Upmanu Singh, B.; De Fries, R.S. Groundwater depletion will reduce cropping intensity in India. Sci. Adv. 2021, 7, eabd2849. [Google Scholar] [CrossRef]
- Srivastava, S.K.; Chand, R.; Singh, J.; Kaur, A.P.; Jain, R.; Kingsly, I.; Raju, S.S. Revisiting groundwater depletion and its im-plications on farm economics in Punjab, India. Curr. Sci. 2017, 113, 422–429. [Google Scholar] [CrossRef]
- Sarkar, A. Socio-economic implications of depleting groundwater resource in Punjab: A comparative analysis of different ir-rigation systems. Econ. Political Wkly. 2011, 46, 59–66. [Google Scholar]
- Ross, A.; Martinez-Santos, P. The challenge of groundwater governance: Case studies from Spain and Australia. Reg. Environ. Chang. 2010, 10, 299–310. [Google Scholar] [CrossRef]
- Sophocleous, M. Groundwater management practices, challenges, and innovations in the High Plains aquifer, USA—Lessons and recommended actions. Hydrogeol. J. 2010, 18, 559. [Google Scholar] [CrossRef]
- Gorelick, S.M.; Zheng, C. Global change and the groundwater management challenge. Water Resour. Res. 2015, 51, 3031–3051. [Google Scholar] [CrossRef]
- Abdo, G.; Salih, A. Challenges facing groundwater management in Sudan. In Proceedings of the Annual Conference of Post-graduate Studies and Scientific Research (Basic and Engineering Studies Board), Khartoum, Sudan, 17–20 February 2012. [Google Scholar]
- Gaye, C.B.; Tindimugaya, C. Challenges and opportunities for sustainable groundwater management in Africa. Hydrogeol. J. 2019, 27, 1099–1110. [Google Scholar] [CrossRef]
- Oh, C.; Svendsen, G.T. Water management policy in California: The status quo of command-and-control. Int. J. Reg. Dev. 2015, 2, 61. [Google Scholar] [CrossRef][Green Version]
- Holling, C.S.; Meffe, G.K. Command and control and the pathology of natural resource management. Conserv. Biol. 1996, 10, 328–337. [Google Scholar] [CrossRef]
- Andersen, M.S. Governance by Green Taxes: Making Pollution Prevention Pay; Manchester University Press: Manchester, UK, 1994. [Google Scholar]
- Hodge, I. Environmental Economics: Individual Incentives and Public Choices; MacMillan: Basingstoke, UK, 1995. [Google Scholar] [CrossRef]
- Stewart, R.B. Controlling environmental risks through economic incentives. Colum. J. Environ. Law 1987, 13, 153. [Google Scholar]
- Porto, M.; Lobato, F. Mechanisms of water management: Command & control and social mechanisms (Parte 1 de 2). REGA Rev. Gestão Água América Lat. 2004, 1, 113–129. [Google Scholar]
- Olmstead, S.M.; Stavins, R.N. Comparing price and nonprice approaches to urban water conservation. Water Resour. Res. 2009, 45. [Google Scholar] [CrossRef]
- Orr, P.; Colby, B. Groundwater management institutions to protect riparian habitat. Water Resour. Res. 2004, 40, W12S03. [Google Scholar] [CrossRef]
- Cropper, M.L.; Oates, W.E. Environmental economics: A survey. J. Econ. Lit. 1992, 30, 675–740. [Google Scholar]
- Timmins, C. Demand-side technology standards under inefficient pricing regimes. Environ. Resour. Econ. 2003, 26, 107–124. [Google Scholar] [CrossRef]
- Netanyahu, S.; Asia, I. Israel: Water pricing and command and control for water demand management in cities and agriculture. In Proceedings of the UN-Water International Conference, Zaragoza, Spain, 3–5 October 2011. [Google Scholar]
- Smith, T.B. Evolving strategies for environmental management in Asia: From command-and-control to voluntary compliance. Asian J. Public Adm. 2000, 22, 3–32. [Google Scholar] [CrossRef]
- Sinclair, D. Self-regulation versus command and control? Beyond false dichotomies. Law Policy 1997, 19, 529–559. [Google Scholar] [CrossRef]
- Marston, L.T.; Zipper, S.; Smith, S.M.; Allen, J.J.; Butler, J.J.; Gautam, S.; Yu, D.J. The importance of fit in groundwater self-governance. Environ. Res. Lett. 2022, 17, 111001. [Google Scholar] [CrossRef]
- Butler, J.J., Jr.; Bohling, G.C.; Whittemore, D.O.; Wilson, B.B. Charting pathways toward sustainability for aquifers supporting irrigated agriculture. Water Resour. Res. 2020, 56, e2020WR027961. [Google Scholar] [CrossRef]
- Deines, J.M.; Kendall, A.D.; Butler, J.J.; Hyndman, D.W. Quantifying irrigation adaptation strategies in response to stake-holder-driven groundwater management in the US High Plains Aquifer. Environ. Res. Lett. 2019, 14, 044014. [Google Scholar] [CrossRef]
- Molle, F.; Closas, A. Groundwater governance. In Encyclopedia of Water: Science, Technology, and Society; Wiley: Hoboken, NJ, USA, 2019; pp. 1–9. [Google Scholar]
- Shalsi, S.; Ordens, C.M.; Curtis, A.; Simmons, C.T. Coming together: Insights from an Australian example of collective action to co-manage groundwater. J. Hydrol. 2022, 608, 127658. [Google Scholar] [CrossRef]
- Kiparsky, M.; Milman, A.; Owen, D.; Fisher, A.T. The importance of institutional design for distributed local-level governance of groundwater: The case of California’s sustainable groundwater management act. Water 2017, 9, 755. [Google Scholar] [CrossRef]
- Wijnen, M.; Augeard, B.; Hiller, B.; Ward, C.; Huntjens, P. Managing the Invisible: Understanding and Improving Groundwater Governance; World Bank: Washington, DC, USA, 2012. [Google Scholar]
- Drysdale, K.M.; Hendricks, N.P. Adaptation to an irrigation water restriction imposed through local governance. J. Environ. Econ. Manag. 2018, 91, 150–165. [Google Scholar] [CrossRef]
- Sheridan High Priority Area 6 Groundwater Stakeholders Committee. SD-6 HPA Stakeholders Proposal to Be Recommended to the Northwest Kansas Groundwater Management District No. 4 Board of Directors along with a Request that Said Proposal Be Adopted by the GMD 4 Board and Submitted to the Chief Engineer, Kansas Department of Agriculture, Division of Water Resources as a LEMA Proposal; Initial Proposal with Discussion Minutes. 2012. Available online: https://sftp.kda.ks.gov:4443/LEMAs/SD6/LEMA.SD6.InitProposal.20120615.pdf (accessed on 10 February 2023).
- Rio Grande Water Conservation District (RGWCD). Special Improvement District No. 1: Rio Grande Water Conservation District; Plan of Water Management; Rio Grande Water Conservation District: Alamosa, CO, USA, 2009. [Google Scholar]
- Milman, A.; Kiparsky, M. Concurrent governance processes of California’s sustainable groundwater management act. Soc. Nat. Resour. 2020, 33, 1555–1566. [Google Scholar] [CrossRef]
- Rap, E.; Wester, P. Governing the water user: Experiences from Mexico. J. Environ. Policy Plan. 2017, 19, 293–307. [Google Scholar] [CrossRef]
- Saha, D.; Chakraborty, M.; Chowdhury, A. Stubble burning in northwestern India. In Groundwater for Sustainable Livelihoods and Equitable Growth; CRC Press: Boca Raton, FL, USA, 2022; pp. 123–134. [Google Scholar]
- Folke, C.; Pritchard, L., Jr.; Berkes, F.; Colding, J.; Svedin, U. The problem of fit between ecosystems and institutions: Ten years later. Ecol. Soc. 2007, 12, 30. [Google Scholar] [CrossRef]
- Ostrom, E.; Janssen, M.A.; Anderies, J.M. Going beyond panaceas. Proc. Natl. Acad. Sci. USA 2007, 104, 15176–15178. [Google Scholar] [CrossRef]
- Bodin, Ö.; Norberg, J. Information network topologies for enhanced local adaptive management. Environ. Manag. 2005, 35, 175–193. [Google Scholar] [CrossRef]
- Low, B.; Ostrom, E.; Simon, C.; Wilson, J. Redundancy and diversity: Do they influence optimal management? In Navigating Social-Ecological Systems: Building Resilience for Complexity and Change; Cambridge University Press: Cambridge, UK, 2003; pp. 83–114. [Google Scholar]
- Land Use Statistics, Directorate of Economics & Statistics, Ministry of Agriculture and Farmers Welfare, Govt. of India, New Delhi. Available online: https://aps.dac.gov.in/LUS/Index.htm (accessed on 2 May 2023).
- Rosencranz, A.; Puthucherril, T.G.; Tripathi, S.; Gupta, S. Groundwater management in India’s Punjab and Haryana: A case of too little and too late? J. Energy Nat. Resour. Law 2022, 40, 225–250. [Google Scholar] [CrossRef]
- Mahajan, G.; Singh, K.; Gill, M.S. Scope for enhancing and sustaining rice productivity in Punjab (food bowl of India). Afr. J. Agric. Res. 2012, 7, 5611–5620. [Google Scholar]
- Mukherji, A. Sustainable groundwater management in India needs a water-energy-food nexus approach. Appl. Econ. Perspect. Policy 2022, 44, 394–410. [Google Scholar] [CrossRef]
- Sarkar, A. Groundwater irrigation and farm power policies in Punjab and West Bengal: Challenges and opportunities. Energy Policy 2020, 140, 111437. [Google Scholar] [CrossRef]
- Srivastava, S.K.; Chand, R.; Raju, S.S.; Jain, R.; Kingsly, I.; Sachdeva, J.; Singh, J.; Kaur, A.P. Unsustainable groundwater use in Punjab agriculture: Insights from cost of cultivation survey. Indian J. Agric. Econ. 2015, 70, 365–378. [Google Scholar]
- Statistical Abstract of Punjab. 2022. Available online: https://finance.punjab.gov.in/uploads/10Mar2023/Statistical_Abstract.pdf (accessed on 21 April 2023).
- Khanam, R.; Bhaduri, D.; Nayak, A.K. Crop diversification: An important way-out for doubling farmers’ income. Indian Farming 2018, 68, 31–32. [Google Scholar]
- Economic Survey 2018–2019. Available online: https://www.indiabudget.gov.in/budget2019-20/economicsurvey/doc/echapter.pdf (accessed on 14 December 2022).
- Kurdyś-Kujawska, A.; Strzelecka, A.; Zawadzka, D. The impact of crop diversification on the economic efficiency of small farms in Poland. Agriculture 2021, 11, 250. [Google Scholar] [CrossRef]
- Shahbaz, P.; Boz, I.; Haq, S.U. Determinants of crop diversification in mixed cropping zone of Punjab Pakistan. Direct Res. J. Agric. Food Sci. 2017, 5, 360–366. [Google Scholar]
- Gupta, R.P.; Tewari, S.K. Factors affecting crop diversification: An empirical analysis. Indian J. Agric. Econ. 1985, 40, 304–309. [Google Scholar]
- Bhogal, S.; Vatta, K. Can crop diversification be widely adopted to solve the water crisis in Punjab? Curr. Sci. 2021, 120, 1303–1307. [Google Scholar] [CrossRef]
- Chhatre, A.; Devalkar, S.; Seshadri, S. Crop diversification and risk management in Indian agriculture. Decision 2016, 43, 167–179. [Google Scholar] [CrossRef]
- Sajjad, H.; Prasad, S. Analyzing the spatio-temporal pattern of crop diversification in Jalandhar district of Punjab, India. Asian J. Agric. Rural Dev. 2014, 4, 242–256. [Google Scholar]
- Sharma, B.R.; Ambili, G.K.; Sidhu, B.S. The Punjab Preservation of Subsoil Water Act: A regulatory mechanism for saving groundwater. In Proceedings of the Workshop on Water Availability and Management in Punjab (WAMIP-2010), Chandigarh, India, 13–15 December 2010. [Google Scholar]
- Singh, K. Act to save groundwater in Punjab: Its impact on water table, electricity subsidy and environment. Agric. Econ. Res. Rev. 2009, 22, 365–386. [Google Scholar]
- Department of Soil and Water Conservation, Government of Punjab. The Punjab Preservation of Subsoil Water Act. 2009. Available online: https://dswcpunjab.gov.in/contents/docs/Pb-preservation-of-Subsoil-Act,2009.pdf (accessed on 19 November 2022).
- Kishore, P.; Singh, D.R.; Srivastava, S.; Kumar, P.; Jha, G.K. Impact of Subsoil Water Preservation Act, 2009 on Burgeoning Trend of Groundwater Depletion in Punjab, India. In Proceedings of the International Conference of Agricultural Economists (IAAE), Online, 17–31 August 2021. [Google Scholar]
- Sharma, Y.; Sidana, B.K.; Kaur, S.; Kumar, S. Role of public policy in sustaining groundwater: Impact of ‘The Punjab Preser-vation of Sub Soil Water Act, 2009’. Agric. Econ. Res. Rev. 2021, 34, 121–131. [Google Scholar] [CrossRef]
- Sidhu, B.S.; Sharda, R.; Singh, S. Spatio-temporal assessment of groundwater depletion in Punjab, India. Groundw. Sustain. Dev. 2021, 12, 100498. [Google Scholar] [CrossRef]
- Tripathi, A.; Mishra, A.K.; Verma, G. Impact of preservation of subsoil water act on groundwater depletion: The case of Punjab, India. Environ. Manag. 2016, 58, 48–59. [Google Scholar] [CrossRef]
- Central Ground Water Board. Dynamic Ground Water Resources of India. 2017. Available online: https://data.opencity.in/dataset/81c8bba1-0bdd-48da-ad9b-17cf5a767759/resource/5af44d77-181c-40fd-b5b8-5d2b204f6ef2/download/gwra-2017-national-compilation.pdf (accessed on 1 August 2023).
- WWAP. United Nations Educational, Scientific and Cultural Organization (UNESCO), United Nations World Water Assessment Programme (WWAP), UN-Water. March 2012. Available online: http://www.wri.org/resource/physical-and-economic-water-scarcity (accessed on 3 December 2022).
- IWMI. World Water Supply and Demand 1995 to 2025. Draft Report Prepared for World Water Vision International Water Management Institute, Colombo, Sri Lanka. 2000. Available online: www.iwmi.cgiar.org/pubs/WWVisn/WWSDOpen.htm (accessed on 29 November 2022).
- Rijsberman, F.R. Water scarcity: Fact or fiction? Agric. Water Manag. 2006, 80, 5–22. [Google Scholar] [CrossRef]
- Rodell, M.; Velicogna, I.; Famiglietti, J.S. Satellite-based estimates of groundwater depletion in India. Nature 2009, 460, 999–1002. [Google Scholar] [CrossRef] [PubMed]
- Report of the Ground Water Resource Estimation Committee. (GEC-2015). Ministry of Water Resources, River Development & Ganga Rejuvenation, Government of India. 2017. Available online: http://cgwb.gov.in/Documents/GEC2015_Report_Final%2030.10.2017.pdf (accessed on 22 February 2023).
- Central Ground Water Board. Dynamic Ground Water Resources of India. 2009. Available online: https://cgwb.gov.in/Documents/Dynamic-GW-Resources-2009.pdf (accessed on 21 October 2022).
- Statistical Abstract of Punjab. 2020. Available online: https://punjabassembly.nic.in/images/docs/Statistical%20Abstract.pdf (accessed on 17 January 2023).
- Sarkar, A.; Das, A. Groundwater irrigation-electricity-crop diversification Nexus in Punjab: Trends, turning points, and Policy Initiatives. Econ. Political Wkly. 2014, 49, 64–73. [Google Scholar]
- Shah, T.; Bhatt, S.; Shah, R.K.; Talati, J. Groundwater governance through electricity supply management: Assessing an in-novative intervention in Gujarat, western India. Agric. Water Manag. 2008, 95, 1233–1242. [Google Scholar] [CrossRef]
- Bhaduri, A.; Amarasinghe, U.; Shah, T. Groundwater irrigation expansion in India: An analysis and prognosis. Draft prepared for the IWMI-CPWF project on “Strategic Analysis of National River Linking Project of India. 2006. Available online: https://publications.iwmi.org/pdf/H039616.pdf (accessed on 29 November 2022).
- Khatri-Chhetri, A.; Aryal, J.P.; Sapkota, T.B.; Khurana, R. Economic benefits of climate-smart agricultural practices to small-holder farmers in the Indo-Gangetic Plains of India. Curr. Sci. 2016, 110, 1251–1256. [Google Scholar]
- Mann, R.A.; Ramzan, M.U.H.A.M.M.A.D.; Munir, A.N.J.U.M. Improving the sustainability of wheat production in irrigated areas of Punjab, Pakistan, through conservation tillage technology. Int. J. Agric. Biol. 2008, 10, 249–254. [Google Scholar]
- Jat, M.L.; Sharma, S.K.; Gupta, R.K.; Sirohi, K.; Chandana, P. Laser land leveling: The precursor technology for resource con-servation in irrigated eco-system of India. In Conservation Agriculture-Status and Prospects; CASA: New Delhi, India, 2005; pp. 145–154. [Google Scholar]
- The Indian Express. Punjab: Rs 4.07 Crore Sanctioned to Promote Horticulture in Sangrur, Malerkotla Districts. 2023. Available online: https://indianexpress.com/article/cities/chandigarh/punjab-sanctioned-promote-horticulture-sangrur-malerkotla-districts-8600048/ (accessed on 28 July 2023).
- Khera, S. Groundwater Quality Assessment for Drinking and Irrigational Purposes In Punjab. Pangaea Int. J. Adv. Appl. Res. 2023, 2, 26–34. [Google Scholar]
- Virk, H.S. Groundwater Contamination in Punjab Due to High Levels of Nitrate (NO3) and Its Health Hazards: A Preliminary Report. J. Toxicol. 2022, 12, 18–26. [Google Scholar]
- Perveen, S.; Krishnamurthy, C.K.; Sidhu, R.S.; Vatta, K.; Kaur, B.; Modi, V.; Fishman, R.; Polycarpou, L.; Lall, U. Restoring Groundwater in Punjab, India’s Breadbasket: Finding Agricultural Solutions for Water Sustainability. In Columbia Water Center White Paper: Agriculture, India; Columbia Water Center, Earth Institute, Columbia University: New York, NY, USA, 2012. [Google Scholar]
- Mahajan, G.; Bharaj, T.S.; Timsina, J. Yield and water productivity of rice as affected by time of transplanting in Punjab, India. Agric. Water Manag. 2009, 96, 525–532. [Google Scholar] [CrossRef]
- Gosal, G. Physical geography of the Punjab. JPS 2004, 11, 20. [Google Scholar]
- Reddy, V.R. Costs of resource depletion externalities: A study of groundwater overexploitation in Andhra Pradesh, India. Environ. Dev. Econ. 2005, 10, 533–556. [Google Scholar] [CrossRef]
- Reserve Bank of India. Handbook of Statistics on Indian Economy. 2021. Available online: https://www.rbi.org.in/scripts/PublicationsView.aspx?id=20428 (accessed on 13 December 2022).
- Krishan, G.; Rao, M.S.; Loyal, R.S.; Lohani, A.K.; Tuli, N.K.; Takshi, K.S.; Kumar, C.P.; Semwal, P.; Kumar, S. Groundwater level analyses of Punjab, India: A quantitative approach. Octa J. Environ. Res. 2014, 2, 221–226. [Google Scholar]
- Punjab Water Resources (Management and Regulation) Act, 2020 (No. 2 of 2020). Available online: https://www.fao.org/faolex/results/details/en/c/LEX-FAOC198262/ (accessed on 8 January 2022).
- Bruno, E.M.; Sexton, R.J. The gains from agricultural groundwater trade and the potential for market power: Theory and ap-plication. Am. J. Agric. Econ. 2020, 102, 884–910. [Google Scholar] [CrossRef]
- Bouchet, L.; Thoms, M.C.; Parsons, M. Groundwater as a social-ecological system: A framework for managing groundwater in Pacific Small Island Developing States. Groundw. Sustain. Dev. 2019, 8, 579–589. [Google Scholar] [CrossRef]
- Cole, D.H.; Grossman, P.Z. When is command-and-control efficient? Institutions, technology, and the comparative efficiency of alternative regulatory regimes for environmental protection. In The Theory and Practice of Command and Control in Environmental Policy; Routledge: London, UK, 2018; pp. 115–166. [Google Scholar]
- Aladjem, D.R.; Nikkel, M.E. California groundwater management: Laboratories of local implementation or state command and control. Environ. Law News 2016, 25, 3–7. [Google Scholar]
- Lane, R. The promiscuous history of market efficiency: The development of early emissions trading systems. Environ. Politics 2012, 21, 583–603. [Google Scholar] [CrossRef]
- Gunningham, N. Regulatory reform beyond command and control. In Proceedings of the Amsterdam Conference on the Human Dimensions of Global Environmental Change, Earth System Governance: Theories and Strategies for Sustainability, Amsterdam, The Netherlands, 24–26 May 2007; pp. 24–26. [Google Scholar]
- Aalders, M.; Wilthagen, T. Moving Beyond Command-and-Control: Reflexivity in the Regulation of Occupational Safety and Health and the Environment. Law Policy 1997, 19, 415–443. [Google Scholar] [CrossRef]
- Agriculture Census. Ministry of Agriculture & Farmers Welfare, Government of India. 2016. Available online: https://agcensus.nic.in/ (accessed on 22 February 2023).
- Kim, J.H.; Keane, T.D.; Bernard, E.A. Fragmented local governance and water resource management outcomes. J. Environ. Manag. 2015, 150, 378–386. [Google Scholar] [CrossRef] [PubMed]
- Bakker, K.; Cook, C. Water governance in Canada: Innovation and fragmentation. Water Resour. Dev. 2011, 27, 275–289. [Google Scholar] [CrossRef]
- Breitenmoser, L.; Quesada, G.C.; Anshuman, N.; Bassi, N.; Dkhar, N.B.; Phukan, M.; Kumar, S.; Babu, A.N.; Kierstein, A.; Campling, P.; et al. Perceived drivers and barriers in the governance of wastewater treatment and reuse in India: Insights from a two-round Delphi study. Resour. Conserv. Recycl. 2022, 182, 106285. [Google Scholar] [CrossRef]
- Parween, F.; Kumari, P.; Singh, A. Irrigation water pricing policies and water resources management. Water Policy 2021, 23, 130–141. [Google Scholar] [CrossRef]
District | Blocks | Villages | Number of Farmers Surveyed | Average Farm Size (Acres) | Average Rice Crop Yield (Qn/Acre) | Average Age of Farmers |
---|---|---|---|---|---|---|
Jalandhar | 3 | 6 | 58 | 21 | 3046 | 58 |
Sangrur | 3 | 5 | 57 | 8 | 3067 | 51 |
Bathinda | 3 | 9 | 76 | 13 | 2987 | 49 |
Pathankot | 3 | 6 | 55 | 9 | 2576 | 55 |
Total | 12 | 26 | 246 | 13 | 2919 | 53 |
Year/Crop Groups | Total Cereals | Total Pulses | Sugarcane | Condiments and Spices | Fruits and Vegetables | Oilseeds | Fibers | Total Cropped Area | 1-Herfindahl Index (HI) |
---|---|---|---|---|---|---|---|---|---|
2014–2015 | 6539 | 16 | 97 | 1 | 183 | 48 | 422 | 7857 | 0.307 |
2015–2016 | 6618 | 20 | 92 | 0.9 | 190 | 49 | 336 | 7872 | 0.293 |
2016–2017 | 6670 | 20 | 89 | 1.3 | 182 | 45 | 285 | 7804 | 0.270 |
2017–2018 | 6702 | 14 | 97 | 1.6 | 164 | 36 | 292 | 7779 | 0.258 |
2018–2019 | 6743 | 14 | 95 | 1.2 | 195 | 37 | 268 | 7851 | 0.262 |
2019–2020 | 6795 | 10 | 91 | 0.8 | 187 | 37 | 248 | 7838 | 0.248 |
2020–2021 | 6801 | 10 | 89 | 0.6 | 187 | 37 | 252 | 7835 | 0.247 |
Assessment/Year | 2009 | 2017 | 2022 |
---|---|---|---|
Total annual groundwater recharge | 22.56 | 23.93 | 18.94 |
Total natural discharges | 2.21 | 2.35 | - |
Annual extractable groundwater resource | 20.35 | 21.58 | 17.07 |
Current annual groundwater extraction | 34.66 | 35.78 | 28.02 |
Stage of groundwater extraction (%) | 170 | 166 | 166 |
Category of Groundwater Resource | GEC Methodology 1997 Used for Reports before 2017 | GEC Methodology 2015 Used for 2017 Report |
---|---|---|
Safe | ≤70% | ≤65% |
Semicritical | >70% and ≤90% | >65% and ≤85% |
Critical | >90% and ≤100% | >85% and ≤100% |
Overexploited | >100% | >100% |
Blocks/Year | 2009 | 2017 |
---|---|---|
Overexploited | 110 | 109 |
Dark | 3 | 2 |
Grey | 2 | 5 |
White | 23 | 22 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bhatia, S.; Singh, S.P. Can an Incentivized Command-and-Control Approach Improve Groundwater Management? An Analysis of Indian Punjab. Sustainability 2023, 15, 15777. https://doi.org/10.3390/su152215777
Bhatia S, Singh SP. Can an Incentivized Command-and-Control Approach Improve Groundwater Management? An Analysis of Indian Punjab. Sustainability. 2023; 15(22):15777. https://doi.org/10.3390/su152215777
Chicago/Turabian StyleBhatia, Sahil, and S. P. Singh. 2023. "Can an Incentivized Command-and-Control Approach Improve Groundwater Management? An Analysis of Indian Punjab" Sustainability 15, no. 22: 15777. https://doi.org/10.3390/su152215777
APA StyleBhatia, S., & Singh, S. P. (2023). Can an Incentivized Command-and-Control Approach Improve Groundwater Management? An Analysis of Indian Punjab. Sustainability, 15(22), 15777. https://doi.org/10.3390/su152215777